
History based flow analysis
in the lambda calculus

Tomasz Blanc

Jean-Jacques Lévy

INRIA Rocquencourt

IISc
February 8, 2006

(work in progress)

Plan

1 Dependency calculi

2 Stack inspection

3 History-based stack inspection

4 Confluency

5 Labeled lambda-calculus

6 Types

Dependency calculi (1/2)

Many calculi exist since [76, Denning’s] :

[97 Biswas] , [97 Abadi, Lampson, JJL]

dependency calculus for makefiles

[98-00 Pottier, Simonet, Heintze, Riecke]

type theory with security information à la
[97 Volpano, Smith]

for ML-like programs.

[99 Abadi, Banerjee, Heintze, Riecke]

Dependency core calculus

[00 Boudol, Castellani]

Imperative programs

. . . type checking + type inference

Non interference theorems.

Non interference

M public (low), A is private (high)

M →→ V , V value

no leak of A in V

M = C[A] →→ V implies C[B] →→ V

Dependency calculi (2/2)

All (but first) are based on type theory and
non-interference.

Is there an “untyped” theory ?

Is non-interference wrt “security levels” the only property?

Stack inspection (1/5)

[Fournet, Gordon, POPL’02]

flow analysis based on procedure calls

JVM + CLR security manager ⇒ stack inspection

Stack inspection supports two sets of permissions:

dynamic permissions D

static permissions S

reduction −→S
D is parameterized by D and S

Stack inspection (2/5)

Language

R, S, D ::= permissions set

M, N ::= expression
x | λx .M | MN λ-expression
R[M] framed expression
grant R in M permission grant
test R then M else N permission test

V ::= λx .M value

Reductions

call-by-value

M1 −→S
D M ′

1
M1M2 −→S

D M ′
1M2

M2 −→S
D M ′

2
V1M2 −→S

D V1M2

(λx .M)V −→S
D M{x := V}

Stack inspection (3/5)

permission rules
[CtxFrame] [CtxGrant]

M −→R
D∩R M ′

R[M] −→S
D R[M ′]

M −→S
D∪(R∩S) M ′

grant R in M −→S
D grant R in M ′

[RedFrame] [RedGrant]
R[V] −→S

D V grant R in V −→S
D V

[RedTest]
test R then Mtrue else Nfalse −→S

D MR⊆D

∪, ∩, ⊆ are operations on permissions

values are transparent for permissions

static permission does not propagate in framed
expressions

stack inspection is a simple “untyped” calculus

Stack inspection (4/5)

Example with Java-like programs

class Applet { // ——————–untrusted
public static void main (String[] args) {

NaiveLibrary.cleanUp ("/etc/passwd");
} }

public class NaiveLibrary { // ——–trusted
static void cleanUp (String s) {

File.delete (s);
} }

public class File { // —————–trusted
static void delete (String s) {

FileIOPermission p = new FileIOPermission(s);
p.checkDelete();
System.deleteFile(s);

} }

check fails with stack inspection since
Applet [main(Lib[cleanUp(Sys[test FileDelete in
delete(s) else fail])])]
Applet ∩Sys = ∅

Stack inspection (5/5)

stack inspection provides a weak non-interference property

⇒ static analyzer for C# libraries
[04, Blanc, Fournet, Gordon]

with long proofs for soundness

History-based stack inspection (1/2)

[03, Abadi, Fournet] informal description of
history-based stack inspection solving 2 examples:

BadPlugin example ↔ untrusted values
class NaiveProgram { // ——————–trusted

public static void main (String[] args) {
String s = BadPlugin.tempFile ();
NaiveLibrary.cleanUp (s);

} }

public class NaiveLibrary { // ————–trusted
static void cleanUp (String s) {

File.delete (s);
} }

public class BadPlugin { // —————untrusted
static String tempFile () {

return "/etc/passwd" ;
} }

does not fit in stack inspection
since values are transparent for permissions

History-based stack inspection (2/2)

Chinese Wall: B should not access to private information of
A and conversely

public class Customer {
int examine () {

...
if (shouldConsiderA) {

Contractor a = new companyA();
return a.offer();

} }

static public void main (String[] args) {
int offer = examine ();
Contractor b = new companyB();
// ————raises exception if any B code has run

} }

does not fit in stack inspection
since not in a chain of function calls

Non interference between sub-expressions

A and B are two different parties

M →→ V , V value

no interaction between A and B is
necessary to produce V

V may contain A and B

interference theorem much harder to
state

What is interaction between A and B?

