Confluence properties of Weak and Strong Calculi
of Explicit Substitutions

Pierre-Louis Curien*
Thérese Hardint
Jean-Jacques Lévyt

July 24, 1991

Abstract

Categorical combinators [12, 21, 43] and more recently Ao-calculus
[1, 23], have been introduced to provide an explicit treatment of substi-
tutions in the A-calculus. We reintroduce here the ingredients of these
calculi in a self-contained and stepwise way, with a special emphasis
on confluence properties. The main new results of the paper w.r.t.
[12, 21, 1, 23] are the following:

1. We present a confluent weak calculus of substitutions, where no
variable clashes can be feared.
2. We solve a conjecture raised in [1]: Ao-calculus is not confluent

(it is confluent on ground terms only).

This unfortunate result is “repaired” by presenting a confluent ver-
sion of Ao-calculus, named the AEnv-calculus in [23], called here the
confluent Ao-calculus.

1 Introduction

Weak reduction in A-calculus is defined by forbidding reduction under A,
that is by forbidding the following £-rule:

a—b

&)

Az.a — Ax.b

*Ecole Normale Supérieure, Paris
TINRIA, Rocquencourt, and Conservatoire National des Arts et Métiers, Paris
fINRIA, Rocquencourt

The following rules remain:

(8) (Az.a)b — af{b/x}

a—>a,'

) ab — a’'b
b— b
(1) ab — ab’

Most implementations of A-calculus based languages “perform” only
weak reductions: functions are considered as values, and are only evalu-
ated when arguments are fed in. For instance, weak reduction is powerful
enough to evaluate (in normal order) normal forms of closed expressions of
basic types in typed functional programming languages like ML or Miranda,
as we briefly explain now.

We adopt for simplicity the minimum setting for the discussion to make
sense, and assume that the language has only one basic type, and one con-
stant x of this basic type. Call weak head normal form a term of the form
Az.a, zay ...a, (n > 0) or x. A term not having one of these forms is of the
form (Az.a)ba; ...a, (n > 0). Its leftmost-outermost redex can be reduced
by the weak rules (even without the use of). In other words, as long as
a weak head normal form has not been reached, leftmost-outermost reduc-
tion is weak. Now notice that a closed expression of basic type cannot be a
weak head normal form unless it is x, since Az.a has a functional type, and
xaj ...ay, is open. Hence the leftmost-outermost evaluation of a closed (and
terminating) expression of basic type to x is weak. The relevance of normal
reduction to weak head normal form is enhanced by the well known result,
proved using the standardization theorem , that a A-term has a (weak) head
normal form iff its normal order reduction reaches a (weak) head normal
form.

So far, weak reduction is nice. But it is not confluent. Take a = (Az.z)z,
b=z. Then

(Ay.Az.y)a — Az.a
(Ay.Az.y)a — (Ay.Az.y)b — Ax.b

The point is that we have forbidden reduction under A, preventing to
further reduce Azx.a, but we have not forbidden substitution under A, which
has “frozen” a as a side-effect of the reduction (Ay.Az.y)a — Az.a. Because
of the lack of confluence, only special (call-by-value and call-by-name) weak
strategies have been studied in the literature (see e.g. [2, 37]).

We take here our point of departure towards explicit substitutions. In
order to “implement” the idea of “no substitution under \”, we have to
introduce functional closures, i.e. pairs consisting of an abstraction Az.a
and a substitution (b/y). We use (provisionally) the notation (Az.a)[b/y],
and warn the reader that here [] does not denote as usual a A-term which is
the result of an operation on A-terms, but a new operator of the syntax. We
reserve {} to denote the substitution viewed as an operation from A-terms
to A-terms. The substitution process is carried as usual, with the exception
that now substitution stops before an abstraction, giving instead rise to a
closure. Let us reformulate the above critical pair in this new setting:

(Ay-Az.y)a — (Az.y)a/y] — (Az.y)[b/y]
Ay Az.y)a — (Ay.Az.y)b — (Az.y)[b/y]

The example suggests that confluence can be recovered in this way and it is
indeed the case (see later in the introduction, and section 2).

