
Sharing in the weak
lambda-calculus (2)

Jean-Jacques Lévy
INRIA

Joint work with Tomasz Blanc
and Luc Maranget

Happy birthday Henk !

Happy birthday Henk !

Happy birthday Henk !

History

Sharing in the lambda-calculus

• goal:
- efficient implementations of functional languages
- by “functional languages”, we mean here logical

systems (Coq, Isabelle, etc)
- although real functional languages use more

environment machines
- but it could be useful for partial evaluation

(λx.yx)z

Sharing in the lambda-calculus

• Lamping’s algorithm [91]:

- optimal in total number of beta-
reductions

- sharing contexts
- complex treatment of fan-in and fan-

out nodes (geometry of interaction
[Gonthier 92])

- inefficient in practice (not
elementary recursive [Mairson
96])

Sharing in the lambda-calculus

application

(λx.yx)z

Sharing in the lambda-calculus

abstraction

(λx.yx)z

Sharing in the lambda-calculus

fan rules

(λx.yx)z

(λx.yx)z

Sharing in the lambda-calculus

bracket rules

Sharing in the lambda-calculus

croissant rules

(λx.yx)z

Wadsworth’s algorithm
• sharing subterms [Wadsworth 72]:

- arguments of beta-redexes are shared
- easy to implement with dags (directed acyclic graphs)

λt

x

x

λx

f

M
f

λt

M

Wadsworth’s algorithm
• Algorithm 1:
- need duplication steps (abstractions on left of beta-redexes

with reference counter greater than 1)
- not optimal in total number of beta-reductions

λt

y

λx

M

x x z

λt

M

y

z
λt

M

y

zλt

M

Wadsworth’s algorithm
• Algorithm 2:
- only duplicate nodes on paths to the bound variable of

abstractions on left of beta-redexes
- and share subterms not containing the bound variable

λt
y

zλt

tt

M

λt

y

λx

M

x x z

λt

M

y

z

Wadsworth’s algorithm

λt
y

zλt

tt

M

λt

y

λx

M

x x z

λt

M

y

z

• Algorithm 2 [Shivers-Wand 04]:

- bottom-up traversal of abstraction λt.M to find nodes and paths
to the bound variable t

labels

Strong labeled lambda-calculus
- catch history of creations of redexes
- names (labels) of redexes are structured
- confluent calculus

λt

y

λx

M

x x z
gf

e

dc

b

a

α h

λt

M

y

z

b
e

g
c!α"h f!α"h

!α"a

d

Strong labeled lambda-calculus
- catch history of creations of redexes
- names (labels) of redexes are structured
- confluent calculus

λt

y

λx

M

x x z
gf

e

dc

b

a

α h

λt

M

y

z

b
e

g
c!α"h f!α"h

!α"a

d

Strong labeled lambda-calculus
- all redexes with same name are contracted in single step
- these complete normal order reductions are optimal
- theory of redex families

λt

y

λx

M

x x z
gf

e

dc

b

a

α h

λt

M

y

z

b
e

g
c!α"h f!α"h

!α"a

d

Weak labeled lambda-calculus
- under lambdas compute subterms with no occurence of bound

variable
- strong labeled theory + tagging paths to occurences of the

bound variable
- confluent calculus

λt

M

y

z
g

dλt

y

λx

M

x x z
gf

e

dc

b

a

α h

!α"[α, a]

[α, b]
[α, c]

[α, c]!α"h [α, f]!α"h

Weak labeled lambda-calculus
- problem with K-terms.
- name of creating redex does not appear in name of created

redex

yλx

xλt

M

α

a

b

c

d

e

λt

M

b

c
y

!α"[α, a]

[α, d]!α"e

name1 α

name2 b

Weak labeled lambda-calculus(1)
• [Klop 60]
- tag lefts of application nodes when K-terms
- special tag since corresponding node is not duplicated

yλx

xλt

M

α

a

b

c

d

e

λt

M

c
y

!α"[α, a]

[α, d]!α"e〈α, b〉

name1 α

name2 〈α, b〉

Weak labeled lambda-calculus (2)
• [Barendregt 60]
- add the atomic label of applications to the names of redexes.
- and redo all theory of (weak) labelled calculus

λt

M

b

c

λt y

x

a

α e

d

f

λt

M

b

c
y

!α′"[α′, a]

[α′, d]!α′"e

name1 α′ = fα

name2 [α′, a]b

Weak labeled lambda-calculus (3)

λt

M

b

c

λt y

x

a

α e

d

f name1 α′ = fα

name2 [α′, a]b

λt

M

b

c

y

!α′"[α′, a]

[α′, d]e

-
-

keep !α" because of K-redexes

!α" are useless

• [Geuvers 50 ?]

theorems

Weak lambda-calculus

which differs from the one in [4]; in section 3, we prove the sharing property, which validates
the dag implementation of [14]. A more extensive study of this new weak labeled λ-calculus
is produced in [3].

