
Sharing in the weak lambda-calculus

Tomasz Blanc
Jean-Jacques Lévy

Luc Maranget

INRIA Rocquencourt

Dec 19, 2005

Sharing in the weak lambda-calculus

Tomasz Blanc
Jean-Jacques Lévy

Luc Maranget

INRIA Rocquencourt

Dec 19, 2005

"Retomber dans la cloppe, JAMAIS ! !"
Et sinon ca va sans cloppe ?
http ://sos-cloppes.over-blog.com/
cette saloperie de clope
Voila comment j’ai réussi à stopper la clop
il clope comme un pompier

t’as pas une clope ?
FUMER UNE CLOPE
ca vaut pas un clope. Des clopes !
des clopinettes.

file:///Users/levy/klop/amsterdam/talk/11830.mov

Clop

Plan

1 The weak λ-calculus

2 Properties of the weak λ-calculus

3 Sharing in the λ-calculus

4 Sharing in the weak λ-calculus

5 Sharing of subterms

6 Conclusion

Plan

1 The weak λ-calculus

2 Properties of the weak λ-calculus

3 Sharing in the λ-calculus

4 Sharing in the weak λ-calculus

5 Sharing of subterms

6 Conclusion

Plan

1 The weak λ-calculus

2 Properties of the weak λ-calculus

3 Sharing in the λ-calculus

4 Sharing in the weak λ-calculus

5 Sharing of subterms

6 Conclusion

Plan

1 The weak λ-calculus

2 Properties of the weak λ-calculus

3 Sharing in the λ-calculus

4 Sharing in the weak λ-calculus

5 Sharing of subterms

6 Conclusion

Plan

1 The weak λ-calculus

2 Properties of the weak λ-calculus

3 Sharing in the λ-calculus

4 Sharing in the weak λ-calculus

5 Sharing of subterms

6 Conclusion

Plan

1 The weak λ-calculus

2 Properties of the weak λ-calculus

3 Sharing in the λ-calculus

4 Sharing in the weak λ-calculus

5 Sharing of subterms

6 Conclusion

The weak λ-calculus (1/4)

λ-calculus without the ξ-rule

(ξ)
M → N

λx .M → λx .N

is not confluent

(λx .λy .M)N //

��

(λx .λy .M)N ′

��

(λy .M[[x\N]]) (λy .M[[x\N ′]])

Our objectives :
• find a confluent extention of the weak λ-calculus,
• re-study standard properties (FD, standardization, etc),
• find a theory of sharing in this calculus

[Wadsworth, Shivers-Wand]

The weak λ-calculus (1/4)

λ-calculus without the ξ-rule

(ξ)
M → N

λx .M → λx .N

is not confluent

(λx .λy .M)N //

��

(λx .λy .M)N ′

��

(λy .M[[x\N]]) (λy .M[[x\N ′]])

Our objectives :
• find a confluent extention of the weak λ-calculus,
• re-study standard properties (FD, standardization, etc),
• find a theory of sharing in this calculus

[Wadsworth, Shivers-Wand]

The weak λ-calculus (2/4)

weakening the ξ-rule :

(ξ′)
M R

→ N x 6∈ R

λx .M R
→ λx .N

(R is the redex contracted in M R
→ N)

redexes with free variables not bound in M can be
contracted

now
(λx .λy .M)N //

��

(λx .λy .M)N ′

��

(λy .M[[x\N]]) // // (λy .M[[x\N ′]])

The weak λ-calculus (3/4)

λ-terms
M, N ::= x | MN | λx .M

β-reduction is

(β) R = (λx .M)N R
→ M[[x\N]]

Substitution M[[x\N]] defined as usual :

x [[x\P]] = N
y [[x\P]] = y

(MN)[[x\P]] = M[[x\P]] N[[x\P]]
(λy .M)[[x\P]] = λy .M[[x\P]] (x 6= y , y 6∈ P)

The weak λ-calculus (4/4)

context rules

(ν)
M R

→ M ′

MN R
→ M ′N

(µ)
N R

→ N ′

MN R
→ MN ′

(ξ′)
M R

→ M ′ x 6∈ R

λx .M R
→ λx .M ′

extra rules
• unlabelling

(w)
M R

→ N
M → N

• M →→ N for transitive and reflexive closure

Properties of the weak λ-calculus (1/2)

Theorem 1 [Church-Rosser] The weak λ-calculus is confluent.
Proof: Standard Tait–Martin-Lof proof. 2

residuals of disjoint redexes are disjoint.