The (-axiom and the new syntax (Az.a)[b/y] are not sufficient. If we
start from (Ay.Az.y)ab, the first step yields ((Az.y)[a/y])b, which is not a
redex. This suggests to write now (3 as:

(Az.a)ls])b — al(b/z) - 5]

Usual 8 may be recovered by introducing a dummy substitution id and
writing everywhere (Az.a)[id] in place of Az.a. Alternatively, one may en-
close the whole expression a to be evaluated in a closure a[id]. Thus a
substitution is either id or a cons, i.e. (a/z) - s for some term a and substi-
tution s.

So far, we have a (weak) calculus with “semi-explicit” substitutions,
where substitution is explicit in functional closures, but remains an operation
on terms which is defined apart. (This setting is also used in [6]). It yields
a confluent calculus, as will be shown in section 2. We take a natural step
further, by considering substitution explicitly in the syntax, together with
specific rules describing how it is performed. In other words, we decompose
0 into a “formal” rule

(Beta’) ((Az.a)[s])b — a[(b/x) - s]

and rules describing how substitution is performed (see section 2).
Explicit (or semi-explicit) substitutions have another advantage: not
only they ensure Church-Rosser in the weak setting, but also they allow

to get away with name clashes. Recall that (-reduction may force a-
conversions to prevent variable captures. The minimal example of this is:
(AzAy.z)y — Az.y, where a-conversion A\y.z =, Az.z has to be performed
before the reduction. To be more precise, a-conversion was needed before
substitution of y could be carried under A\. But we have precisely prevented
such substitutions to be performed: then no clash has to be feared, and no
a-conversion has ever to be performed.

In section 2, we describe two weak calculi of explicit substitutions. The
first one, which is weaker than the second, is presented by a conditional
theory (in the sense that some inference rules are forbidden, just like &
above). The second one is a rewriting system in the usual sense. The
removal of the restriction on inferences provokes critical pairs, which are
solved at the price of adding a new operator: composition of substitutions.
We call these two calculi conditional weak, and weak calculus, respectively.

In section 3, we address strong reduction. Here we have to move from the
usual notation of A-calculus to De Bruijn’s notation, where variable names
are replaced by numbers recording their binding depth. Indeed we do not
yet know of any satisfactory treatment of explicit substitution keeping the
usual notation of variables. The De Bruijn’s notation provides an automatic
way of dealing with name clashes, by means of an additional operator, T,
and of specific rules for it. The resulting calculus is Ao-calculus as consid-
ered in [1]. In [1] we proved that this calculus is ground confluent, i.e. it is
confluent on the subset of ground terms. Notice that this subset includes all
A-terms, since variables of the A-calculus act as constants in our explicit cal-
culi. We emphasize this by calling metavariables the term and substitution
variables. Also, to avoid confusion, we shall reserve “closed” for the usual
notion of closed A-term (no free variable) and “ground” for the metavariable
free terms/substitutions.

Ao-calculus with metavariables has not even the local confluence prop-
erty. It may be recovered by adding rules, including a surjective pairing rule.
We call Aogp the resulting theory. We prove here a negative result which
was conjectured in [1]: Aogp is not confluent. We adapt the techniques
of [29] and [21] to show our non confluence result. The adaptation is two-
fold: first we exhibit a simpler counterexample leading to a simpler proof
of non confluence of A-calculus + surjective pairing, then we “transfer” this
example to Ao-calculus.

In section 4, we recover full confluence: in order to prevent some critical
pairs, we introduce a new operator {} when substitution crosses lambda
abtractions. This trick, originally in [23], not only helps for confluence, but

also simplifies proofs of termination, which are very complicated in the case
of the previous Ao-calculus. The new calculus, called AEnv in [23], captures
the power of the full A-calculus and is named here the confluent Ao-calculus.

The confluence of weak Ao-calculus, the ground confluence of Ao-
calculus, the non-confluence of Aogp-calculus are all proved using the same
method, which was identified in [21], where it was used for categorical
combinators!. We shall describe it now, since it serves as a common nerve
to a large part of the paper. It can be formulated for any abstract reduction
system (i.e. relation) R.

Lemma 1.1 (Interpretation lemma) Let R = Ry U Ry be the union of
two relations, R1 being confluent and strongly normalizing. We denote by
Ri(a) the Ri-normal form of a. Suppose that there is some relation R’ on
R1i-normal forms satisfying:

/ * R R'*
RICR* and (a—=b = Ri(a) = Ri(b)
Then R' is confluent iff R is confluent.?