1. The weak λ-calculus

The set of λ-terms is the usual set, recursively defined by:

M,N ::= x | MN | λx.M

We write x ∈ M when x is a free variable in M . The reduction step relation → is defined
by the following axiom and inference rules:

(β) R = (λx.M)N
R
→ M [[x\N]] (ν)

M
R
→ M ′

MN
R
→ M ′N

(w)
M

R
→ N

M → N

(ξ′)
M

R
→ M ′ x #∈ R

λx.M
R
→ λx.M ′

(µ)
N

R
→ N ′

MN
R
→ MN ′

with the classic definition of substitution (using implicit alpha renaming):

x[[x\P]] = P
y[[x\P]] = y (x #= y)

(MN)[[x\P]] = M [[x\P]] N [[x\P]]
(λy.M)[[x\P]] = λy.M [[x\P]] (x #= y, y #∈ P)

The reduction step relation
R
→ is annotated with the contracted redex R. We follow Baren-

dregt’s notation and write →→ for the transitive and reflexive closure of →. So M →→ N
iff M can reduce in several steps (maybe none) to N . We notice that the (ξ′)-rule is only
valid when the bound variable x is not free in the contracted redex R. Therefore, in the
weak λ-calculus, the redexes contracted in a given term cannot have a free variable bound
outside.

Theorem 1.1. The weak λ-calculus is confluent.

Proof: The proof follows the standard Tait–Martin-Lof’s method [2]. !

2. The weak labeled λ-calculus

The weak labeled λ-calculus is a calculus to study sharing. It mimics a calculus on
dags, where labels represent the addresses of terms in these dags. Each subterm has its own
label; subterms which are copied along reductions keep their labels since they are not copied
in dags, but new subterms must have new labels. We want that the weak labeled λ-calculus
is confluent, as sharing and reduction strategy are two independent concepts. Therefore an
adequate labeling scheme should be invariant through permutations of reduction steps. To
get confluence, labels are structured and new terms receive new addresses by composing
old labels. Finally, the labeled calculus that we use here is different from the one used for
labeling weak explicit substitutions [9], since we have no closures nor explicit substitutions,
but here we have to take care of the variable binders.

which differs from the one in [4]; in section 3, we prove the sharing property, which validates
the dag implementation of [14]. A more extensive study of this new weak labeled λ-calculus
is produced in [3].

1. The weak λ-calculus

The set of λ-terms is the usual set, recursively defined by:

M,N ::= x | MN | λx.M

We write x ∈ M when x is a free variable in M . The reduction step relation → is defined
by the following axiom and inference rules:

(β) R = (λx.M)N
R
→ M [[x\N]] (ν)

M
R
→ M ′

MN
R
→ M ′N

(w)
M

R
→ N

M → N

(ξ′)
M

R
→ M ′ x #∈ R

λx.M
R
→ λx.M ′

(µ)
N

R
→ N ′

MN
R
→ MN ′

with the classic definition of substitution (using implicit alpha renaming):

x[[x\P]] = P
y[[x\P]] = y (x #= y)

(MN)[[x\P]] = M [[x\P]] N [[x\P]]
(λy.M)[[x\P]] = λy.M [[x\P]] (x #= y, y #∈ P)

The reduction step relation
R
→ is annotated with the contracted redex R. We follow Baren-

dregt’s notation and write →→ for the transitive and reflexive closure of →. So M →→ N
iff M can reduce in several steps (maybe none) to N . We notice that the (ξ′)-rule is only
valid when the bound variable x is not free in the contracted redex R. Therefore, in the
weak λ-calculus, the redexes contracted in a given term cannot have a free variable bound
outside.

Theorem 1.1. The weak λ-calculus is confluent.

Proof: The proof follows the standard Tait–Martin-Lof’s method [2]. !

2. The weak labeled λ-calculus

The weak labeled λ-calculus is a calculus to study sharing. It mimics a calculus on
dags, where labels represent the addresses of terms in these dags. Each subterm has its own
label; subterms which are copied along reductions keep their labels since they are not copied
in dags, but new subterms must have new labels. We want that the weak labeled λ-calculus
is confluent, as sharing and reduction strategy are two independent concepts. Therefore an
adequate labeling scheme should be invariant through permutations of reduction steps. To
get confluence, labels are structured and new terms receive new addresses by composing
old labels. Finally, the labeled calculus that we use here is different from the one used for
labeling weak explicit substitutions [9], since we have no closures nor explicit substitutions,
but here we have to take care of the variable binders.

which differs from the one in [4]; in section 3, we prove the sharing property, which validates
the dag implementation of [14]. A more extensive study of this new weak labeled λ-calculus
is produced in [3].

