
Moscova

Jean-Jacques Lévy

INRIA Paris–Rocquencourt

March 23, 2011



Research team



Stats

Staff 2008-2011

Jean-Jacques Lévy, INRIA Gilles Peskine, INRIA −→ Trusted logic
Karthikeyan Bhargavan, INRIA Pierre-Malo Deniélou, INRIA −→ Imperial College
James Leifer, INRIA Jade Alglave, INRIA −→ Oxford
Luc Maranget, INRIA Nataliya Guts, MSR-INRIA −→ Maryland
Francesco Zappa Nardelli, INRIA Jérémy Planul, MSR-INRIA
Ricardo Corin, INRIA −→ Cordoba

INRIA Rocquencourt ←→ MSR-INRIA Saclay (Cédric Fournet, MSRC)

Moscova history:
I Para (1988, Head: Lévy), Moscova (2000, Head: Gonthier −→ MSRC)

I 18 PhDs

I 75% Coq proof of the 4-color thm; debugging of 3 modules of Ariane-501 PV;
spinoff of Polyspace [Alain Deutsch]; etc.

I Polytechnique (Lévy, prof 1992-2006) −→ MSR-INRIA Joint Centre (Head: Lévy)



Research themes



Research themes

programming languages
[safe marshalling, ott, like types]

concurrency
[jocaml, separation logic/c-minor/concurrency, weak memory models]

security compilers and verifiers
[secure sessions, audits, tls, information flow]



Research results



Example 1 Weak memory models

memory models of multi-core processors

give formal description of WMMs

operational semantics of WMMs

certified (back-end) compiler for some WMMs

prove correctness of compiler optimisations in WMMs



Intel whitepaper (1/3) MP (message passing)

[demo]

file:/Applications/Utilities/Terminal.app


Intel whitepaper (2/3) SB (store buffers)

[demo]

file:/Applications/Utilities/Terminal.app


Intel whitepaper (3/3) WRC (write-to-read causality)

[demo]

file:/Applications/Utilities/Terminal.app


Event structures SB with SC (sequential consistency)

In SC, program order is strictly respected.

r1 = 1, r2 = 1 r1 = 1, r2 = 0

r1 = 0, r2 = 1 cyclic graph



Event structures SB with TSO (total store order)

In TSO, W followed by R can be relaxed within program order

r1 = 1, r2 = 1 r1 = 1, r2 = 0

r1 = 0, r2 = 1 r1 = 0, r2 = 0



Event structures MP with TSO/PSO (partial store order)

In TSO, W followed by R relaxed

r1 = 1, r2 = 0 Cyclic graph

In PSO, W followed by W to distinct location relaxed

r1 = 1, r2 = 0



Weak memory models

axiomatic + operational models for Intel [∼Cambridge] / Power [∼INRIA]

formalisation in HOL/Coq

tests on real processor behaviour
http://www.cl.cam.ac.uk/∼pes20/ppc-supplemental/ppc003.html

formal proof of simple concurrent code (eg. Linux spinlocks)

operational reasoning: data-race freedom, separation logic

certified compiler for concurrent languages
http://www.cl.cam.ac.uk/∼pes20/CompCertTSO

[Zappa Nardelli, Maranget, Alglave, Braibant, Sewell et al]

[POPL 09, CACM 10; DAMP 09, CAV 10, PLDI 11; TACAS 11; POPL 11]

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/ppc003.html
http://www.cl.cam.ac.uk/~pes20/CompCertTSO


Weak memory models

Proving correctness of optimisations

start

FENCE

nop

store

FENCE

return

if

ifso

nop

ifnot

nop

??≡

start

nop

nop

store

nop

return

if

ifso

FENCE

ifnot

nop

Fences elimination with TSO ' 3 kloCoq



Example 2 Secure sessions

passing authenticated (signed) values between 2 run-times

design of a mini F# + primitives for authentication
+ global contract with sessions types

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives

extension to other security properties, sessions V2
(privacy of message values, integrity, dynamic number of principals,
etc)
[Corin, Deniélou, Leifer, Fournet, Bhargavan]

[JCS 08, TGC 07, CSF 09, Deniélou phd 11]

