
Readable proofs
of DFS in graphs

using Why3
jean-jacques.levy@inria.fr

PCRI, 04-12-2015

Plan

2

.. joint work (in progress) with Ran Chen

• random walk in graphs

• dfs with arbitrary coloring

• further algorithms

• motivation

• dfs with white coloring

Motivation

3

• never formal proofs are fully published in an article/journal

• pretty proofs for simple algorithms

• algorithms on graphs = a good testbed

• learn formal proofs of programs

• how to publish formal proofs ?

• Why3 allows mix of automatic and interactive proofs

• Coq proofs seem to me unreadable by normal human being

Starting with

white nodes

The program

 let rec dfs (roots visited: set vertex): set vertex =
 if is_empty roots then visited
 else
 let x = choose roots in
 let roots' = remove x roots in
 if mem x visited then
 dfs roots' visited
 else
 let b = dfs (successors x) (add x visited) in
 dfs roots’ (union visited b)

 let dfs_main (roots: set vertex) : set vertex =
 dfs roots empty

5

• a functional version with finite sets

type vertex

constant vertices: set vertex

function successors vertex : set vertex

axiom successors_vertices:
 forall x. mem x vertices -> subset (successors x) vertices

predicate edge (x y: vertex) = mem x vertices /\ mem y (successors x)

The program
 let rec dfs (roots visited: set vertex): set vertex =
 if is_empty roots then visited
 else
 let x = choose roots in
 let roots' = remove x roots in
 if mem x visited then
 dfs roots' visited
 else
 let b = dfs (successors x) (add x visited) in
 dfs roots’ (union visited b)

 let dfs_main (roots: set vertex) : set vertex =
 dfs roots empty

6

• goal: result of dfs_main is set of vertices accessible from roots

• invariant: no edge from visited vertex to unvisited vertex

• postcondition: roots are in result of dfs

The program
 let rec dfs (roots visited: set vertex) (ghost grays: set vertex) =
 if is_empty roots then visited
 else
 let x = choose roots in
 let roots' = remove x roots in
 if mem x visited then
 dfs roots' visited grays
 else
 let b = dfs (successors x) (add x visited) (add x grays) in
 dfs roots’ (union visited b) grays

 let dfs_main (roots: set vertex) : set vertex =
 dfs roots empty empty

7

• goal: result of dfs_main is set of vertices accessible from roots

• invariant: no edge from non-gray visited vertex to unvisited vertex

• postcondition: non-gray roots are in result of dfs

The program
 let rec dfs (roots grays blacks: set vertex) : set vertex =
 if is_empty roots then blacks
 else
 let x = choose roots in
 let roots' = remove x roots in
 if mem x (union grays blacks) then
 dfs roots' grays blacks
 else
 let b = dfs (successors x) (add x grays) blacks in
 dfs roots’ grays (add x (union blacks b))

 let dfs_main (roots: set vertex) : set vertex =
 dfs roots empty empty

8

• goal: result of dfs_main is set of vertices accessible from roots

• invariant: no edge from black vertex to white vertex

• postcondition: non-gray roots are in result of dfs

Paths

9

Paths

10

Paths

11

The program

12

The program

13

The program

14

 does not work with Why3 !

 although easy induction (proved with Coq)

x

z
x

0

black whiteblack
or
gray

The program

15

Starting with

any color

(random walk)

The program
 let rec dfs (roots grays blacks others: set vertex) : set vertex =
 if is_empty roots then blacks
 else
 let x = choose roots in
 let roots' = remove x roots in
 if mem x (union grays blacks) then
 dfs roots' grays blacks others
 else
 let b = dfs (successors x) (add x grays) (add x blacks) others in
 dfs roots’ grays (union blacks b) others

 let dfs_main (roots others: set vertex) : set vertex =
 dfs roots empty empty others

17

• follow previous proof

• but hacky

Random walk
 let rec random_search roots visited =
 if is_empty roots then
 visited
 else
 let x = choose roots in
 let roots' = remove x roots in
 if mem x visited then
 random_search roots' visited
 else
 random_search (union roots' (successors x)) (add x visited)

18

• one step of any traversal strategy

• works well with paths [dowek, munoz]

Random walk

19

Random walk

20

• with 3 lemmas (proved in Why3)

• 1 Coq proof (final postcond)

Random walk

21

• with 3 lemmas (proved in Why3)

• 1 Coq proof (final postcond)

Random walk

22

23

DFS

l

y

white
at visited

z

y

z

l1

x

l0

z = x

x’in
successors x

white
at (add x visited)

y

z

x

l0
white
at visited

x

0

z 6= x

24

• same proof for bfs or iterative dfs

Random walk

• see web at jeanjacqueslevy.net/why3

Starting with

any color

(dfs)

DFS

26

let rec dfs roots visited =
 if is_empty roots then
 visited
 else
 let x = choose roots in
 let roots' = remove x roots in
 if mem x visited then
 dfs roots' visited
 else
 let r' = dfs (successors x) (add x visited) in
 dfs roots' r'

DFS (nodeflip — whitepath)

27

• with same 3 lemmas (proved in Why3)

• 1 Coq proof (final postcond)

DFS

28

• with 3 lemmas (proved in Why3)

• 1 Coq proof (final postcond)

• same proof as in random walk

DFS (whitepath — nodeflip)

29

• both postconds

DFS (whitepath — nodeflip)

30

• with same 3 lemmas (proved in Why3)

• 3 Coq proofs (final postcond + Y lemma + fst_not_twice)

31

DFS

l

y

z

not white
at r’

l

y

white
at visited

z

y

z

y0

l1

l2

y0 y’in
successors x

white
at (add x visited)

y

0 = x

y0 2 r0

32

DFS

l

y

z

not white
at r’

l

y

white
at visited

z

y

z

y0

l1

l2

y0 y’in
successors x

white
at visited

y

0 = x

white
at visited

x

x 62 visited

y0 2 r0

33

• more complex than iterative version (random walk) !

DFS

• see web at jeanjacqueslevy.net/why3

Conclusions

Conclusion

35

• readable proofs ?

• simple algorithms should have simple proofs

 to be shown with a good formal precision

• progress in using better meta-language in Why3 proofs ?

• further algorithms (in next talk?)

• graphs represented with arrays + lists

• dag check, articulation points, sccK, sscT

• Why3 is a beautiful system but not so easy to use !