* *
Proof: Suppose first that R’ is confluent. Let u R™ 4 and u B u". Then

by assumption Rq(u) g* Ri(u') and Ry(u) E’)* R1(u"). By confluence of
R', there exists v s.t. Ry(u') R v and Rq(u") R v. Since R' C R*, we
have o/ 55 Ry(u) R v, and similarly u" R* v, hence R is confluent.

Suppose conversely that R is confluent. Let u E;* u' and u E’)* u”. By
confluence of R, there exists v s.t. o’ g* v and u" 7_2)* v. Then, by assump-
tion, we have: u' = Rq(u') R R1(v) and u” R Ri(v), and the diagram is
closed.

Basic familiarity with A-calculus and term rewriting systems is assumed,
but it is not necessary that the reader be acquainted with previous work on
explicit substitutions or categorical combinators.

2 Weak calculi

In this section, we shall first define the conditional weak Ao-calculus which
has no critical pairs, and is thus confluent (2.1). Then, in order to get a

'The method has been used independently elsewhere, e.g. in [7].
In fact, all what is needed from R; is a mapping from any a to some canonical form

Ri(a), see [21].

standard equational theory, we shall remove the conditions and solve critical
pairs at the price of adding a new composition operation on substitutions.
The resulting calculus is confluent too (2.3). We shall discuss a name-free
version of weak Ao-calculus 2.4. The computing powers of conditional weak
Ao-calculus and weak Ao-calculus are discussed (2.2, 2.5 respectively).

2.1 Conditional Weak M\o-calculus

We first summarize the syntax introduced in section 1, with the only differ-
ence that we accept abstractions as terms, in order to allow A-terms to form
a subset of the explicit (conditional weak) calculus.

Terms a = X|z|ab|Az.a|a[s]
Substitutions s:u=x|id|(a/z)-s

X and x are term and substitution (meta) variables. A term of the form
a[s] is called a closure. The variables x of A-calculus act here as constants,
or “labels”. The terms and substitutions of the above syntax are called
Ao-terms, or conditional weak Ao-terms. We define the conditional weak
theory in figure 1.

It is best to point out which inference rules are mot included in the
system: we do not allow reduction under A, nor reduction in the term part
a of a closure a[s]. The last restriction is actually the only important one,
because it prevents any critical pairs. The following result also holds when
reduction under A is allowed.

Proposition 2.1 Aoy, is confluent.

Proof: There are no critical pairs. Thus the system is orthogonal in an
extended sense, which is defined and studied in [35]. The reader may want
to work out a direct proof by defining a notion of parallel reduction in the
most obvious way, and by showing that the diamond property holds for this
parallel reduction.

2.2 Computing power of conditional weak Ao-calculus

Conditional weak Ao-calculus is powerful enough to compute (in normal
order) weak head normal forms of terms a[id] whenever a A-term a has a
weak head normal form. So it can be used to compute normal forms of
closed expressions of basic type of, say ML, as quoted in the introduction.

(Beta’) ((Az.a)[s]) b — a[(b/z) - 3]
(App) (ab)[s] — (as]) (b[s])
(Varld) z[id] — z
(VarCons) z[(a/z) - s] — a
(ShiftCons) yl(a/z) - 5] = yls] (z #y)
ab — a'b
b— b
ab — ab’
(a/z) -5 = (a'/z) -5
(a/z) -5 — (a/x)- s

S—>SI

a[s] — a[s’]

Figure 1: The conditional weak theory Ao,

We shall prove this in two stages. In this subsection, we show that the
conditional weak normal order strategy (defined below), if it terminates,
does terminate with a weak head normal form (defined below). In 3.3 we
shall show that this strategy terminates if and only if a naturally associated
weak head normal strategy in classical A-calculus terminates.

We first remark that the rules are too poor to evaluate any conditional
weak Ao-term. Suppose for example that we start with (Az.a)b. The root is
not a Beta-redex, so it cannot be reduced. If we start with ((Az.a)[s] b)[t],
then the restriction on inferences disallows the reduction of ((Az.a)[s])b, so
the only choice is the reduction of the root. The reduct ((Az.a)[s|[t]) b[t]
is not a Beta-redex, and, worse, cannot become a Beta-redex (this will be
remedied to in the next subsection). These examples justify that we focus
on a restricted syntax in order to make operational sense of the conditional
weak Ao-calculus.