F# = Ocaml − modules + .NET



Example 2 Secure sessions

passing authenticated (signed) values between 2 run-times

design of a mini F# + primitives for authentication
+ global contract with sessions types

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives

extension to other security properties, sessions V2
(privacy of message values, integrity, dynamic number of principals,
etc)
[Corin, Deniélou, Leifer, Fournet, Bhargavan]

[JCS 08, TGC 07, CSF 09, Deniélou phd 11]

F# = Ocaml − modules + .NET



Example 2 Secure sessions

passing authenticated (signed) values between 2 run-times

design of a mini F# + primitives for authentication
+ global contract with sessions types

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives

extension to other security properties, sessions V2
(privacy of message values, integrity, dynamic number of principals,
etc)
[Corin, Deniélou, Leifer, Fournet, Bhargavan]

[JCS 08, TGC 07, CSF 09, Deniélou phd 11]

F# = Ocaml − modules + .NET



Simple exchange



Two-party negotiation



Three-party session



Visibility



No blind fork



Secure sessions

passing authenticated (signed) values between 2 run-times

design of a mini F# + primitives for authentication
+ global contract with sessions types

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives

extension to other security properties, sessions V2
(privacy of message values, integrity, dynamic number of principals,
etc)
[Corin, Deniélou, Leifer, Fournet, Bhargavan]

[JCS 08, TGC 07, CSF 09, Deniélou phd 11]

F# = Ocaml − modules + .NET



Example 3 Verified Crypto Protocol Implementations



Protocol Specifications in F7



Protocol Specifications in F7



TLS in F#

[CCS 08, TOPLAS 10, APLAS 10, POPL 10, ESORICS 09, phD Guts’11]



Other works

Acute – type safed marshalling [Leifer, Peskine, Zappa Nardelli]

OTT – A semantics tool [Sewell, Zappa Nardelli]

Scripting languages (Like types) [Zappa Nardelli]

Jocaml (version 3; more portable, documentation) [Maranget, Mandel]

Separation logic [Appel, Zappa Nardelli]

Security through logs [Guts, Fournet, Zappa Nardelli]

Information flow [Corin, Fournet, le Guernic, Planul, Rezk]

Pattern-matching in Ocaml [Maranget]



Miscellaneous



Links

Microsoft Research Cambridge through the MSR-INRIA Joint Centre

Sewell et al at Cambridge, Computer Lab

Indes, Celtique, PPS with ANR Parsec [Zappa Nardelli]

Gallium for general discussion about programming languages

Andrew Appel, Princeton

Secsi, Cascade with ERC-Crysp [Bhargavan]



Software

diy tool suite [Alglave, Maranget]

OTT: a semantics tool [Sewell, Zappa Nardelli]

CompCertTSO: certified compiler for TSO [Jagannathan, Sewell, Sevcik,

Vafeiadis, Zappa Nardelli]

S2ML [Bhargavan, Corin, Deniélou]

FS2CV [Bhargavan, Corin, Zalinescu]

F7 [Bhargavan]

Jocaml [Maranget, Mandel]

5% Ocaml (pattern matching) [Maranget]

Hévéa: an efficient translator of Tex into Html [Maranget]



Teaching

MPRI (master course at Paris 7)
[Zappa Nardelli, Leifer]

École polytechnique
[Maranget, Bhargavan, ...Lévy (1992-2006)]

lecture notes + web pages

Entrance examination at Polytechnique
[Maranget (4 years), Lévy (??-2009)]

Bertinoro, IIT-Delhi, Tsinghua, etc.



Objectives for next years



Scientific goals

Weak Memory Models

I ARM multi-core + xfer to industry

I automatic exploration of WMMs

I automatic synchronisation of programs

I certified compilation of C-like with C1x/C++0x WMM

Security compilers and verifiers

I scalable tools to verify security of programs

I verified open source cryptographic libraries

I web applications with formal proofs of security



Organization

INRIA



Organization

INRIA



FIN

12 April 2011: http://msr-inria.inria.fr/forum2011

http://msr-inria.inria.fr/forum2011

	Research team
	Research themes
	Research results
	Various
	Objectives