1. The weak λ-calculus

The set of λ-terms is the usual set, recursively defined by:

M,N ::= x | MN | λx.M

We write x ∈ M when x is a free variable in M . The reduction step relation → is defined
by the following axiom and inference rules:

(β) R = (λx.M)N
R
→ M [[x\N]] (ν)

M
R
→ M ′

MN
R
→ M ′N

(w)
M

R
→ N

M → N

(ξ′)
M

R
→ M ′ x #∈ R

λx.M
R
→ λx.M ′

(µ)
N

R
→ N ′

MN
R
→ MN ′

with the classic definition of substitution (using implicit alpha renaming):

x[[x\P]] = P
y[[x\P]] = y (x #= y)

(MN)[[x\P]] = M [[x\P]] N [[x\P]]
(λy.M)[[x\P]] = λy.M [[x\P]] (x #= y, y #∈ P)

The reduction step relation
R
→ is annotated with the contracted redex R. We follow Baren-

dregt’s notation and write →→ for the transitive and reflexive closure of →. So M →→ N
iff M can reduce in several steps (maybe none) to N . We notice that the (ξ′)-rule is only
valid when the bound variable x is not free in the contracted redex R. Therefore, in the
weak λ-calculus, the redexes contracted in a given term cannot have a free variable bound
outside.

Theorem 1.1. The weak λ-calculus is confluent.

Proof: The proof follows the standard Tait–Martin-Lof’s method [2]. !

2. The weak labeled λ-calculus

The weak labeled λ-calculus is a calculus to study sharing. It mimics a calculus on
dags, where labels represent the addresses of terms in these dags. Each subterm has its own
label; subterms which are copied along reductions keep their labels since they are not copied
in dags, but new subterms must have new labels. We want that the weak labeled λ-calculus
is confluent, as sharing and reduction strategy are two independent concepts. Therefore an
adequate labeling scheme should be invariant through permutations of reduction steps. To
get confluence, labels are structured and new terms receive new addresses by composing
old labels. Finally, the labeled calculus that we use here is different from the one used for
labeling weak explicit substitutions [9], since we have no closures nor explicit substitutions,
but here we have to take care of the variable binders.

• Terms

• Rules

Weak labeled lambda-calculus

β

λx

U

x x

α′

V

→

"βα′#

U

V V

$βα′% $βα′%

Figure 1: A reduction step in the weak labeled λ-calculus (dotted lines represent paths from
the root of U to occurrences of the free variable x in U ; dashed lines represent
the paths on which diffusion operates).

We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
labeled terms is recursively defined by:

U, V ::= α :X labeled terms
X,Y ::= S | U clipped or labeled terms
S, T ::= x | UV | λx.U clipped terms
α,β ::= a | "α′# | $α′% | [α′,β] labels

α′,β′ ::= α1α2 · · ·αn (n ≥ 1) compound labels

The labeled term α :X is said to have label α. Labels can be stacked as in α1 :α2 : · · · αn :S
(n ≥ 1). Compound labels are sequences of labels. An atomic label can be a simple letter,
or formed by overlining "α′# and underlining $α′% the compound label α′; it also can be a
pair [α′,β] of the compound label α′ and the label β. In the pair [α′,β], we say that α′ tags
β.

The labeled reduction $-rule is defined as

($) R = β : ((α′ · λx.U)V)
R
→ "βα′# : (βα′©x U)[[x \ $βα′% :V]]

where
α1α2 · · ·αn · X = α1 :α2 : · · ·αn :X

The name of R is βα′; we write name(R) = βα′. We assume that substitution has a higher
precedence than labeling. Hence "βα′# : U [[x\V]] is read as "βα′# : (U [[x\V]]). As in the
strong labeled λ-calculus, we sandwich the body of the function part of the redex with its
name overlined and underlined as shown in figure 1. The diffusion βα′ ©x U creates new
labels by tagging labels with βα′ on the paths from the root of U to free occurrences of x,
as illustrated in figure 1. Therefore new labels appeared for every subterm of U containing
a free occurrence of x. Formally substitution and diffusion are defined as follows:

x[[x\W]] = W
y[[x\W]] = y

(UV)[[x\W]] = U [[x\W]]V [[x\W]]
(λy.U)[[x\W]] = λy.U [[x\W]]
(β :X)[[x\W]] = β :X[[x\W]]

α′©x X = X if x (∈ X
α′©x x = x

α′©x UV = (α′©x U α′©x V) if x ∈ UV
α′©x λy.U = λy.α′©x U if x ∈ λy.U
α′©x β :X = [α′,β] :α′©x X if x ∈ X

• Terms

β

λx

U

x x

α′

V

→

"βα′#

U

V V

$βα′% $βα′%

Figure 1: A reduction step in the weak labeled λ-calculus (dotted lines represent paths from
the root of U to occurrences of the free variable x in U ; dashed lines represent
the paths on which diffusion operates).