We first specify normal order evaluation by the following set of rules:

(Az.a)[s])b % al(b/z) -]
(ab)[s] " (als])(bls)

x[id] &'
z[(a/z) - s] = a
yl(a/z) - s] =" yls]

cwn
a — a

cuwn
ab = d'b

Then we specify a restricted syntax (we make use of an auxiliary syntax:
A-terms!)

Terms a= x| M[s]|a(M]s])
Substitutions s = id|(M][t]/z) s
A — terms M := x| MN|x.M

In particular, if M is a A-term, then M[id] is a restricted term.

Proposition 2.2 1. If f is a term/substitution of the restricted syntaz,
and f 5" f!, then f' is also a term/substitution of the restricted syn-
tazx.

2. If a is an Sirreducible term of the restricted syntaz, then it
is a weak head normal form, i.e. has the form (Ax.M)[s] or

o(Mi[s1)) ... (My[sn)).

Proof: We prove the first part of the statement by induction on the size of
f-

1. If f = z[id], then f’ = x is restricted.

2. If f = z[(a/z)-s], then, since f is restricted, a = f’ must be a restricted
term.

3. If f = y[(a/x) - s], then, since f is restricted, s must be restricted,
hence f' = y[s] is restricted.

4. If f = (M N)][s], then f’ = M|[s|N|s], which is restricted by definition.
5. If f = ((Az.M'")[s])M[t], then f' = M'[(M][t]/x) - s] is also restricted.
6. If f = aM|[s] =" o’ M[s], then the result follows by induction.

We now prove the second part of the statement, also by induction on the
size of a, and by cases on the structure of a.

1. If a = M|s], then, since a is irreducible, M cannot be an application
nor a variable. Hence M is an abstraction and a is a weak head normal
form.

2. If a = x, then it is a weak head normal form.

3. If a = b(M][s]), then by induction b is a weak head normal form.
b = (Az.M)[t] is impossible since a is irreducible. Hence b = z(Mi[s1])
... (My[sn]) for some M;[s1],..., My,[sy], which entails that also a =
x(M[s1]) ... (Mpy[sn])(M]s]) is a weak head normal form.

2.3 Weak Mo-calculus

Our next step is to remove the restrictions to the inference rules in the
previous theory. The resulting system admits one critical pair, which we
now examine:

((Az.a)[s])b)[t] — a[(b/z) - s][t]
(((Az.a)[s])b)[t] — ((Az.a)s][t])(b[t])
The rules introduced so far do not allow to solve this critical pair. We
cannot even recognize a Beta-redex at the end of the second reduction. This
suggests to introduce a composition operation and “associativity” rules. So
we now assume that if s, ¢ are substitutions, then sot is also a substitution,
and we add to the theory the following rules:
(Clos) a[s][t] — a[s o]
(AssEnv) (s1o083)0s3— s10(s9083)

This allows to continue the two branches:

a[(b/z) - s][t] — a[((b/z) - 5) 0 1]
((Az.a)[s][E]) (B[t]) — ((Az.a)[s o 2])(b[¢]) — al(b]t]/z) - (s 0 2)]

What is now missing is a distribution rule:
(MapEnv) ((a/z)-s)ot— (aft]/x)-(sot)

Also, the superposition of Varld and Clos yields a critical pair, which
can be solved if the left identity rule is added to the system:

(IdL) idos—s

(Beta’) (Az.a)[s]) b — a[(b/z) - s]

(App) (ab)[s] — (a[s]) (b[s])

(Varld) z[id] — =z

(VarCons) z[(a/z)-s] — a

(ShifiCons) yl(a/a)-s] — s vty
(Clos) als][t] — alsot]

(ASSE?’M)) (81 (o] 82) O 83 — 810 (82 e} 83)

(IdL) idos — s

(MapEnv) ((a/z)-s)ot — (a[t]/z)-(sot)

Figure 2: The weak theory Aoy,

Collecting all this material, we now have the following syntax:

Terms a = X|z|ab|(Az.a)[s]|a[s]
Substitutions s:=x|id|(a/z) s|sot

We define the weak theory Aoy, in figure 2. The subtheory consisting of all
the rules except Beta’is called o,,. The terms and substitutions of the above
syntax are called Aoy-terms, or weak Ao-terms. Remark that abstractions
are taken into account only with substitutions, as in the restricted syntax
of section 2.2. A standard A-term M can be encoded by replacing any
abstraction subterm Az.M by (Az.M)[id] (see section 2.5).

