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sixty years is
31,557,600 minutes
and one minute is a
long time · · · · · · · · · · · ·













he passes the baccalauréat.



he writes his first program



and discovers functional programming.



he now is an attractive researcher



and starts a glorious academic life.





he passes 40 without care · · ·



· · · still some hope · · ·



· · · getting anxious · · ·



· · · and done !
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Strong normalisation



Typed λ-calculus

Theorem (Church-Rosser)

The typed λ-calculus is confluent.

and

Theorem (strong normalization)

In typed λ-calculus, there are no infinite reductions.

True at 1st order (Curry/Church), 2nd order (system F), · · · 60th order
and even more (Fω, Coq).

Corollary

The typed λ-calculus is a canonical system.

The classical λ-calculus is confluent but provides infinite reductions :
let ∆ = λx .xx , then Ω = ∆∆ → ∆∆ = Ω.



Hyland-Wadsworth’s D∞-like λ-calculus

The idea is that fn+1(x) = (f (xn))n for f , x ∈ D∞

For the λ-calculus :

labels m, n, p ≥ 0

expressions M,N := xn | (MN)n | (λx .M)n

β-conversion ((λx .M)n+1N)p → M{x := N[n]}[n][p]

projection xm
[n]

= xp

(MN)m
[n]

= (MN)p

(λx .M)m
[n]

= (λx .M)p

where p = bm, nc

substitution xn{x := P} = P[n]

(MN)n{x := P} = (M{x := P}N{x := P})n

(λy .M)n{x := P} = (λy .M{x := P})n

Notice that ((λx .x58)0y59)60 is in normal form. Degree of ((λx .M)nN)p is n.



Hyland-Wadsworth’s D∞-like λ-calculus

Let Ωn = (∆n∆n)
n, ∆n = (λx .(x60x60)60)n

Ω60 =
λx

x x

λx

x x

60 60

6060

60

6060

60 60

→
λx

x x

λx

x x

60 60

6060

60 60

59 59

59

= Ω59

Then
Ω60 → Ω59 → Ω58 → · · ·Ω1 → Ω0 in normal form



Up-to-60

β-conversion ((λx .M)nN)p → M{x := N[n+1]}[n+1][p]

when n ≤ 60

elevation xm
[n]

= xp

(MN)m
[n]

= (MN)p

(λx .M)m
[n]

= (λx .M)p

where p = dm, ne

substitution xn{x := P} = P[n]

(MN)n{x := P} = (M{x := P}N{x := P})n

(λy .M)n{x := P} = (λy .M{x := P})n

Theorem (Church-Rosser+SN)

Hyland-Wadsworth and up-to-60 calculi are canonical systems.

Comes from associativity of min/max since bm, bn, pcc = bbm, nc, pc, and
residuals keep degrees.



Compactness and canonical systems

M

59

60

58

0

Any reduction graph R(M)
can be approximated by an
increasing chain of reduction
graphs R0(M), R1(M), . . .
R58(M), R59(M), R60(M),
. . . of canonical systems.



Finite developments



Finite developments

Reductions of a set F of redexes in M are described by :

putting 0 on degrees of redexes in F ,

putting 60 on degrees of other redexes,

applying the up-to-1 calculus.

Theorem (finite developments — lemma of parallel moves)

There are no infinite reductions of a set F of redexes in M. All
developments end on same term.

Proof : obvious since up-to-1 is a canonical system.

Theorem (finite developments+ — the cube lemma)

The notion of residuals is consistent with finite developments.



Created redexes

Let M0 have all subterms labeled by 0,
let M0 →→ N and R redex in N of non-zero degree,
then R is new redex (or created redex)

Let M = (λx .x)(λx .x)y

Then M0 = (((λx .x0)0(λx .x0)0)0y0)0 → ((λx .x0)1y0)0

Let Ω = (λx .xx)(λx .xx)

Then
Ω0 = (∆0∆0)0 → (∆1∆1)1 → (∆2∆2)2 → · · · (∆60∆60)60 → · · ·
where ∆n = (λx .(x0x0)0)n

redexes created (degree 0), redexes created by redex(es) created
(degree 1), . . . chains of creations. [event structures of λ-calculus]



Redex families



Residuals and creation

∆R

∆SRR

SS

SR RS

Let redex R create redex S .

