History based flow analysis

in the lambda calculus

Tomasz Blanc
Jean-Jacques Lévy

INRIA Rocquencourt

l1Sc
February 8, 2006

(work in progress)

e Dependency calculi

9 Stack inspection

e History-based stack inspection
e Confluency

e Labeled lambda-calculus

e Types

Dependency calculi (1/2)

Many calculi exist since [76, Denning’s]
@ [97 Biswas] ,[97 Abadi, Lampson, JJL]
dependency calculus for makefiles

@ [98-00 Pottier, Simonet, Heintze, Riecke]
type theory with security information a la
[97 Volpano, Smith]
for ML-like programs.

@ [99 Abadi, Banerjee, Heintze, Riecke]
Dependency core calculus

@ [00 Boudol, Castellani]
Imperative programs

@ ...type checking + type inference

Non interference theorems.

Non interference

@ M public (low), A is private (high)
@ M—V,V value
@ noleak of AinV
@ M =CJ[A]—V implies C[B] -V

Dependency calculi (2/2)

@ All (but first) are based on type theory and
non-interference.

@ Is there an “untyped” theory ?
@ Is non-interference wrt “security levels” the only property?

Stack inspection (1/5)

[Fournet, Gordon, POPL'02]

@ flow analysis based on procedure calls
@ JVM + CLR security manager = stack inspection

Stack inspection supports two sets of permissions:

@ dynamic permissions D
@ static permissions S
@ reduction ﬁg is parameterized by D and S

Stack inspection (2/5)

Language

R,S,D =

M,N ==
X | AX.M | MN
R[M]
grant Rin M

permissions set

expression
A-expression
framed expression
permission grant

test Rthen Melse N permission test

\/ = AX.M

Reductions
@ call-by-value
M]_ —>g Mi
M1 M, %3 M1 M,

(AXM)V —3 M{x :=

v}

value

Mz —35 M
ViM; —3 V1M,

Stack inspection (3/5)

@ permission rules

[CtxFrame] [CtxGrant]
S
M—B o M M —Burns) M’
R[M] —3 R[M’] grant Rin M —3 grant Rin M’
[RedFrame] [RedGrant]
R[V] —3V grant Rin V —3V
[RedTest]

test R then Mirue else Nfalse —>g MR(;D

@ U, N, C are operations on permissions
@ values are transparent for permissions

@ static permission does not propagate in framed
expressions
@ stack inspection is a simple “untyped” calculus

Stack inspection (4/5)

@ Example with Java-like programs

class Applet { //——untrusted
public static void main (String[] args) {
NaiveLibrary.cleanUp ("letc/passwd”);

}}

public class NaiveLibrary { I
static void cleanUp (String s) {
File.delete (s);

trusted

}}
public class File { //——trusted
static void delete (String s) {
FilelOPermission p = new FilelOPermission(s);

p.checkDelete();
System.deleteFile(s);

}}

@ check fails with stack inspection since
Applet[main(Lib[cleanUp(Sys|test FileDelete in
delete(s) else fail])])]

Applet NSys =0

Stack inspection (5/5)

@ stack inspection provides a weak non-interference property

@ = static analyzer for C# libraries
[04, Blanc, Fournet, Gordon]

@ with long proofs for soundness

History-based stack inspection (1/2)

@ [03, Abadi, Fournet] informal description of
history-based stack inspection solving 2 examples:

@ BadPlugin example < untrusted values
class NaiveProgram { //——trusted
public static void main (String[] args) {
String s = BadPlugin.tempFile ();
NaiveLibrary.cleanUp (s);

}}

public class NaiveLibrary { /| ———trusted
static void cleanUp (String s) {
File.delete (s);

b}

public class BadPlugin { //———untrusted
static String tempFile () {
return "/etc/passwd" ;

}}

@ does not fit in stack inspection
since values are transparent for permissions

History-based stack inspection (2/2)

@ Chinese Wall: B should not access to private information of
A and conversely

public class Customer {
int examine () {

it (shouldConsiderA) {
Contractor a = new companyA();
return a.offer();

}}

static public void main (String[] args) {
int offer = examine ();
Contractor b = new companyB();
[l ————raises exception if any B code has run

}}

@ does not fit in stack inspection
since not in a chain of function calls

Non interference between sub-expressions

@ A and B are two different parties
@ M—V, V value

@ no interaction between A and B is
necessary to produce V

@ V may contain A and B

@ interference theorem much harder to
state

What is interaction between A and B?