The proof of confluence is more involved than in the conditional weak
system, due to the presence of critical pairs. Parallelization cannot be used
rightaway (the problem is with the associativity rules, see [21]). We shall
make use of the interpretation method. We divide the theory Ao, in two
parts: the rule Beta’ on one side, and the set o, of all the other rules on
the other side.

The confluence proof relies on three lemmas, the two first of which have
an interest of their own.

Lemma 2.3 o, is confluent and strongly normalizing.

Proof: Local confluence is easily checked. Strong normalization is estab-
lished using a rpo (recursive path ordering) [18, 27], based on “[|” and “o”

10

with an equal precedence, greater than the application and “”.

We shall denote 0,,(f) the o,-normal form of f, where f stands for a
term or a substitution (and shall proceed similarly with subsequent calculi).
It is easy to check that the form of o,-normal forms is:

Terms a = X|z|ab|(Az.a)[s]|X[s]
Substitutions s:=x|id|(a/z) s|xos
Next we define the following reduction 8, between o,-normal forms: let
!
f By g when f Beta f' and o, (f") = g, for some f'.
The ground o,-normal forms are exactly the semi-explicit A-terms of [6],
and it is easily checked that on ground terms 3, is exactly the weak notion

of B reduction considered by [6]. We can use the parallelization method to
prove the confluence of (,,.

Lemma 2.4 The relation By s confluent on oy-normal forms.

Proof: We shall abbreviate o,, into ¢ in the proof. We define the following
relation = on terms/substitutions in o-normal form:

f=1r
a=d b=V s=4
Cwa)F] B = o@[F/2) 5]
a=>a b=V
ab= a't’
a=>a s=5+
(Az.a)[s] = (Az.d')[s]
s=s
X[s] = X[¢]
a=>ad s=5s
(a/z) s = (d/z)-§
s= s

xos=xos

*
It is clear that 'H—w>§=>§ﬂ—w> . Thus it is enough to show that = satisfies the

diamond property. We have to prove that if f = f’ and f = f”, then
f' = g and f" = g for some g. We prove this by induction on the size of f,
and by cases.

11

If f = ab, ab = a't’ and ab = a"b", where a = da’, b = b, a = a” and
b = b", then by induction there exists a” and " s.t. a' = d", a" = da",
bl = b”/ and b/l = b/” hence a/b/ = al//b/l/ and a/lb// = a/l/bl/l

, .

If f=(a/z)- s or f=(Az.a)[s], then we reason as in the previous case.
If f =X[s] or f =xo0s, then reductions take place in s, and the result also
follows by induction.

We are left with two cases, where f = ((Az.a)[t])b, f' = o(d'[(V' /x) - t'])
and @ = a/, b = b and t = t'. Either f” = o(a"[(d"/z) - t"]) or f" =
((Az.a")[t"])b", where a = a”, b = b and t = t". By induction there exist
a”, b and " st. o = a", a" = ", ¥ = b B = b ' = ¢" and
t" = t"". We can conclude using the following claim:

Claim: Let a, s and ¢t be o-normal forms. If a = a’ and s = s, then
o(als]) = o(d[s']). If t = ¢’ and s = &', then o(tos) = o(t' 0 §').

We prove the two parts of the claim together, by induction on the size
of f, where f is either a or t, and by cases on the last inference rule used

to derive a = a’ or t = t'. We do not handle the reflexivity case f = f
explicitly: but the reader may check that the proof also deals with this case.

1. If a = z and s = (b/x) - s1, then o’ = z and s’ = (¥//z) - s| where
b=V and s; = s|. Hence o(a[s]) = b= b = o(a'[¢]).

2. Ifa =y and s = (b/x)-s1, then ' =y and s’ = (b'/z) s} where b = ¥/
and s; = s{. Hence o(a[s]) = y[s1] = y[s|] = o(d'[¢]).

3. If a = X, then @’ =X, and o(a[s]) = X[s] = X[s'] = o(d'[5']).

4. If a = ajaz, ' = ald}, a1 = d| and ay = df), then o(a[s]) =
(o(a1[s]))(o(az[s])). By induction we have both o(ay[s]) = o(a}[s])
and o(az[s]) = o(ah[s']), whence the result follows.

5. If a = X[t1], then o’ = X[t}] and ¢; = ¢}|. We have o(a[s]) = X[o(t1 0 5)]
and o(a'[s']) = X[o(t} 0s")]. By induction we have o(t;0s) = o(t|os’),
whence the result.