• (λx .Ix)(Jy) with I, J = λx .x .
• In strong λ-calculus, the two disjoint Ix and Jy redexes

have nested residuals :

(λx .Ix)(Jy) → I(Jy)

• impossible in weak λ-calculus.

Finite developments theorem is easy to prove.

Properties of the weak λ-calculus (2/2)

standard reductions

M = M0 → M1 → . . . Mn = N (n ≥ 0)

∀i .∀j . 0 ≤ i < j < n, then Rj is not a residual of a redex
internal to or to the left of the Ri .

We write M
st

// // N

Theorem 2 [Standardization] If M →→ M ′, then M
st

// // M ′.

Normalization strategy to the “best” normal form
(normal reduction is weak until abstractions).

Other theories of weak and strong λ-calculus

weak explicit substitutions with closures

Hindley’s rule

(σ)
N → N ′

M[[x\N]] → M[[x\N ′]]

computational monads

Ariola, et al ; Launchbury

• explicit substitutions (not confluent, non normalizable)

• classic λ-calculus (confluent, normalizable, complex theory
of sharing)

Sharing in the λ-calculus (1/5)

difficult in classical λ-calculus
⇒ interaction nets + geometry of interaction

not elementary recursive

Sharing in the λ-calculus (2/5)

Take (λx .k(xa)(xb))(λy .(Iy)) → k(•a)(•b) where • = λy .(Iy)

in the classical λ-calculus,

• sharing is complex because of sharing of functions
• sharing of subcontexts
• sharing of boxes

in weak λ-calculus,
• one cannot contract redexes whose free variables are

bound in surrounding context
• sharing of subterms
• sharing of trees

Sharing in the λ-calculus (3/5)

find a confluent theory of sharing

sharing = labelling
⇒ find a confluent labelled λ-calculus.

Sharing in the λ-calculus (4/5)

Terms :

U, V ::= α :X labeled term
X , Y ::= S | U clipped or labeled term
S, T ::= x | UV | λx .U clipped term

α, β ::= a | dα′e | bα′c labels
α′, β′ ::= α1α2 · · ·αn (n > 0) compound labels

Reduction

(`) (α′ · λx .U)V → dα′e :U [[x \ bα′c :V]]

where
α1α2 · · ·αn · S = α1 :α2 : · · ·αn :S

Sharing in the λ-calculus (5/5)

Context rules

(ν)
U → U ′

UV → U ′V
(λ)

X → X ′

α : X → α :X ′

(µ)
V → V ′

UV → UV ′
(ξ)

U → U ′

λx .U → λx .U ′

Graphically

α

x

λx

x

M

N

→

N

αα

α

M

N

Sharing in the weak λ-calculus (1/5)

Terms :

U, V ::= α : X labeled term
X , Y ::= S | U clipped or labeled term
S, T ::= x | UV | λx .U clipped term

α, β ::= a | dα′e | bα′c | [α′, β] | 〈α′, β〉 labels
α′, β′ ::= α1α2 · · ·αn (n > 0) compound labels

Reduction

(`) R = (α′ · λx .U)V R
→ dα′e : (α′©x U)[[x \ bα′c : V]]

where
α1α2 · · ·αn · S = α1 :α2 : · · ·αn :S

Sharing in the weak λ-calculus (2/5)
Context rules

(ν)
U R

→ U ′

UV R
→ U ′V

(λ)
X R

→ X ′

α :X R
→ α : X ′

(µ)
V R

→ V ′

UV R
→ UV ′

(ξ′)
U R

→ U ′ x 6∈ R

λx .U R
→ λx .U ′

Graphically

N

x

λx

x

λx

x

M

N

α

x

M

→

N

αα

α

M

N N

M

N

Sharing in the weak λ-calculus (3/5)

Diffusion

α′©x X = X if x 6∈ X

α′©x x = x

α′©x λy .U = λy . α′©x U if x ∈ λy .U
α′©x β :X = [α′, β] :α′©x X if x ∈ X

tagging

α′©x UV = (α′©x U α′©x V) if x ∈ U
α′©x UV = (〈α′, U〉 α′©x V) if x 6∈ U and x ∈ V

marking

〈α′, β : X 〉 = 〈α′, β〉 : X

Sharing in the weak λ-calculus (4/5)

Diffusion in R = (α′ · λx .U)V R
→ dα′e : (α′©x U)[[x \ bα′c :V]]

“tagging” paths to occurences of free variable x .
“marking” redexes unleashed by reduction of R.