We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
labeled terms is recursively defined by:

U, V ::= α :X labeled terms
X,Y ::= S | U clipped or labeled terms
S, T ::= x | UV | λx.U clipped terms
α,β ::= a | "α′# | $α′% | [α′,β] labels

α′,β′ ::= α1α2 · · ·αn (n ≥ 1) compound labels

The labeled term α :X is said to have label α. Labels can be stacked as in α1 :α2 : · · · αn :S
(n ≥ 1). Compound labels are sequences of labels. An atomic label can be a simple letter,
or formed by overlining "α′# and underlining $α′% the compound label α′; it also can be a
pair [α′,β] of the compound label α′ and the label β. In the pair [α′,β], we say that α′ tags
β.

The labeled reduction $-rule is defined as

($) R = β : ((α′ · λx.U)V)
R
→ "βα′# : (βα′©x U)[[x \ $βα′% :V]]

where
α1α2 · · ·αn · X = α1 :α2 : · · ·αn :X

The name of R is βα′; we write name(R) = βα′. We assume that substitution has a higher
precedence than labeling. Hence "βα′# : U [[x\V]] is read as "βα′# : (U [[x\V]]). As in the
strong labeled λ-calculus, we sandwich the body of the function part of the redex with its
name overlined and underlined as shown in figure 1. The diffusion βα′ ©x U creates new
labels by tagging labels with βα′ on the paths from the root of U to free occurrences of x,
as illustrated in figure 1. Therefore new labels appeared for every subterm of U containing
a free occurrence of x. Formally substitution and diffusion are defined as follows:

x[[x\W]] = W
y[[x\W]] = y

(UV)[[x\W]] = U [[x\W]]V [[x\W]]
(λy.U)[[x\W]] = λy.U [[x\W]]
(β :X)[[x\W]] = β :X[[x\W]]

α′©x X = X if x (∈ X
α′©x x = x

α′©x UV = (α′©x U α′©x V) if x ∈ UV
α′©x λy.U = λy.α′©x U if x ∈ λy.U
α′©x β :X = [α′,β] :α′©x X if x ∈ X

• Labels

β

λx

U

x x

α′

V

→

"βα′#

U

V V

$βα′% $βα′%

Figure 1: A reduction step in the weak labeled λ-calculus (dotted lines represent paths from
the root of U to occurrences of the free variable x in U ; dashed lines represent
the paths on which diffusion operates).

We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
labeled terms is recursively defined by:

U, V ::= α :X labeled terms
X,Y ::= S | U clipped or labeled terms
S, T ::= x | UV | λx.U clipped terms
α,β ::= a | "α′# | $α′% | [α′,β] labels

α′,β′ ::= α1α2 · · ·αn (n ≥ 1) compound labels

The labeled term α :X is said to have label α. Labels can be stacked as in α1 :α2 : · · · αn :S
(n ≥ 1). Compound labels are sequences of labels. An atomic label can be a simple letter,
or formed by overlining "α′# and underlining $α′% the compound label α′; it also can be a
pair [α′,β] of the compound label α′ and the label β. In the pair [α′,β], we say that α′ tags
β.

The labeled reduction $-rule is defined as

($) R = β : ((α′ · λx.U)V)
R
→ "βα′# : (βα′©x U)[[x \ $βα′% :V]]

where
α1α2 · · ·αn · X = α1 :α2 : · · ·αn :X

The name of R is βα′; we write name(R) = βα′. We assume that substitution has a higher
precedence than labeling. Hence "βα′# : U [[x\V]] is read as "βα′# : (U [[x\V]]). As in the
strong labeled λ-calculus, we sandwich the body of the function part of the redex with its
name overlined and underlined as shown in figure 1. The diffusion βα′ ©x U creates new
labels by tagging labels with βα′ on the paths from the root of U to free occurrences of x,
as illustrated in figure 1. Therefore new labels appeared for every subterm of U containing
a free occurrence of x. Formally substitution and diffusion are defined as follows:

x[[x\W]] = W
y[[x\W]] = y

(UV)[[x\W]] = U [[x\W]]V [[x\W]]
(λy.U)[[x\W]] = λy.U [[x\W]]
(β :X)[[x\W]] = β :X[[x\W]]

α′©x X = X if x (∈ X
α′©x x = x

α′©x UV = (α′©x U α′©x V) if x ∈ UV
α′©x λy.U = λy.α′©x U if x ∈ λy.U
α′©x β :X = [α′,β] :α′©x X if x ∈ X

• Rules

Weak labeled lambda-calculus

β

λx

U

x x

α′

V

→

"βα′#

U

V V

$βα′% $βα′%

Figure 1: A reduction step in the weak labeled λ-calculus (dotted lines represent paths from
the root of U to occurrences of the free variable x in U ; dashed lines represent
the paths on which diffusion operates).