6. If a = (Az.ay1)[t1], then o' = (Az.a))[t}], a1 = d} and ¢, = ¢|. We
have o(a[s]) = (Az.a1)[o(t1 0 s)] and o(a'[s']) = (Az.a))[o(t] o s")]. We
conclude as in the previous case.

7. If a = ((Az.a1)[t1])b1, @' = o(a)[(b)/z) - t]), a1 = a, by = b and
t1 = t}, then o(a[s]) = ((Az.a1)[o(ts o s)])o(b1[s]) and o(d[s']) =

12

o(ay[(by[s]/z)-(t1 0s8")]) = o(ai[(o(by[s'])/2)-o(t 0s)]) . By induction
we have o(b1[s]) = o(b|[s']) and o(t105) = o(t|0s’), whence the result.

8. The case t = x is similar to the case a = X.
9. Ift = id, then ' = id, and o(tos) = s = s =o(t' 0o §).
10. The case t = (a1/x) - t1 is similar to the case a = ajas.

11. The case t = x o t; is similar to the case a = x[t1].

O

Lemma 2.5 Let f be a weak Ao term/substitution. If f Agy f!, then
ow(f) =%, ow(f’)-

Proof: The statement is obvious if f = f’. We need only to concentrate
on Beta’. The proof is by induction on (depth(f), size(f)) (see Proposition
3.8). We omit the case inspection, which is similar to (and simpler than)
the case inspection for the proof of Proposition 3.8.

Proposition 2.6 Ao, is confluent.

Proof: By the interpretation lemma of section 1 and previous lemmas.

2.4 Namefree weak \o-calculus

We define now an entirely “isomorphic” name-free version of weak Ao-
calculus. We could do it as well for conditional weak Ao-calculus. We
refer to [1, 12] for a smooth introduction to De Bruijn’s notation. The idea
is to replace variable names by a natural number recording their binding
height. These natural numbers lend themselves to a very simple operational
interpretation: they correspond to a position in an environment. After
these short hints, we now present the following namefree syntax for weak
Ao-calculus:

Terms a = X|n|ab|(Aa)[s]|als]

Substitutions s:=x|id|a-s|sot

(where n ranges over nonzero natural numbers) and the following corre-
sponding rewriting system:

13

(Beta’) ((Aa)[s]) b — alb- s]

(App) (ab)[s] — (als]) (bs])
(Varld) nfid] > n
(VarCons) 1la-s] —a
(ShiftCons) n+ifa - s] — nls]
(Clos) a[s][t] — a[s o]

(IdL) idos— s
(AssEnv) (s1089) 053 — s10(sg0s53)
(MapEnv) (a-s)ot—aft]-(sot)

In order to formulate the “isomorphism” between weak Ao-calculus and
its name-free version, we need to define a translation from Ao-calculus to
the name-free weak calculus.

We suppose that the variables of the A-calculus are denumerable and
enumerated by the sequence x;...x,.... The translation function takes a
term u and a finite list of variables L (which we denote as a word), and yields
a namefree term ay. L is called the formal environment of the translation.

The translation uses an auxiliary function [, defined on substitutions. It
determines the “output” formal environment of a substitution, to be used
in the translation of a closure or a substitution.

l(id) =€ (the empty word)
l((a/z) - s) = zl(s)
l(sot)=1(s)l(t)

Here is the translation:

z.=1i if x=ux;

Ty =1
rTL=n zT#Y
ZTyr, =n+l

((Lb)L = aLbL
(Az.a), = Magr)
als]r, = ay5)z[s1]
id, = id

((a/z)-s)L =ar - st
(sot)r = sy otrL

We have purposedly translated Aa rather than the legal weak terms
(Aa)[s], the translation of which can be recovered by first translating Aa,
and then s. In this way, our translation is ready for use in the strong setting

14

of section 3. We have translated only ground terms, but the translation
extends straightforwardly to all terms by setting X; = X and x;, = x. As an
example, the reader may check that (Az;.z1z9), is A(13).

The total correspondence between weak Ao-calculus and namefree weak
Ao-calculus is given by the next proposition.

Proposition 2.7 Let f be a weak Ao-term/substitution. If f weakly reduces
to g, then fr weakly reduces to gr. If f1 weakly reduces to h, then there exists
a unique weak Ao-term g s.t. f weakly reduces to g and h = gy,.

