Star
N |
Why3

Jean-Jacques Levy
Iscas - Inria

Xidian University
Xi'an, 2014-06-17

Plan

e Why3
Goal

e demos
* conclusions Write elegant programs
with elegant correctness proofs

+ training in program proofs

Why3 (1/8)

A programming language tells you what a program does,
Why3 tells you why it works.

e 3rd release of system Why
e developed at LRI (orsay) + Inria

* http://why3.1lr1i.fr

[Jean-Christophe Filliatre,

Claude Marchég,
Andrei Paskevich,
Guillaume Melquiond,

Vincent Bolot,
et al]

Why3 (2/8)

* small Pascal-like imperative programming language

[with ML syntax & N
* invariants + assertions in Hoare logic

[+ recursive functions, inductive datatypes, inductive predicates |
e interfaces with modern SMT's

[alt-ergo, cvc3, cvcd, eprover, gappa, simplify, spass, yices, z3 |
e interfaces with interactive proof assistants

[coq, pvs, isabelle-hol]

Why3 (3/8)

e programming language MLW

let swap (a: array int) (1: int) (J: 1nt) =
let v = a[1] 1in

al1] <- al[3j];

alj] <- v

let selection_sort (a: array int) =
for 1 = @ to length a - 1 do
let 1min = ref 1 1n
for 3 =1+ 1 to length a - 1 do

if a[j] < a[!imin] then imin := j
done;
swap a !'imin 1
done

imin

< .

0 1
ﬁ v

Why3 (4/8)

e Hoare logic

let swap (a: array int) (i: int) (j: int) =
let v = a[i] 1in
a[i] <- a[jl;
alj] <- v

let selection_sort (a: array int) =
for 1 = @ to length a - 1 do
let imin = ref 1 1in
for 3 =1+ 1 to length a - 1 do
invariant { 1 <= !imin < j }
invariant { forall k: int. 1 <= k < j -> a[!imin] <= a[k] }
if a[j] < a[!imin] then imin := j
done;
swap a 'min 1
done

imin

0

<<
< 1,

Why3 (5/8)

* theories on arrays

let swap (a: array int) (i: int) (j: int) =
requires { ® <= 1 < length a /\ @ <= jJ < length a }
ensures { exchange (old a) a i j }
let v = a[i] in
ali] <- a[]];
alj] <- v

(see the whya3 libraries)

http://why3.1lri.fr

Why3 (6/8)

* theories on arrays

let selection_sort (a: array int) =
ensures { sorted a /\ permut (old a) a }
"L:
for 1 = 0 to length a - 1 do
invariant { sorted_sub a @ 1 /\ permut (at a 'L) a}
invariant { forall k1l k2: int. @ <= k1 < 1 <= k2 < length a -> a[kl] <= a[k2] }
let imin = ref 1 1in
for 3 =1 + 1 to length a - 1 do
invariant { 1 <= !imin < j }
invariant { forall k: int. 1 <= k < j -> a[!imin] <= a[k] }

if a[j] < al!imin] then imin := j
done;
swap a !imin 1 ;
done
0 imin

<< -
<« .

Why3 (7/8)

e interfaces with automatic provers (SMT’s)

e SMT tool successful if «good assertion»

- impact on writings of Hoare logic formulae

- Impact on program text

e Alt-Ergo among best for Why3 [LRI, Conchon, et al]

e /3 is excellent [MSRR, Bjorner/de Moura]
e CVC3 top on recursive datatypes

e Gappa for real numbers [Inria, Melguiond]

Why3 (8/8)
e interfaces with interactive proof assistants

* PVVS [SRI, Shankar], Isabelle [Paulson, Nipkow]

e Coq [Inria, Herbelin et al]

- Why3 theories are translated to Coq

- lengthy proofs are feasible

- use Ssreflect commands to shorten proofs [MSR-Inria, Gonthier
et al]

- unfortunately Whya3 is not fully compatible with SSreflect

A few sorting algorithms

e demos

e insertion sort

1

A few sorting algorithms

e quicksort

<« Q

Depth-first search in graphs

e reachability [the ‘white path theorem’]

* non white-to-black edges in undirected graphs

e acyclicity test

p\ e articulation point
& Og) e strongly connected components

L

nclusions

y

Conclusion (1/3)

e Automatic part of proof for tedious case analyzes

e Interactive proofs for the conceptual part of the algorithm

—’ the ideal world

 From interactive part, one must call the automatic part

- possible extensions of Why3 theories

- but typing problems (inside Coq)

|7

Conclusion (2/3)

e Hoare logic prevents to write awkward denotational semantics

 Nobody cares about termination ?! 9

e Explore simple programs about algorithms before jumping to
large programs.

 Why3 memory model is naive. It is a «back-end for other
systems».

* Plan to experiment on graph algorithms and prove all
Sedgewick’s book on algorithms.

18

Conclusion (3/3)

e \Why3 is excellent for mixing formal proofs and SMT's calls
e Interface still rough for beginners
e Concurrency ?

e Functional programs ?

* Hoare logic vs Type refinements (F* [MSR])

 Frama-C project at french CEA extends Why3 to C programs.

19