We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
labeled terms is recursively defined by:

U, V ::= α :X labeled terms
X,Y ::= S | U clipped or labeled terms
S, T ::= x | UV | λx.U clipped terms
α,β ::= a | "α′# | $α′% | [α′,β] labels

α′,β′ ::= α1α2 · · ·αn (n ≥ 1) compound labels

The labeled term α :X is said to have label α. Labels can be stacked as in α1 :α2 : · · · αn :S
(n ≥ 1). Compound labels are sequences of labels. An atomic label can be a simple letter,
or formed by overlining "α′# and underlining $α′% the compound label α′; it also can be a
pair [α′,β] of the compound label α′ and the label β. In the pair [α′,β], we say that α′ tags
β.

The labeled reduction $-rule is defined as

($) R = β : ((α′ · λx.U)V)
R
→ "βα′# : (βα′©x U)[[x \ $βα′% :V]]

where
α1α2 · · ·αn · X = α1 :α2 : · · ·αn :X

The name of R is βα′; we write name(R) = βα′. We assume that substitution has a higher
precedence than labeling. Hence "βα′# : U [[x\V]] is read as "βα′# : (U [[x\V]]). As in the
strong labeled λ-calculus, we sandwich the body of the function part of the redex with its
name overlined and underlined as shown in figure 1. The diffusion βα′ ©x U creates new
labels by tagging labels with βα′ on the paths from the root of U to free occurrences of x,
as illustrated in figure 1. Therefore new labels appeared for every subterm of U containing
a free occurrence of x. Formally substitution and diffusion are defined as follows:

x[[x\W]] = W
y[[x\W]] = y

(UV)[[x\W]] = U [[x\W]]V [[x\W]]
(λy.U)[[x\W]] = λy.U [[x\W]]
(β :X)[[x\W]] = β :X[[x\W]]

α′©x X = X if x (∈ X
α′©x x = x

α′©x UV = (α′©x U α′©x V) if x ∈ UV
α′©x λy.U = λy.α′©x U if x ∈ λy.U
α′©x β :X = [α′,β] :α′©x X if x ∈ X

β

λx

U

x x

α′

V

→

"βα′#

U

V V

$βα′% $βα′%

Figure 1: A reduction step in the weak labeled λ-calculus (dotted lines represent paths from
the root of U to occurrences of the free variable x in U ; dashed lines represent
the paths on which diffusion operates).

We base our labeling scheme on the labeling for the strong λ-calculus [8]. The set of
labeled terms is recursively defined by:

U, V ::= α :X labeled terms
X,Y ::= S | U clipped or labeled terms
S, T ::= x | UV | λx.U clipped terms
α,β ::= a | "α′# | $α′% | [α′,β] labels

α′,β′ ::= α1α2 · · ·αn (n ≥ 1) compound labels

The labeled term α :X is said to have label α. Labels can be stacked as in α1 :α2 : · · · αn :S
(n ≥ 1). Compound labels are sequences of labels. An atomic label can be a simple letter,
or formed by overlining "α′# and underlining $α′% the compound label α′; it also can be a
pair [α′,β] of the compound label α′ and the label β. In the pair [α′,β], we say that α′ tags
β.

The labeled reduction $-rule is defined as

($) R = β : ((α′ · λx.U)V)
R
→ "βα′# : (βα′©x U)[[x \ $βα′% :V]]

where
α1α2 · · ·αn · X = α1 :α2 : · · ·αn :X

The name of R is βα′; we write name(R) = βα′. We assume that substitution has a higher
precedence than labeling. Hence "βα′# : U [[x\V]] is read as "βα′# : (U [[x\V]]). As in the
strong labeled λ-calculus, we sandwich the body of the function part of the redex with its
name overlined and underlined as shown in figure 1. The diffusion βα′ ©x U creates new
labels by tagging labels with βα′ on the paths from the root of U to free occurrences of x,
as illustrated in figure 1. Therefore new labels appeared for every subterm of U containing
a free occurrence of x. Formally substitution and diffusion are defined as follows:

x[[x\W]] = W
y[[x\W]] = y

(UV)[[x\W]] = U [[x\W]]V [[x\W]]
(λy.U)[[x\W]] = λy.U [[x\W]]
(β :X)[[x\W]] = β :X[[x\W]]

α′©x X = X if x (∈ X
α′©x x = x

α′©x UV = (α′©x U α′©x V) if x ∈ UV
α′©x λy.U = λy.α′©x U if x ∈ λy.U
α′©x β :X = [α′,β] :α′©x X if x ∈ X

• Diffusion

• Substitution

Weak labeled lambda-calculus

Proof: Straightforward by induction on the size of X. !

