

Shortest reductions

3

Plan

- the standardization theorem (with upper bounds)
- our result
- rigid and minimum prefixes (stability thm)
- Xi's proof (with upper bounds)
- Xi's proof revisited with live occurences

Standardization

.. joint work with Andrea Asperti (LICS 2013) ..

2

Standard reductions (1/4)

• Definition: The following reduction is standard

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all *i* and *j*, i < j, then R_j is not residual along ρ of some R'_j to the left of R_i in M_{i-1} .

• **Definition:** The leftmost-outermost reduction is also called the **normal reduction**.

Standard reductions (3/4)

• Standardization thm [Curry 50] Let $M \xrightarrow{\star} N$. Then $M \xrightarrow{\star} N$.

Any reduction can be performed outside-in and left-to-right.

• Normalization corollary Let $M \xrightarrow{\star} nf$. Then $M \xrightarrow{\star} norm nf$.

5

8

Standard reductions (2/4)

Standard reductions (4/4)

• Head reduction corollary for values

Let $M \xrightarrow{\star} V$. Then $M \xrightarrow{\star}_{\text{head}} \operatorname{val}_{\min}(M) \xrightarrow{\star} V$

Our result

- Upper-bound on standard reductions [Hongwey Xi, 99] Let $\ell = |\rho|$ and $\rho : M \xrightarrow{\bullet} N$. Then $|\rho_{st}| < |M|^{2^{\ell}}$ where $\rho_{st}: M \stackrel{*}{\Longrightarrow} N$.
- Upper-bound to normal forms [Asperti-JJL, 13] Let $\ell = |\rho|$ and $\rho : M \xrightarrow{\star} x$. Then $|\rho_{norm}| < \ell!$ where ρ_{norm} : $M \xrightarrow{*} x$.

We gain one exponential.

Standardization proofs

- finite developments [Gonthier-Melliès-JJL,92] tricky axiomatic proof
- head normal forms [Mitschke, 80]
- initial proof and statement [Curry&Feys, 70] correct statement, but proof?

П

Standard reductions (4+/4)

• Standardization thm [JJL 77] Let $\rho: M \xrightarrow{\star} N$. $\exists ! \rho_{st}. M \xrightarrow{\star} N$ and $\rho_{st} \simeq \rho$.

Standard reduction is canonical representative in permutation class.

• λl-standardization[Church 36] Standard reduction is longest in its equivalence class.

9

Stability (2/2)

• **Theorem** [stability] For any rigid prefix A produced by M, there is a unique minimal prefix $|M|_A$ of M producing A.

• Fact [monotony] Let M produce A rigid and $M \xrightarrow{\star} N$. Then N produces A.

15

Stability (1/2)

• **Definition** [rigid prefix] Any rigid prefix *A* of *M* is any prefix of *M* where never the left of an application can reduce to an abstraction.

	$M = \Omega(\lambda x. x(lx))(llx)$
($\lambda x.x$)_ rigid prefix of M	$\Omega = (\lambda x.xx)(\lambda x.xx)$
$(\lambda x.x_{-})(-lx)$ not rigid prefix of M	$I = \lambda x.x$

(rigid prefixes are finite prefixes of Berarducci trees)

• **Definition** M produces A if $M \xrightarrow{*} N$ and A is rigid prefix of N.

Slow consumption (1/2)

- Lemma 1 [slow consumption] Let M produce A rigid and $M \longrightarrow N$. Then $|\lfloor N \rfloor_A| \ge |\lfloor M \rfloor_A| 2$.
 - i.e. $|\lfloor M \rfloor_A|_{@} \leq 1 + |\lfloor N \rfloor_A|_{@}$ where $|P|_{@}$ is the applicative size of P (its number of application nodes).
- Corollary Let $\rho: M \xrightarrow{\bullet} N$ and A be rigid prefix of N. Then $|\lfloor M \rfloor_A|_{\mathfrak{O}} \leq |\rho| + |A|_{\mathfrak{O}}$.

Multiplicity of variables

• **Definition** Let *M* produce *A* rigid. An occurrence of *x* is live for *A* if it belongs to $\lfloor M \rfloor_A$.

Let $m_A(x)$ be the number of live occurrences of x in M. We pose $m_A(R) = m_A(x)$ when $R = (\lambda x.M)N$.

• Lemma 2 [upper bound on live multiplicity] Let $\rho: M \xrightarrow{\star} N$ and A rigid prefix of N. Then $m_A(x) \leq |\rho| + |A|_{@} + 1$ for any variable x in M.

Xi's proof of standardization (1/2)

• Lemma [reordering of head redexes] H is residual of H'. Then

with $|
ho'| \leq \lceil 1, m(H) \rceil |
ho|$

Proof Easy since $M = \lambda \vec{x}.(\lambda x.T)U\vec{M}$ and $\rho = \rho_T \rho_U \rho_1 \cdots \rho_n$. And ρ' is disjoint intermix of ρ_T , several ρ_U , followed by ρ_i 's. Thus $|\rho'| = |\rho_T| + m(H).|\rho_U| + \sum_i |\rho_i|$

Xi's proof of standardization (2/2)

Proof

By induction on pair $(|\rho|, |M|)$. Cases on ρR contracting head redex or not + previous lemma.

Proof of our upper bound (1/2)

• Theorem [standardization with upper bounds] Let $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ and A be rigid prefix of N. Then there is ρ standard from M to N' such that $|\rho| \le (1 + \lceil 1, m_A(R_2) \rceil)(1 + \lceil 1, m_A(R_3) \rceil) \cdots (1 + \lceil 1, m_A(R_n) \rceil)$ and A is rigid prefix of N'.

23

Xi's proof of standardization (2/2)

• Theorem [standardization with upper bounds] Let $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ Then there is ρ standard from M to N such that $|\rho| \le (1 + \lceil 1, m(R_2) \rceil)(1 + \lceil 1, m(R_3) \rceil) \cdots (1 + \lceil 1, m(R_n) \rceil)$

Proof By induction on the length n of reduction from M to N.

Proof of our upper bound (2/2)

• Corollary 1 Let $\rho: M \xrightarrow{\star} N$ and A be rigid prefix of N. Then there is ρ_{st} standard such that:

$$\rho_{st}| \leq \frac{(|\rho| + |A|_{\mathfrak{G}})!}{(1 + |A|_{\mathfrak{G}})!}$$

Proof Simple calculation with lemma 2 and previous thm.

• Corollary 2 Let $\rho_{st} : M \xrightarrow{\star} x$ be standard reduction. Then $|\rho_{st}| \leq |\rho|!$ where ρ is shortest reduction from M to x.

21

Conclusion

- terms are easy to grow in the λ -calculus
- but take time to consume terms

• back to earth and higher-order functional languages