DNg connectivity

jean-jacques.levy@inria.fr

journées PPS, 12-10-201

mailto:jean-jacques.levy@inria.fr

Plan

* motivation

e algorithm

e formal proof
e other systems

e conclusion

.. joint work (in progress) with Ran Chen [VSTTE 20171])

also cooperation with Cyril Cohen, Laurent Théry, Stephan Merz

Motivation

* nice algorithms == simple formal proofs
* fully published in articles or journals
e how to publish formal proofs “?

e formal proofs should be exact and readable (by human)

e mix automatic and interactive proofs

* first-order logic is easy to understand, but not expressive

e algorithms on graphs = a good testbed

One-pass linear-time
algorithm

[tarjan 1972]

Depth-first-search

spanning tree (forest)

The algorithm (1/3)

@<---
v

3 SCCs (strongly connected components) 3 vertices are their bases

The algorithm (2/3)

LOWLINK (z) = min ({num|x|} U {numly] | x ——>y
A x and y are 1n same
connected component})

The algorithm (3/3)

successive values of the working stack

——

©<--- E T 1 1 1 1 1 1 1] 0
A

/ 2 2 2 2 2 2 2|2 1 |s
' @)
(8) 3 3 3 3 3 3|3 2 |8
AT 4 , @
S 4 4 4 4 4|4 3 |3
® ® 5 55|88 N

R 6 |6 9 5
(4) @ 7 6V

The program

let rec printSCC (x: int) (s: stack int)
(num: array int) (sn: ref int) =
Stack.push x s;
num[x] < !sn; sn := !sn + 1;
let low = ref num([x] in
foreach y in (successors x) do
let m = if num[y] = -1
then printSCC y s num sn
else num[y] in
low := Math.min m !'low
done;

* print each component on a line

if !low = num[x] then begin
repeat
let y = Stack.pop s in
Printf.printf "%d " y;
num[y] < max_int;
if y = x then break;
done;
Printf.printf "\n";
low := max_int;
end;
return !low;

Proof in algorithms books (1/2)

e consider the spanning trees (forest)
e tree structure of strongly connected components

e 2-3 lemmas about ancestors in spanning trees

LEMMA 10. Let v and w be vertices in G which lie in the same strongly connected
component. Let F be a spanning forest of G generated by repeated depth-first search.
Then v and w have a common ancestor in F. Further, if u is the highest numbered
common ancestor of v and w, then u lies in the same strongly connected component
as v and w.

LOWLINK(z) = min ({num[z]} U {num[y] | 2 =—y
A x and y are 1n same
connected component})

LEMMA 12. Let G be a directed graph with LOWLINK defined as above relative
to some spanning forest F of G generated by depth-first search. Then v is the root of
some strongly connected component of G if and only if LOWLINK (v) = v.

|0

Proof in algorithms book (2/2)

* give the program

e proof = program

e that part of the proof is very informal

el.stack

Our program (1/3)

let rec dfsl x e =
let n = e.sn in s3
let (nl1l, el) = dfs (successors x) (add_stack_incr x e) in
let (s2, s3) = split x el.stack in
if nl < n then (nl, el) else
(max_int(), {stack = s3; sccs = add (elements s2) el.sccs;
sn = el.sn; num = set_max_int s2 el.num})

s2

with dfs roots e = if is_empty roots then (max_int(), e) else
let x = choose roots in
let roots’ = remove x roots 1in
let (n1l, el) = if e.num[x] # -1 then (e.num[x], e) else dfsl x e in
let (n2, e2) = dfs roots’ el in (min ni1 n2, e2)

let tarjan () =
let e0 = {stack = Nil; sccs = empty; sn = 0; num =
let (_, e’) = dfs vertices e0 in e’.sccs

const (-1)} in

returns LOWLINK(x) and new environment

12

Formal proof

;