Theorem 2.3. The weak labeled λ-calculus is confluent.

Proof: By the Tait–Martin-Lof method, see [2]. To illustrate confluence, we consider local
confluence with the only interesting cases of the two following commuting diagrams, when

x !∈ R, and U
R
→ U ′, V → V ′:

β : ((α′ · λx.U)V)
R

!!

""

β : ((α′ · λx.U ′)V)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! $β′% : (β′©x U ′)[[x\'β′(:V]]

β : ((α′ · λx.U)V) !!

""

β : ((α′ · λx.U)V ′)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! !! $β′% : (β′©x U)[[x\'β′(:V ′]]

where β′ = βα′. These cases are easily proved with the previous lemmas. !

3. Sharing of subterms

The goal of this section is to prove that two subterms with the same label are equal
in the weak labeled λ-calculus, provided that reductions start from an initial term with
distinct letters on all its subterms. Thus two subterms labeled with a same label can be
shared in a dag implementation of terms. To prove this sharing property, we introduce a
containment relation on labels and prove a few invariants on labeled terms along reductions.
Intuitively, the name of a redex records its history. When a redex S is the residual of an
other redex R, their names are equal. If a redex S is created by the contraction of a redex
R, the name of R is contained in the name of S.

The containment relation ≺ on labels is defined by

α′ ≺ $α′% α′ ≺ 'α′(α′ ≺ [α′,β]

α′ ≺ βi ⇒ α′ ≺ β1 · · · βn α′ ≺ β′ ≺ γ′ ⇒ α′ ≺ γ′

The name α′ of a redex is contained in any label where it is overlined or underlined. It is
also contained in a pair of which it is the first component. Furthermore if it is contained
in some βi, it is also in any compound label of which βi is a subcomponent. Finally, the
containment relation is closed by transitivity. This relation is clearly a strict ordering. We
show that it expresses our intuition, i.e. α′ ≺ β′ when the contraction of a redex of name
α′ participates to the creation of β′. We recall that a reduction X →→ Y creates redex S in
Y if S is not a residual (along this reduction) of a redex R in X.

Lemma 3.1. If X
R
→ Y and a redex S in Y is created in this reduction step, then

name(R) ≺ name(S).

Proof: Straightforward by case inspection. !

Invariant 1. Q(W) holds iff we have α′ !≺ β for every redex R with name α′ and any
subterm β :X in W .

Proof: Straightforward by induction on the size of X. !

Theorem 2.3. The weak labeled λ-calculus is confluent.

Proof: By the Tait–Martin-Lof method, see [2]. To illustrate confluence, we consider local
confluence with the only interesting cases of the two following commuting diagrams, when

x !∈ R, and U
R
→ U ′, V → V ′:

β : ((α′ · λx.U)V)
R

!!

""

β : ((α′ · λx.U ′)V)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! $β′% : (β′©x U ′)[[x\'β′(:V]]

β : ((α′ · λx.U)V) !!

""

β : ((α′ · λx.U)V ′)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! !! $β′% : (β′©x U)[[x\'β′(:V ′]]

where β′ = βα′. These cases are easily proved with the previous lemmas. !

3. Sharing of subterms

The goal of this section is to prove that two subterms with the same label are equal
in the weak labeled λ-calculus, provided that reductions start from an initial term with
distinct letters on all its subterms. Thus two subterms labeled with a same label can be
shared in a dag implementation of terms. To prove this sharing property, we introduce a
containment relation on labels and prove a few invariants on labeled terms along reductions.
Intuitively, the name of a redex records its history. When a redex S is the residual of an
other redex R, their names are equal. If a redex S is created by the contraction of a redex
R, the name of R is contained in the name of S.

The containment relation ≺ on labels is defined by

α′ ≺ $α′% α′ ≺ 'α′(α′ ≺ [α′,β]

α′ ≺ βi ⇒ α′ ≺ β1 · · · βn α′ ≺ β′ ≺ γ′ ⇒ α′ ≺ γ′

The name α′ of a redex is contained in any label where it is overlined or underlined. It is
also contained in a pair of which it is the first component. Furthermore if it is contained
in some βi, it is also in any compound label of which βi is a subcomponent. Finally, the
containment relation is closed by transitivity. This relation is clearly a strict ordering. We
show that it expresses our intuition, i.e. α′ ≺ β′ when the contraction of a redex of name
α′ participates to the creation of β′. We recall that a reduction X →→ Y creates redex S in
Y if S is not a residual (along this reduction) of a redex R in X.