Dependency calculi and Confluency

confluency ≡ independence of evaluation strategy
⇒ equational theory ⇒ simplicity

confluency ⇒ static analysis by abstract interpretation

dynamic information is inherently non confluent
as for the dynamicaly-scoped λ-calculus

(λx .λy .(λx .λy .x)yx)ab −→ . . . −→ (λx .λy .x)ba −→ a
(λx .λy .(λx .λy .x)yx)ab −→ . . . −→ (λx .λy .y)ab −→ b

stack inspection is not confluent

when FileIO ⊆ Sys
Sys[(λx . Applet [x]V)(test FileIO in (λx .x)(λx .a) else fail)]
−→ . . . −→ a Call by Value
−→ . . . −→ fail Call by Name

The labeled λ-calculus (1/7)
Language

α, β, γ ::= labels
a | dαe | bαc | atomic name
αβ compound name

ε empty string

M, N ::= labeled expression
x | (λx .M) | (MN) | Mα λ-expression

Exponent Rules

(Mα)β = Mβα Mε = M dεe = bεc = ε

Reduction (λx .M)αN −→ (M{x := Nbαc})dαe

xα{x := P} = Pα

yα{x := P} = yα

(λy .M)α{x := P} = (λy .M{x := P})α

(MN)α{x := P} = (M{x := P}N{x := P})α

The labeled λ-calculus (2/7)

Graphically

M is sandwiched by dαe and bαc
⇒ theory of balanced paths [94, Asperti, Laneve,

Guerrini, Mairson, Danos, Reigner, ...]

↔ Girard’s geometry of interaction

The labeled λ-calculus (3/7)

the labeled λ-calculus is confluent
(thanks to exponent rules)

the labeled λ-calculus tracks history of redexes
(redex families)

the labeled λ-calculus corresponds to the event structure
of redexes

⇒ the labeled λ-calculus is a good candidate for a
confluent equational theory of flow analysis
(lattice of derivations, stability, . . .)
e.g. dependency calculus for makefiles uses a tiny subset

The labeled λ-calculus (4/7)

If M →→ V , there is a unique minimum A of M such that
A →→ V [stability thm]

If C[M] →→ V , there is a unique minimum prefix A of M such
that C[A] →→ V ′ [corollary of stability thm]

[97, Abadi, Lampson, JJL] compute minimum prefix
by:

• Mark all subexpression with different atomic label;
• perform M →→ V
• erase part of M not in V .

simple and good for incremental computations
(Vista)

also characterizes non interference when M = C[A]
[99, Conchon, Pottier]

The labeled λ-calculus (5/7)

the labeled λ-calculus is good for tracing interactions.

to build the Chinese Wall:
Let M = C[A; B] →→ V . Let mark subexpressions in A with
a, and in B with b.
There should not be any label γ in V such that
γ = · · · ba · · ·bc · · · or γ = · · · da · · ·be · · · .

sets as labels

[[a]]i = {a}
[[αβ]]i = [[α]]i ∪ [[β]]i
[[dαe]]1 = [[bαc]]1 = {[[α]]0}

[[dαe]]0 = [[bαc]]0 = [[α]]0

where i = 0, 1 and {∅} = ∅

P(α) = ¬ ∃a∃b. a, b ∈ X ∈ [[α]]1

The labeled λ-calculus (6/7)

the labeled λ-calculus restricted by a predicate P
Reduction (λx .M)αN −→ (M{x := Nbαc})dαe when
|= P(α)

the labeled λ-calculus restricted by P is still confluent for
any P.

The labeled λ-calculus (7/7)

Let α < β be the causality relation:
α < dαe α < bαc
α < β ⇒ α < γβδ

Chinese Wall for independent spinoffs of A
P(α) = ¬(∃β ∃γ β 6≤ γ ∧ γ 6≤ β ∧ A < β < α ∧ A < γ < α)

β 6≤ γ is not so easy to test
equality between subtrees of the α tree

simpler versions ? [Tomasz Blanc]

from labeled λ-calculus towards DCC (Dependency Core
Calculus) or other flow calculi with types ???

deontic logic ?

Type systems and labels

[Sub] [Var]
Γ ` M : t t ≤ t ′

Γ ` M : t ′
x ∈ domain(Γ)

Γ ` x : Γ(x)

[Lambda] [App]

Γ, x : t ` M : t ′

Γ ` λx .M : t −→ t ′
Γ ` M : t α

−→ t ′ Γ ` N : bαc ◦ t
Γ ` MN : dαe ◦ t ′

[Exponent]
Γ ` M : t

Γ ` Mα : α ◦ t

pushing labels on types (with ≤)

Infers [02, Pottier, Simonet]

Conclusion

stack inspection is not static analysis

dynamic checks support finer tests for security

attempts for mixing history and stack inspection
confluency is a hint for “good” calculi

• stack inspection is not a good calculus
• finer flow analysis

statically scoped information (static permissions of stack
inspection) should be carried by the labeled λ-calculus.
(e.g. Chinese Wall)

abstract interpretation of labeled lambda calculus?

	Dependency calculi
	Stack inspection
	History-based stack inspection
	Confluency
	Labeled lambda-calculus
	Types