Dependency calculi and Confluency

@ confluency = independence of evaluation strategy
= equational theory =
@ confluency = static analysis by abstract interpretation

@ dynamic information is inherently non confluent
as for the dynamicaly-scoped A-calculus

(AX.AY.(AX. Ay . x)yx)ab — ... — (AX.\y.x)ba — a
(AX.AY.(AX. Ay . X)yx)ab — ... — (Ax.\y.y)ab — b

@ stack inspection is not confluent

when FilelO C Sys

Sys[(Ax. Applet[x]V)(test FilelO in (Ax.x)(Ax.a) else fail)]
— ... — a Call by Value

— ... — fail Call by Name

The labeled \-calculus (1/7)

Language
o, B,y o= labels
allalllal| atomic name
af compound name

€ empty string

M,N = labeled expression
X | (Ax.M) | (MN) | M® X-expression

Exponent Rules

(M) =M% M =M [l =e|=¢
Reduction (AX.M)*N — (M{x := Nlal})le]

X*{X =P} =P

y*{x: =P} =y

(AY.M)¥{x =P} = (Ay.M{x :=P})*
(MN)*{x :=P} = (M{x :=P}N{x :=P})~

The labeled \-calculus (2/7)

Graphically

@ M is sandwiched by [a] and |«
= theory of balanced paths [94, Asperti, Laneve,
Guerrini, Mairson, Danos, Reigner, ...]
— Girard’s geometry of interaction

The labeled \-calculus (3/7)

@ the labeled \-calculus is
(thanks to exponent rules)

@ the labeled \-calculus tracks history of redexes
(redex families)

@ the labeled A-calculus corresponds to the event structure
of redexes

@ = the labeled X-calculus is a good candidate for a
confluent of flow analysis
(lattice of derivations, stability, . . .)
e.g. dependency calculus for makefiles uses a tiny subset

The labeled \-calculus (4/7)

@ If M —V, there is a unique minimum A of M such that
A—V [stability thm]

@ If C[M]—V, there is a unique minimum prefix A of M such
that C[A]—V’ [corollary of stability thm]

@ [97, Abadi, Lampson, JJL] compute minimum prefix
by:
Mark all subexpression with different atomic label;
perform M —V
erase part of M notin V.
@ simple and good for incremental computations
(Vista)
@ also characterizes non interference when M = C[A]
[99, Conchon, Pottier]

The labeled \-calculus (5/7)

@ the labeled A-calculus is good for tracing interactions.

@ to build the Chinese Wall:
Let M = C[A; B] — V. Let mark subexpressions in A with
a, and in B with b.
There should not be any label v in V such that
’Y:"'La"'bJ"' orfy:...(a...b}....
@ sets as labels
[ali = {a}

[a5Ti = [l U [5]i
[felly = [lelly = {ledo}

[TeTlo = Mlel]o = [do

wherei = 0,1 and {} =0
@ P(a) =-3Jadb.a,be X € [o],

The labeled X\-calculus (6/7)

@ the labeled A-calculus restricted by a predicate P
Reduction (AX.M)®N — (M{x := Nle/})[al when
= P(a)

@ the labeled A-calculus restricted by P is still confluent for
any P.

The labeled \-calculus (7/7)

@ Let a < 3 be the causality relation:
a < [al a< |af
a<f = a<yB
@ Chinese Wall for independent spinoffs of A
Pla)=—=(38IyBLYANYLBNA<LB<aNA<y<a)
@ 3 £ v is not so easy to test
equality between subtrees of the « tree
@ simpler versions ? [Tomasz Blanc]
@ from labeled X-calculus towards DCC (Dependency Core
Calculus) or other flow calculi with types ???

@ deontic logic ?

Type systems and labels

[Sub] [Var]
[EM:t t<t' X cdomain(r)

Mt Mx:T(x)
[Lambda] [App]

MXx:t-M:t FM:t -2t TEN:|aot
FM=XxXM:t —t FEMN: [a]ot/
[Exponent]

TEMit
M=-Me:aot

@ pushing labels on types (with <)
@ Infers [02, Pottier, Simonet]

Conclusion

e ¢ ¢ ¢

stack inspection is not static analysis
dynamic checks support for security
for mixing history and stack inspection

confluency is a hint for “good” calculi
stack inspection is
finer flow analysis
statically scoped information (static permissions of stack
inspection) should be carried by
(e.g. Chinese Wall)

abstract interpretation of labeled lambda calculus?

	Dependency calculi
	Stack inspection
	History-based stack inspection
	Confluency
	Labeled lambda-calculus
	Types