• created redexes by contraction of R are tagged or marked
by α′. They can also contain dα′e or bα′c.

• residual of redexes with name α′ are also named α′.
• “marking” is necessary in following example :

R = (λx .Ix)y , where I = λu.u.
Then Ix is not a redex in (λx .Ix)y ,
but it becomes redex Iy after contracting R.

Sharing in the weak λ-calculus (5/5)

Lemma 1 If X R
→ X ′ and x 6∈ R, then α′©x X → α′©x X ′

Lemma 2 If U → U ′, then X [[x\U]] →→ X [[x\U ′]]

Theorem 3 [Church-Rosser] The weak labeled λ-calculus is
confluent.
Proof: By the Tait–Martin-Lof method. 2

Sharing of subterms (1/4)

λ-terms are represented by dags,

labels represent addresses in dags,

at beginning no sharing, all addresses of subterms are
distinct.

Notation

Init(U) when every subterm of U is labeled with a distinct letter
(a, b, c, . . .).

Invariant 1 P(W) holds iff, for any couple of subterms α :X
and β :Y such that α ' β, we have X = Y .

Theorem 4 Let Init(U) and U =⇒=⇒ V , then P(V).

Sharing of subterms (2/4)

α ' β when α = β up to marking

U α
′

=⇒ V when all redexes of name α′ are contracted in U,
result is V .

where

a ' a
dα′e ' dα′e bα′c ' bα′c
β ' γ ⇒ [α′, β] ' [α′, γ] β ' γ ⇒ 〈α′, β〉 ' 〈α′, γ〉
β ' γ ⇒ β ' 〈α′, γ〉 β ' γ ⇒ 〈α′, β〉 ' γ

Lemma 3 If X R
→ Y and redex S in Y is created by this

reduction step, then name(R) ≺ name(S).

α′ ≺ dα′e α′ ≺ bα′c α′ ≺ [α′, β] α′ ≺ 〈α′, β〉

α′ ≺ βi ⇒ α′ ≺ β1 . . . βn α′ ≺ β′ ≺ γ′ ⇒ α′ ≺ γ′

Sharing of subterms (3/4)

interesting proof, with 4 invariants

Invariant 2 Q(W) holds iff we have α′ 6≺ β for every redex R
with name α′ and any subterm β :X in W .
Invariant 3 R(W) holds iff for any clipped subterm UV in W ,
we have either U = a :X , or U = [α′, β] :X , or U = 〈α′, β〉 :X .
Invariant 4 S(W) holds iff, for any application subterms
β : (α :X)U and γ : (α : Y)V , we have β ' γ.

Lemma 4 If Q(W) and W
γ
′

=⇒ W ′, then Q(W ′).
Lemma 5 If R(W) and W → W ′, then R(W ′).

Lemma 6 If P(W) ∧Q(W) ∧R(W) ∧ S(W) and W
γ
′

=⇒ W ′,
then S(W ′).

Lemma 7 If P(W) ∧Q(W) ∧R(W) ∧ S(W) and W
γ
′

=⇒ W ′,
then P(W ′).

Sharing of subterms (4/4)

labeled λ-calculus corresponds to Wadsworth’s phD (ch.4)
2nd method

• diffusion = copying
• labels = adresses
• calculus is confluent

how to check x ∈ U efficiently ?
• Shivers-Wand’s method (bottom-up copying from bound

variables to root of function bodies.
• our method models slightly more shared strategy since not

recursively copying binders met on path to root of function
bodies.

• compiling this check is not easy since sets of variables may
change during computation.

• similar to full lazyness (PJ, Hugues), but without super
combinators.

Sharing of subterms (4/4)

labeled λ-calculus corresponds to Wadsworth’s phD (ch.4)
2nd method

• diffusion = copying
• labels = adresses
• calculus is confluent

how to check x ∈ U efficiently ?
• Shivers-Wand’s method (bottom-up copying from bound

variables to root of function bodies.
• our method models slightly more shared strategy since not

recursively copying binders met on path to root of function
bodies.

• compiling this check is not easy since sets of variables may
change during computation.

• similar to full lazyness (PJ, Hugues), but without super
combinators.

Conclusion

re-do all theory of optimal reductions,

links with supercombinators and other compiler
techniques,

weak λ-calculus desserves a theory

theory simpler than for TRS

Open problems

OBJECTIVE

Final remarks

	The weak -calculus
	Properties of the weak -calculus
	Sharing in the -calculus
	Sharing in the weak -calculus
	Sharing of subterms
	Conclusion

