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he passes the baccalauréat.
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he writes his first program
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and discovers functional programming
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he now is an attractive researcher
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and starts a glorious academic life.
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he passes 40 without care - --
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still some hope - --
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Strong normalisation
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Typed A-calculus

Theorem (Church-Rosser)
The typed \-calculus is confluent.
and

Theorem (strong normalization)

In typed A-calculus, there are no infinite reductions.

True at 1st order (Curry/Church), 2nd order (system F), --- 60th order
and even more (F,, Coq).

Corollary

The typed \-calculus is a canonical system.

The classical A-calculus is confluent but provides infinite reductions :
let A = Ax.xx, then Q = AA — AA = Q.



Hyland-Wadsworth's D,.-like A-calculus
The idea is that f,11(x) = (f(x))n for f,x € Dx
For the A-calculus :

labels m,n,p >0

expressions M, N := x" | (MN)" | (Ax.M)"

B-conversion  ((Ax.M)"FIN)P — M{x := Nio) }inis)

projection x™ = xP

[n] —
(MN)?) = (MN)?

substitution x"{x := P} = P[n]

(MN)"{x := P} = (M{x := P}N{x := P})"

()\X.M)EZ] = (Ax.M)P (Ay-M){x := P} = (A\y.-M{x := P})"

where p = |m, n|

Notice that ((Ax.x%8)°y59)®0 is in normal form. Degree of ((Ax.M)"N)P is n.



Hyland-Wadsworth's D,.-like A-calculus

Let Q, = (Anly)", Ap = ()\X-(X6OX60)60)H

Then

Q6O — Q59 — Q58 — e Q]_ — QO in normal form



Up-to-60

B-conversion  ((Ax.M)"N)P — M{x := N, 1]} r+1][p]

when n < 60

elevation X[’:] = xP substitution  x"{x := P} = P,
(MN)[’"n] = (MN)P (MN)"{x := P} = (M{x := P}N{x := P})"
()\X.M)[mn] = (Ax.M)P (Ay-M){x := P} = (Ay.M{x := P})"

where p = [m, n]

Theorem (Church-Rosser+SN)

Hyland-Wadsworth and up-to-60 calculi are canonical systems.

Comes from associativity of min/max since [m, |n,p|| = [[m,n],p], and
residuals keep degrees.



Compactness and canonical systems

M
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Any reduction graph R(M)

can be approximated by an

increasing chain of reduction

graphs Ro(M), R1(M), ...

Rsg(M), Rso(M), Reo(M),
. of canonical systems.
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Finite developments

Reductions of a set F of redexes in M are described by :

@ putting 0 on degrees of redexes in F,
@ putting 60 on degrees of other redexes,

@ applying the up-to-1 calculus.

Theorem (finite developments — lemma of parallel moves)

There are no infinite reductions of a set F of redexes in M. All
developments end on same term.

Proof : obvious since up-to-1 is a canonical system.

Theorem (finite developments+ — the cube lemma)

The notion of residuals is consistent with finite developments.



Created redexes

@ Let My have all subterms labeled by 0,
let My — N and R redex in N of non-zero degree,
then R is new redex (or created redex)

o Let M = (Ax.x)(Ax.x)y
Then Mo = ((Ax.x°)2(Ax.x%)?)°y0)° — ((Ax.x®)1y0)°

o Let Q = (Ax.xx)(Ax.xx)

Then
QOZ(AOAO)O%(AIAI)I—>(A2A2)2—>-~(A60A60)60—>~-

where A" = (\x.(x%x0)%)"

@ redexes created (degree 0), redexes created by redex(es) created
(degree 1), ... chains of creations. [event structures of A-calculus]



Redex families
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Residuals and creation

Let redex R create redex S.
AR

All R redexes are residuals of R redex in
initial AR.

AS

RR .
The S created redexes are not all resi-
/\ duals of a unique S.
SR RS Bu’F the S rede.xes are only connected by
a zigzag of residuals.
\ / Furthermore the S redexes are created in
59 a “same way" by residuals of a same R-

redex.

page 60/2



The historical M\-calculus — 1

@ Let p be reduction I\/Ioﬁ M B Ry Ry M, and let R be a
redex in M,,.
Definition

We write (p, R) when R is a redex in the final term of p. We say R has
history p.

@ The historical redexes (p, R) and (0, S) are in a same family if
connected by previous zigzag.

@ Histories are considered up to permutation equivalence ~ on
reductions.



The historical \-calculus — 2

15,55

(p1,S) = (p2,51) = (pa, S) =~ (p2,52) =~ (p3, S)

The family equivalence between historical redexes is the symmetric,
transitive, reflexive closure or the residual relation. page 60/2+1




The historical M\-calculus — 3

families of redexes by naming scheme of the labeled A-calculus.

letters a, b, c
labels o, 3,7 :=a| a[B]v | a8y

expressions M, N := x| (MN)“ | (Ax.M)~

(h(ca) < 60) B-conversion ((Ax.M)*N)? — 3-[a]- M{x:= |a]- N}

concat  a - xP = x8 substitution x*{x:=P}=a-P
a- (MN)# = (MN)>8 (MN)*{x := P} = (M{x := P}N{x := P})®
a- (Ax.M)P = (Ax.M)>8 (Ay.-M)*{x := P} = (Ay.M{x := P})™

Theorem (Church-Rosser+SN)
The labeled (60 bounded) labeled \-calculus is a canonical systems.

Comes from associativity of concatenation since a(37v).= (af3)7y.



Generalized Finite
Developments
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Finite developments revisited

Theorem (generalised finite developments — square lemma)

There are no infinite reductions of a finite set F of families in the
reduction graph of M. All development of F end on same term.

Proof : obvious since up-to-N strongly normalises where N is the maximum degree of redexes in

JF. For instance N = 60.

Theorem (finite developments+ — the cube lemma)

The notion of residuals of reductions (and hence of redex families) is
consistent with generalised finite developments.

Corollary

A \-term is strongly normalizable iff he only can create a finite number of
redex families.



Finite chains of families creation
Only 3 cases of redex creations :

Q@ (Mx.---xN-- ) A\y.M) — ---(Ay.M)N- -
Q@ (M x.(Ay.M)N)P — (\y.M")P
Q@ (Mxx)(Ay-M)N — (A\y.M)N

In 1st-order typed A-calculus :

Q (\x.---xN-- ) BAy.M) — - (A\y.M)*N'- -

Q@ (Ax.\y.M)*BNP — (\y.M")PP

Q@ (Mxx)**(A\y.M)N — (Ay.M)*N
In Hyland-Wadsworth's \-calculus :

QO (\x.---xN-- )™ Ay.M) — - - (Ay.M)"N' - -

Q ((MxAy.-M)"TIN)P — (\y.M')"P

QO (A\xx)"Y(A\y.M)N — (Ay.M)"N

Same in up-to-60 A-calculus .. ..
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Conclusion

@ no infinite chain of creations is equivalent to strong normalisation.

o redex families exist also in TRS and many other reduction systems.
E.g. redo it as permutation equivalences were treated in the almost
everywhere rejected paper [Huet, Lévy 80]

@ redo SN without the Tait/Girard reductibility incomprehensible
reductibility method (with candidates or not).

@ causality in reduction systems correspond to dependency, and can be
useful for information flow, security — integrity properties. [Tomasz
Blanc 06]

@ understand more of the A-calculus to be able to treat “real complex
systems”
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