All R redexes are residuals of R redex in
initial ∆R.

The S created redexes are not all resi-
duals of a unique S .

But the S redexes are only connected by
a zigzag of residuals.

Furthermore the S redexes are created in
a “same way” by residuals of a same R-
redex.

page 60/2



The historical λ-calculus – 1

Let ρ be reduction M0
R1→ M1

R2→ · · · R60→ · · · Rn→ Mn and let R be a
redex in Mn.

Definition

We write 〈ρ,R〉 when R is a redex in the final term of ρ. We say R has
history ρ.

The historical redexes 〈ρ,R〉 and 〈σ,S〉 are in a same family if
connected by previous zigzag.

Histories are considered up to permutation equivalence ∼ on
reductions.



The historical λ-calculus – 2

∆R

∆SRR

SR RS

ρ1

ρ2

ρ3

ρ4

S1S2

ρ4

ρ1

ρ2 ρ2

ρ3

S S

S

S1 S2

∼

∼

∼

∼

〈ρ1,S〉 ' 〈ρ2,S1〉 ' 〈ρ4,S〉 ' 〈ρ2,S2〉 ' 〈ρ3,S〉

The family equivalence between historical redexes is the symmetric,
transitive, reflexive closure or the residual relation. page 60/2+1



The historical λ-calculus – 3

families of redexes by naming scheme of the labeled λ-calculus.

letters a, b, c
labels α, β, γ := a | αdβeγ | αbβcγ

expressions M,N := xα | (MN)α | (λx .M)α

(h(α) ≤ 60) β-conversion ((λx .M)αN)β → β · dαe ·M{x := bαc · N}

concat α · xβ = xαβ

α · (MN)β = (MN)αβ

α · (λx .M)β = (λx .M)αβ

substitution xα{x := P} = α · P

(MN)α{x := P} = (M{x := P}N{x := P})α

(λy .M)α{x := P} = (λy .M{x := P})α

Theorem (Church-Rosser+SN)

The labeled (60 bounded) labeled λ-calculus is a canonical systems.

Comes from associativity of concatenation since α(βγ) = (αβ)γ.



Generalized Finite
Developments



Finite developments revisited

Theorem (generalised finite developments – square lemma)

There are no infinite reductions of a finite set F of families in the
reduction graph of M. All development of F end on same term.

Proof : obvious since up-to-N strongly normalises where N is the maximum degree of redexes in

F . For instance N = 60.

Theorem (finite developments+ — the cube lemma)

The notion of residuals of reductions (and hence of redex families) is
consistent with generalised finite developments.

Corollary

A λ-term is strongly normalizable iff he only can create a finite number of
redex families.



Finite chains of families creation

Only 3 cases of redex creations :

1 (λx . · · · xN · · · )(λy .M) → · · · (λy .M)N ′ · · ·
2 (λx .(λy .M)N)P → (λy .M ′)P

3 (λx .x)(λy .M)N → (λy .M)N

In 1st-order typed λ-calculus :

1 (λx . · · · xN · · · )α 7→β(λy .M) → · · · (λy .M)αN ′ · · ·
2 (λx .λy .M)α 7→βNP → (λy .M ′)βP

3 (λx .x)α 7→α(λy .M)N → (λy .M)αN

In Hyland-Wadsworth’s λ-calculus :

1 (λx . · · · xN · · · )n+1(λy .M) → · · · (λy .M)nN ′ · · ·
2 ((λx .λy .M)n+1N)P → (λy .M ′)nP

3 (λx .x)n+1(λy .M)N → (λy .M)nN

Same in up-to-60 λ-calculus . . . .



Conclusion



Conclusion

no infinite chain of creations is equivalent to strong normalisation.

redex families exist also in TRS and many other reduction systems.
E.g. redo it as permutation equivalences were treated in the almost
everywhere rejected paper [Huet, Lévy 80]

redo SN without the Tait/Girard reductibility incomprehensible
reductibility method (with candidates or not).

causality in reduction systems correspond to dependency, and can be
useful for information flow, security – integrity properties. [Tomasz
Blanc 06]

understand more of the λ-calculus to be able to treat “real complex
systems”



Future work

OBJECTIVE


