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Plan

¢ the standardization theorem (with upper bounds)
e our result

* rigid and minimum prefixes (stability thm)

¢ Xi’s proof (with upper bounds)

* Xi’s proof revisited with live occurences

.. joint work with Andrea Asperti (LICS 2013) ..

Shortest reductions

¢ non effective strategies

M = F,G,

<N

GlGyGy ... G, FmG!

l l

An(I2)GaG, ... G, GGGy ... G

l

Fr, = Ax.xIxx ... x
A, = AX.xXX...Xx

Gn = Ay.Ap(yz)
G, = Ay.(yz)(yz) ... (y2)

AnzGoG,y ... G, (I2)(I2) ... (Iz) G.G! ... G!

i m times i ntimes
A\ v

Standardization




Standard reductions (1/4)
¢ Definition: The following reduction is standard
piM=Mo—> My =5 My 5 M, = N

iff for all i and j, i <, then R; is not residual
along p of some Rj’ to the left of R; in M;_1.

¢ Definition: The leftmost-outermost reduction is also called
the normal reduction.

Standard reductions (2/4)

(AX.xx)((Af.f3)(Ax.x))

(AL.£3) (Ax.X)((Af.£3)(AX.X))

— |

(Af.£3)(Ax.x)((Ax.x)3) (AX.X)3((Af.13)(Ax.X)) (Ax.xx)((Ax.x)3)

ANV

(Af.f3)(Ax.x)3 (Ax-x)3((Ax.x)3) 3((Af.f3)(Ax.x))

standard \ l \ !

(Ax.x)33 3((Ax.x)3) ()\x Xx)3

norma1/\><1 /

Standard reductions (3/4)

¢ Standardization thm[Curry 50]

Let M => N. Then M %> N. £

-
-
-----

Any reduction can be performed outside-in and left-to-right.

* Normalization corollary

Let M =5 nf. Then M 2> nf. - >

-
-
-----

Standard reductions (4/4)

¢ Head reduction corollary for values

Let M —> V. Then M —> valpin(M) <> V

M > \/
»‘:"
© Lot
©
]
.cl ““““
Ko
valmin(M)



Our result Standardization proofs

« Upper-bound on standard reductions [Hongwey Xi, 99] ¢ finite developments [Gonthier-Melliés-JJL,92]

Let £ = |p| and p: M = N. Then |pg| < ]M\ze tricky axiomatic proof
where pg : M > N.
¢ head normal forms [Mitschke, 80]
e Upper-bound to normal forms [Asperti-JJL, 13]

Let ¢ = |p| and p: M 5 x. Then p | < ¢! ¢ initial proof and statement [Curry&Feys,70]
- . . norm| = .

where pporm 1 M == x. correct statement, but proof ?

We gain one exponential.

. . each .
Standardization proofs reduction Standard reductions (4+/4)
t
* finite developments [Klop, 80] /issep
given reduction FD devt e Standardization thm[JJL 77
o | > > . * * -
leftmost y v y Let p: M= N. Slpst. M ? N R -~ Y
whose and pst ~ p. oo _."'
residual Y >Y 4 Seana=”
is c 3 Pst
contracted 2 > 2
é \ i 2 Standard reduction is canonical representative in permutation class.
.0
g y R 2 §
8y | 3 * Ml-standardization [ Church 36]
E ] | = Standard reduction is longest in its equivalence class.
(2] > £
Y ;V N o
N R A A

erﬁpty reduction step§ 0



)id prefixXes:
| stability

and
multiplicity of variables

Stability (1/2)

* Definition [rigid prefix] Any rigid prefix A of M is any prefix of
M where never the left of an application can reduce to an abstraction.

M = Q(Ax.x(Ix))(1Ix)
_(Ax.x_)_ rigid prefix of M Q = (Ax.xx)(Ax.xx)
_(Ax.x_)(_ Ix) not rigid prefix of M I = Ax.x

( rigid prefixes are finite prefixes of Berarducci trees)

e Definition M produces A if M > N and A is rigid prefix of N.

Stability (2/2)

* Theorem [stability] For any rigid prefix A produced by M,
there is a unique minimal prefix [ M| of M producing A.

[M]a —% 5

M

e Fact [monotony] Let M produce A rigid and M > N.
Then N produces A.

Slow consumption (1/2)

*Lemma [slow consumption] Let M produce A rigid and

M — N. Then |[N]a| > |[M]a| — 2.

ie. |[M]ale <1+ |[N]ale where |Plo is the applica-
tive size of P (its number
of application nodes).

* Corollary Let p: M —> N and A be rigid prefix of N.
Then [[M]ale < |p| + |Ale.



Slow consumption (2/2)

[M]a _x
. A iStahdardization
i:;:::::SL | )
LNJA? % . A

Multiplicity of variables Xi's proof of standardization (1/2)
* Definition Let M produce A rigid. An occurrence of x is e Lemma [reordering of head redexes] H is residual of H'.
live for A if it belongs to [M]a. Then
M P .
p > N =\ V)WN
Let ma(x) be the number of live occurrences of x in M. H; /-J
We pose ma(R) = ma(x) when R = (Ax.M)N. [/ 0 .
st TTTTEP N = AKX V{x = WIN

with |p'| <1, m(H)].|p|
* Lemma 2 [upper bound on live multiplicity]

) * .. . .,

Let p: M => N and A rigid prefix of N. Then Proof Easy since M = A%.(Ax. T)UM and p = prpups--- pn

ma(x) < |p| + |Ale + 1 for any variable x in M. And p’ is disjoint intermix of pr, several py, followed by p;'s.
Thus [o'| = |pr| + m(H).lpul + 2 |pil



Xi's proof of standardization (2/2)

e Corollary M

. st > N
‘\
. jR
P
st “~al_
..*NI

with |p| <1+ [1, m(R)].|p|

Proof
By induction on pair (|p|, |[M|). Cases on pR contracting head
redex or not + previous lemma.

21

Xi's proof of standardization (2/2)

* Theorem [standardization with upper bounds]
Ry R R,
Let M=My—> My —> M-+ —> M, =N

Then there is p standard from M to N such that
ol < (T+ 1, m(R2)1)(1 + [1, m(Rs)T) -~ (1 + [1, m(Rx)T)

Proof By induction on the length n of reduction from M to N.

22

Proof of our upper bound (1/2)

* Theorem [stan'glardizalgzion with ’L%ipper bounds ]
Let M=My—> My —> My -+ —> M, =N
and A be rigid prefix of N.

Then there is p standard from M to N’ such that

ol < (1 + [1, ma(R2)1)(1 + [1, ma(R3)1) - -+ (1 + [1, ma(Rn)1)
and A is rigid prefix of N'.

23

Proof of our upper bound (2/2)

* Corollary 1 Let p : M > N and A be rigid prefix of N.
Then there is ps standard such that:

(ol + [Ale)!

<L X 7
P4l = )

Proof Simple calculation with lemma 2 and previous thm.

e Corollary 2 Let ps; : M = x be standard reduction.
Then |pst| < |p|! where p is shortest reduction from M to x.

24



Conclusions

Conclusion

* terms are easy to grow in the A-calculus

¢ but take time to consume terms

—» there is a need for sharing

e back to earth .... and higher-order functional languages
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