Lemma 3.1. If X
R
→ Y and a redex S in Y is created in this reduction step, then

name(R) ≺ name(S).

Proof: Straightforward by case inspection. !

Invariant 1. Q(W) holds iff we have α′ !≺ β for every redex R with name α′ and any
subterm β :X in W .

Proof: Straightforward by induction on the size of X. !

Theorem 2.3. The weak labeled λ-calculus is confluent.

Proof: By the Tait–Martin-Lof method, see [2]. To illustrate confluence, we consider local
confluence with the only interesting cases of the two following commuting diagrams, when

x !∈ R, and U
R
→ U ′, V → V ′:

β : ((α′ · λx.U)V)
R

!!

""

β : ((α′ · λx.U ′)V)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! $β′% : (β′©x U ′)[[x\'β′(:V]]

β : ((α′ · λx.U)V) !!

""

β : ((α′ · λx.U)V ′)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! !! $β′% : (β′©x U)[[x\'β′(:V ′]]

where β′ = βα′. These cases are easily proved with the previous lemmas. !

3. Sharing of subterms

The goal of this section is to prove that two subterms with the same label are equal
in the weak labeled λ-calculus, provided that reductions start from an initial term with
distinct letters on all its subterms. Thus two subterms labeled with a same label can be
shared in a dag implementation of terms. To prove this sharing property, we introduce a
containment relation on labels and prove a few invariants on labeled terms along reductions.
Intuitively, the name of a redex records its history. When a redex S is the residual of an
other redex R, their names are equal. If a redex S is created by the contraction of a redex
R, the name of R is contained in the name of S.

The containment relation ≺ on labels is defined by

α′ ≺ $α′% α′ ≺ 'α′(α′ ≺ [α′,β]

α′ ≺ βi ⇒ α′ ≺ β1 · · · βn α′ ≺ β′ ≺ γ′ ⇒ α′ ≺ γ′

The name α′ of a redex is contained in any label where it is overlined or underlined. It is
also contained in a pair of which it is the first component. Furthermore if it is contained
in some βi, it is also in any compound label of which βi is a subcomponent. Finally, the
containment relation is closed by transitivity. This relation is clearly a strict ordering. We
show that it expresses our intuition, i.e. α′ ≺ β′ when the contraction of a redex of name
α′ participates to the creation of β′. We recall that a reduction X →→ Y creates redex S in
Y if S is not a residual (along this reduction) of a redex R in X.

Lemma 3.1. If X
R
→ Y and a redex S in Y is created in this reduction step, then

name(R) ≺ name(S).

Proof: Straightforward by case inspection. !

Invariant 1. Q(W) holds iff we have α′ !≺ β for every redex R with name α′ and any
subterm β :X in W .

Proof: Straightforward by induction on the size of X. !

Theorem 2.3. The weak labeled λ-calculus is confluent.

Proof: By the Tait–Martin-Lof method, see [2]. To illustrate confluence, we consider local
confluence with the only interesting cases of the two following commuting diagrams, when

x !∈ R, and U
R
→ U ′, V → V ′:

β : ((α′ · λx.U)V)
R

!!

""

β : ((α′ · λx.U ′)V)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! $β′% : (β′©x U ′)[[x\'β′(:V]]

β : ((α′ · λx.U)V) !!

""

β : ((α′ · λx.U)V ′)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! !! $β′% : (β′©x U)[[x\'β′(:V ′]]

where β′ = βα′. These cases are easily proved with the previous lemmas. !

3. Sharing of subterms

The goal of this section is to prove that two subterms with the same label are equal
in the weak labeled λ-calculus, provided that reductions start from an initial term with
distinct letters on all its subterms. Thus two subterms labeled with a same label can be
shared in a dag implementation of terms. To prove this sharing property, we introduce a
containment relation on labels and prove a few invariants on labeled terms along reductions.
Intuitively, the name of a redex records its history. When a redex S is the residual of an
other redex R, their names are equal. If a redex S is created by the contraction of a redex
R, the name of R is contained in the name of S.

The containment relation ≺ on labels is defined by

α′ ≺ $α′% α′ ≺ 'α′(α′ ≺ [α′,β]

α′ ≺ βi ⇒ α′ ≺ β1 · · · βn α′ ≺ β′ ≺ γ′ ⇒ α′ ≺ γ′

The name α′ of a redex is contained in any label where it is overlined or underlined. It is
also contained in a pair of which it is the first component. Furthermore if it is contained
in some βi, it is also in any compound label of which βi is a subcomponent. Finally, the
containment relation is closed by transitivity. This relation is clearly a strict ordering. We
show that it expresses our intuition, i.e. α′ ≺ β′ when the contraction of a redex of name
α′ participates to the creation of β′. We recall that a reduction X →→ Y creates redex S in
Y if S is not a residual (along this reduction) of a redex R in X.

