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Plan

e the standardization theorem (with upper bounds)
e our result

e rigid and minimum prefixes (stability thm)
e Xi's proof (with upper bounds)

e Xi's proof revisited with live occurences

.. joint work with Andrea Asperti (LICS 2013) ..



Shortest reductions

F,, = Ax.xIxx...x

* non effective strategies A, = AX.XX..X

/ \ G, = Ay.(yz)(yz) ... (yz)
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Standard reductions (1/4)
e Definition: The following reduction is standard
p:M:MoiMlng---ﬁMn:N

iff for all / and J, 1 <, then R; is not residual
along p of some RJ{ to the left of R; in M;_1.

e Definition: The leftmost-outermost reduction is also called
the normal reduction.



Standard reductions (2/4)

(Ax.xx)((Af.f3) (Ax.f))

(Af.13)(Ax.x)((Af.f3)(Ax.X))
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standard \ l \ J
)\x x)33 3((Ax.x)3) (Ax XXx)3

vormat ————><} e



Standard reductions (3/4)

e Standardization thm[Curry 50]
Let M —> N. Then M => N. -

-
-
_____

Any reduction can be performed outside-in and left-to-right.

* Normalization corollary

Let M => nf. Then M %> nf. —_—

-
-
_____



Standard reductions (4/4)

e Head reduction corollary for values

Let M —*> V. Then M —> valyin (M) > V



Our result

 Upper-bound on standard reductions [Hongwey Xi, 99]
Let £ = |p| and p: M => N. Then |ps| < [M|?
where pg : M == N.

 Upper-bound to normal forms [Asperti-JJL, 13]

Let £ = |p| and p: M = x. Then |pnorm| < £!
where pporm : M == x.

We gain one exponential.
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Standardization proofs

* finite developments [Gonthier-Mellies-JJL,92]

tricky axiomatic proof

* head normal forms [Mitschke, 80]

e initial proof and statement [Curry&Feys, 70 ]

correct statement, but proof ?



Standard reductions (4+/4)

e Standardization thm[JJL 77]
Let p: M = N. Jlpg. M —=> N L
and pst >~ p. ‘. L

-
-
_____

Standard reduction is canonical representative in permutation class.

e Al-standardization[Church 36]
Standard reduction is longest in its equivalence class.
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Stability (1/2)

e Definition [rigid prefix] Any rigid prefix A of Mis any prefix of
M where never the left of an application can reduce to an abstraction.

M = Q(Mx.x(Ix))(1Ix)
_(Ax.x_)_ rigid prefix of M Q = (Ax.xx)(Ax.xx)
_(Ax.x_)(_ Ix) not rigid prefix of M [ = Ax.x

( rigid prefixes are finite prefixes of Berarducci trees)

e Definition M produces A if M —=> N and A is rigid prefix of .
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Stability (2/2)

* Theorem [stability] Forany rigid prefix A produced by M,
there is a unique minimal prefix | M| 4 of M producing A.

(M| _*_>

M

* Fact [monotony] Let M produce A rigid and M = N.
Then N produces A.
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Slow consumption (1/2)

*Lemma1 [slow consumption] Let M produce A rigid and

M —> N. Then [[N]a| > |[M]a] — 2.

i.e. |[M]ale <1+ ||N]ale where |Ple is the applica-
tive size of P (its number
of application nodes).

e Corollary Let p: M —=> N and A be rigid prefix of N.
Then [[M] ale < [p| + |Ale.

16



Slow consumption (2/2)

1 — /A\
at most M
2 nodes *
erased L

LNA _P /A\
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Multiplicity of variables

e Definition Let M produce A rigid. An occurrence of x is
live for A if it belongs to | M| 4.

Let ma(x) be the number of live occurrences of x in M.

We pose ma(R) = ma(x) when R = (Ax.M)N.

e Lemma 2 [upper bound on live multiplicity]

Let p: M —=> N anc

A rigid prefix of N. Then

ma(x) < |p| + |Ale -

-1 for any variable x in M.
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Xi’s proof of standardization (1/2)

e Lemma [reordering of head redexes] H is residual of H'.
Then

M p B,
. st > N=X(Ox.V)WN
H'x
v i
Moo L. .
st TP N = AKXV {x = WIN

with [p| < [1, m(H)].|p

Proof Easy since M = A)?.()\X.T)UIW and p = pTpUp1- - Pn.
And p’ is disjoint intermix of p, several py, followed by p;'s.

Thus || = |p7r| + m(H).|pul + >, |pi]
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Xi’s proof of standardization (2/2)

e Corollary M p
. V” N
) 3
) 3
‘S , R
v
st .....
.-* N/

with |p’| <14 |1, m(R)|.|p

Proof
By induction on pair (|p|, |M]). Cases on pR contracting head

redex or not + previous lemma.
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Xi’s proof of standardization (2/2)

* Theorem [standardization with upper bounds]

R1
Let M = My —>» M,

Then there is p stanc

pl < (14 [1, m(Rz)

Proof By induction on

R, R,
— M2 Cr ot — Mn — N\
ard from M to N such that
J(1+ |1, m(R3)])---(1+ [1, m(R,)])

the length n of reduction from M to N.
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Proof of our upper bound (1/2)

* Theorem [stanlgilardizaéion with Lipper bounds ]
let M =My =—> M{ —> My - —» M, =N
and A be rigid prefix of .

Then there is p standard from M to N’ such that

pl < (141, ma(R2)|)(1 + [1, ma(Rs)[)--- (1 + [1, ma(Rn)])
and A is rigid prefix of N’.
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Proof of our upper bound (2/2)

* Corollary 1 Let p: M —> N and A be rigid prefix of N.

Then there is ps standard such that:

([p] + |Ale)!
(1+|Ale)!

|/05t‘ <

Proof Simple calculation with lemma 2 and previous thm.

e Corollary 2 Let ps; : M =3 x be standard reduction.

Then |ps:| < |p|! where p is shortest rec

uction from M to x.
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ynclusions




Conclusion

* terms are easy to grow in the A-calculus
e but take time to consume terms

—’ there is a need for sharing

e back to earth .... and higher-order functional languages
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