
Strongly Connected Components

in graphs,  formal proof 
of Tarjan1972 algorithm

jean-jacques.levy@inria.fr

LTP, PCRI, 28-11-2016

mailto:jean-jacques.levy@inria.fr


Plan

2

.. joint work (in progress) with Ran Chen

• pre-/post-conditions

• imperative programs

• conclusion

• motivation

• algorithm



Motivation

3

• to be fully published in articles or journals

• Coq proofs seem to me unreadable (and by normal human ?) 

• algorithms on graphs = a good testbed

• nice algorithms should have simple formal proofs

• how to publish formal proofs ?

• Why3 allows mix of automatic and interactive proofs

• first-order logic is easy to understand



A  one-pass  linear-
time algorithm



The algorithm (1/2)

5

2 83

4 9

1 7

5 6 • depth-first search algorithm

• with pushing non visited vertices into a working stack

• and computing oldest vertex reachable by at most a 
single « back-edge »

• when that oldest vertex is equal to currently visited 
vertex, a new strongly connected component is in the 
working stack on top of current vertex.

• then pop working stack until currently visited vertex



The algorithm (2/2)

6

2 83

4 9

1 7

5 6 1 1 1 1 1

2 2 2 2

3 3 3

4 4

5

1

2

3

4

5

6

1 1

2 2

3 3

4 4

8 8

1

2

3

4

5

6 9

7

les valeurs successives de la pile

0

1

2

3

4

5

6

sens croissant du rang



The algorithm (2/2)

7

2 83

4 9

1 7

5 6 1 1 1 1 1

2 2 2 2

3 3 3

4 4

5

1

2

3

4

5

6

1 1

2 2

3 3

4 4

8 8

1

2

3

4

5

6 9

7

les valeurs successives de la pile

0

1

2

3

4

5

6

sens croissant du rang

1

00

0

4

4

4

3

3



Proof  in  algorithms  book

8

• Christmas tree structure of strongly connected components

• give the program

• consider the spanning trees (forrest)

• 2-3 lemmas about ancestors in spanning trees

• that proof                   program



The program (1/3)

9

• a functional version with lists and finite sets

• the working stack is a list



The program (2/3)

10

• blacks, grays  are sets of vertices;   sccs  is a set of sets of vertices 

• naming conventions:  

x, y, z   for vertices;     b  for black sets;     s  for stacks;   
cc  for connected components;   
sccs for sets of connected components



The program (3/3)

11



Pre-/Post-conditions



Pre/Post-conditions (1/3)



Pre/Post-conditions (2/3)

x

stack

x

s

blacks ✓ b

sccs ✓ sccs n

y

m

m  rank y stack

m  rank x stack



Pre/Post-conditions (3/3)



Graphs



Paths



Invariants (1/4)

blacks
\

grays = ;

(set of sccs) ✓ blacks

elements s = grays

[
blacks � (set of sccs)



Invariants (2/4)

cc1

sccs

s

graysblacks

increasing rank

cc2

ccn



Invariants (3/4)



Invariants (4/4)

cc1

sccs

s

graysblacks

increasing rank

cc2

ccn



Assertions



Assertions

x

0 2 s2 ^ y

0 62 s2 ^ edge x

0
y

0• Coq proof:  there exists x0
, y

0 with

y0 is white

x

0 = x

x

0 6= x

impossible because no black to white

impossible because successors are black

y0 2 s3 = stack

x

0 = x

x

0 6= x impossible because crossedge

impossible because m1  rank y’ s1 < rank x s1

y0 2 sccs impossible because sccs disjoint from stack



Pre/Post-conditions (1/3)



Towards  imperative  
program



Assertions



Assertions



Assertions



Missing

• implementation of graphs 

• vertices as integers in an array 

• successors as lists for every vertex

• see  http://jeanjacqueslevy.net/why3

http://jeanjacqueslevy.net/why3


Conclusion



Conclusion

31

• readable proofs ?

• simple algorithms should have simple proofs

             to be shown with a good formal precision

• compare with other proof systems

• further algorithms (in next  talks ?)

• graphs represented with arrays + lists

• topological sort, articulation points, sccK, sscT

• Why3 is a beautiful system but not so easy to use !