Plan of proof (1/2)

e define reachability in graphs and SCCs

e prove a few lemmas about positions in stacks (ranks)

e define invariants on environments

e give pre-post conditions for functions

e add a few intermediate assertions in function bodies

e avoid paths, prefer edges

| 4

Plan of proof (2/2)

e vertices have colors

- white = unvisited - gray = being visited - black = visited
e Invariant on environment

stack

SCCS

yuel Buisealoul
laquinu Buisealoul

000000000

vertex in stack reaches all vertices with higher rank

|5

lnvariants

type env = {ghost blacks: set vertex; ghost grays: set vertex;
stack: list vertex; scecs: set (set vertex);
sn: int; num: map vertex int}

Pre/Post-conditions

let rec dfsl x e
requires {mem x vertices} (* R1 *)

requires {access to e.grays x} (* R2 *)

requires {not mem X (union e.blacks e.grays)} (* R3 *)

e.sccs C e’.sccs

e.blacks C e’.blacks

e.grays = e'.grays

e’ .stack

e.stack

|7

el.stack

Assertions .

let n = e.sn in

let (nl, el) =
dfs' (successors x) (add_stack incr X e) in
let (s2, s83) = split x el.stack in 52

if nl < n then begin

nl, ada blacks X e end
(max_int(), {blacks add x el.blacks; grays = e.grays;

stack = s3; sccs add (elements s2) el.sccs;
sn = el.sn; num = set max int s2 el.num}) end

Coq

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]

18

http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html

sl=el.stack

Assertions

s3
assert {forall y. in same scc y X => lmem y s2};
* proof by contradiction: Jy, in.samesccy x A y¢&s2 e
X
e Ix'y’, reachable x X’ A edge x’ y' A reachable y'y A x' € s2 A y' & s2 S2
e 3 cases:
[11 y’ is white
x' = x then y’ € successors x =3 V' is black

x' £ x then x’isblack —» — no_black_to_white b1 g1
2] y' € el.sccs then in_same.scc ¥y’ x =¥ x is black

B y'€s3 =» ranky' sl < rankxsl = el.num[y’] < el.num[x] = e.num[x] = n
x' = x then)y’ € successors X =3 nl < el.num[y’]

x' # x then xedge_to s1 (Cons x s3) y’ /

19

Proof stats

provers Alt- | CVC3|CVC4| Coq E- | Spass| Yices| 73 all || #VC|#PO
Ergo prover
38 lemmas 2.35 0.23] 5.79 0.66(0.75| 0.21 9.99 77 38
split 0.09| 0.2 0.29 6 6
add_stack_incr| 0.01 0.01 1 1
add_blacks 0.01 0.01 1 1
set_max_int 0.02 0.02 1 1
dfsl 53.52| 12.88| 36.39| 3.06| 28.06 9.01/142.92|| 218| 24
dfs 4.6/ 0.23] 11.63 0.31| 16.77 51 35
tarjan 0.44 0.44 16 6
total 61.04| 13.54| 53.81| 3.06| 28.72 0.75| 0.21| 9.32{170.45| 371 112

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]

http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html

Other systems

Coq / ssreflect

[cyril cohen, laurent théry, JJL]

e port in 1 week
e graphs and finite sets already in mathematical components
e problems with termination (hacky & higher-order)

e 920 lines

[http://github.com/CohenCyril/tarjan]

22

http://github.com/CohenCyril/tarjan

Isabelle / HOL

[stephan merz]

e port in 1 month
* use many strategies (metis, blast, sledgehammer)
e still problems with proving termination

e 31 pages

[http://jeanjacqueslevy.net/why3/graph/abs/scct/isa/Tarjan.pdf]

23

http://jeanjacqueslevy.net/why3/graph/abs/scct/isa/Tarjan.pdf

F~

[kenji maillard, catalin hritcu]

e start discuss with them

e /3 single automatic prover

° 77

24

onclusion

Future work

e library for formal proofs on graphs

e other graph algorithms

* beyond graphs ...

e teaching formal methods on test cases

* imperative programs

[http://jeanjacqueslevy.net/why3]

26

http://jeanjacqueslevy.net/why3