Lemma 3.1. If X
R
→ Y and a redex S in Y is created in this reduction step, then

name(R) ≺ name(S).

Proof: Straightforward by case inspection. !

Invariant 1. Q(W) holds iff we have α′ !≺ β for every redex R with name α′ and any
subterm β :X in W .

Proof: Straightforward by induction on the size of X. !

Theorem 2.3. The weak labeled λ-calculus is confluent.

Proof: By the Tait–Martin-Lof method, see [2]. To illustrate confluence, we consider local
confluence with the only interesting cases of the two following commuting diagrams, when

x !∈ R, and U
R
→ U ′, V → V ′:

β : ((α′ · λx.U)V)
R

!!

""

β : ((α′ · λx.U ′)V)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! $β′% : (β′©x U ′)[[x\'β′(:V]]

β : ((α′ · λx.U)V) !!

""

β : ((α′ · λx.U)V ′)

""

$β′% : (β′©x U)[[x\'β′(:V]] !! !! $β′% : (β′©x U)[[x\'β′(:V ′]]

where β′ = βα′. These cases are easily proved with the previous lemmas. !

3. Sharing of subterms

The goal of this section is to prove that two subterms with the same label are equal
in the weak labeled λ-calculus, provided that reductions start from an initial term with
distinct letters on all its subterms. Thus two subterms labeled with a same label can be
shared in a dag implementation of terms. To prove this sharing property, we introduce a
containment relation on labels and prove a few invariants on labeled terms along reductions.
Intuitively, the name of a redex records its history. When a redex S is the residual of an
other redex R, their names are equal. If a redex S is created by the contraction of a redex
R, the name of R is contained in the name of S.

The containment relation ≺ on labels is defined by

α′ ≺ $α′% α′ ≺ 'α′(α′ ≺ [α′,β]

α′ ≺ βi ⇒ α′ ≺ β1 · · · βn α′ ≺ β′ ≺ γ′ ⇒ α′ ≺ γ′

The name α′ of a redex is contained in any label where it is overlined or underlined. It is
also contained in a pair of which it is the first component. Furthermore if it is contained
in some βi, it is also in any compound label of which βi is a subcomponent. Finally, the
containment relation is closed by transitivity. This relation is clearly a strict ordering. We
show that it expresses our intuition, i.e. α′ ≺ β′ when the contraction of a redex of name
α′ participates to the creation of β′. We recall that a reduction X →→ Y creates redex S in
Y if S is not a residual (along this reduction) of a redex R in X.

Lemma 3.1. If X
R
→ Y and a redex S in Y is created in this reduction step, then

name(R) ≺ name(S).

Proof: Straightforward by case inspection. !

Invariant 1. Q(W) holds iff we have α′ !≺ β for every redex R with name α′ and any
subterm β :X in W .

• Labels containment:

Weak labeled lambda-calculus

If Q(W) and W
γ′

=⇒W ′, then Q(W ′).

Q(W) ::= we have α′ !≺ β for every redex R with name α′

and any subterm β :X in W .

• Maximality invariant

• Lemma 1

Weak labeled lambda-calculus

If Q(W) and W
γ′

=⇒W ′, then Q(W ′).

Q(W) ::= we have α′ !≺ β for every redex R with name α′

and any subterm β :X in W .

• Maximality invariant

• Lemma 1

R(W) ::= for any pair of subterms α :x and α :y in W ,
we have x free in W iff y free in W .

If R(W) and W →W ′, then R(W ′)

• Lexical scope invariant

• Lemma 2

Weak labeled lambda-calculus

P(W) ::= for any pair of subterms α :X and α :Y in W ,
we have X = Y .

If P(W) ∧Q(W) ∧R(W) and W
γ′

=⇒W ′, then P(W ′).

• Maximality invariant

• Sharing lemma

• Sharing theorem
Init(U) ::= every subterm of U is labeled with a distinct letter.

Let Init(U) and U =⇒=⇒ V , then P(V).

Conclusion

Conclusion
•weak lambda calculus implemented with dags

•useful for programming languages ?

•do theory for weak labeled lambda calculus (3)

•and if explicit substitutions ?

•do theory as particular case of term rewriting systems

•big difference between weak and strong calculus (POPL mark)

Rendez-vous in 2017...

Conclusion
•weak lambda calculus implemented with dags

•useful for programming languages ?

•do theory for weak labeled lambda calculus (3)

•and if explicit substitutions ?

•do theory as particular case of term rewriting systems

•big difference between weak and strong calculus (POPL mark)