Proof: We do not give all the details, but choose sample cases.

L If f = ((Az.a)[s])b and g = a[(b/z) - 5], then f, = (Aagy(s)p)[sL]bL —
agy(s)L[br - s1] = gr.-

2. If f = ((a/x)-s)ot and g = (a[t]/x) - (sot), then fr = (ay)L - sisyz) ©
tr — ayyrlte] - (siyr ote) = gr-

3. If f =y[(a/z)-s] and g = y[s], then f1, = yyyrlar-sL] — ysolse] =
gr- Conversely, if f is such that f;, = 1[a-s], then f must be z[(a’/y)-s]
for some a’, s'. But = # y is impossible as otherwise f; would have

the formn+1[...]. Hence f — d/, and o/, = a.

2.5 Computing power of weak Ao-calculus

This subsection parallels subsection 2.2. By the results of the previous
subsection, we can freely move to a namefree notation.
Weak normal Ao reduction =5 is defined by:

15

((Aa)[s))b = alb - 5]
a™%d
ab ™% a'b
n[id) &5 n
tla-s] % a
n+ifa - 5] 2% n[s]
wn

s — S

n[s] %5 n[s']

(ab)[s] = (als])(b]s])
als)1) 22 als o
(a-s)ot 5 aft]-(sot)

(SOSI)OS”%SO(SIOS”)

We adapt from Proposition 2.2 the definition of weak head normal. A term
in weak head normal form is a term of the form (Aa)[s] or nay...am. A
substitution is in weak head normal form if it is either #d or a cons, i.e. if it
is not a composition. We first show that reductions may stop only on weak
head normal forms.

Proposition 2.8 Let f be a weak Ao-term, not in weak head normal form.
Then there is always some f' such that f = f'.

Proof: We prove the statement by induction on the size of f, and by cases
on the definition of =5. Clearly, we need to consider only the inference cases.

1. If f = ab is not a Beta-redex, then a cannot be a weak head normal
form, since f is not a weak head normal form. The result follows by
induction.

2. If f = 1[s] is neither a Varld nor a VarCons redex, then s is not a
weak head normal form, and the result follows by induction.

Of course this proof works because each term and substitution which is not

in weak head normal form matches one (and only one) of the rules defining
wn

—)_D

In order to evaluate a A-term (in De Bruijn notation), one has to replace
all abstraction subterms Aa by (Aa)[id]. We leave the reader check that for

16

all ground Ao-terms a, a =, alid] is provable (cf. claim in Lemma 3.2 and
second claim in the proof of Proposition 3.3).

Thus we have slightly different ways of encoding a A-term a to run '
or 2&: for @', we start from a[id], for 5 we start from a’ built from a as
described in the previous paragraph. These differences are inessential. The
reader may check that the only uses of Clos in a reduction from a’ will be
on terms of the form (Aa)[id][s].

The interest of = is to allow for code optimizations: one can imagine,
before running a normal order evaluation, to reduce some parts a of the
code in closures a[s|. Take for instance a = ((Aap)[id])az. Then we can first
reduce a to ai[as - id], and run =% on a1[ay - id][s]. Thus the “full power” of
Clos and =% will be used.

3 JMo-calculus

We complete the description of (namefree) Ao-calculus by adding a new
operator T which allows to handle substitutions under A (3.1), and recall
basic properties of Ao-calculus established in [1]. We then connect Ao-
calculus with classical § reduction and a-conversion (3.2). We come back to
weak reduction and prove the completeness of the normal order strategies
investigated in 2.2 and 2.5 (3.3). Finally we prove a non confluence result

(3.4).

3.1 A ground confluent strong calculus

De Bruijn’s notation allows a mechanical treatment of a-conversion. One
introduces a new operation on top of the namefree calculus of 2.4, namely
1, which is a constant substitution, introduced by the following rule:

(Abs) (Aa)[s] — A(a[l:(so1)])

We refer to [8] for the original discussion, and to [1] for quite extensive
informal operational explanations. We briefly justify it here from a different
perspective through typechecking. In [1], type systems for explicit substi-
tutions are introduced. Terms are typed as usual, and substitutions have
sequences of types as types (cf. the function I(s) above). The above left
hand side is well typed when s has type I' and Aa has type A — B in
context I' (the context assigns types to free variables). When substitution
crosses A, it goes into the context of a, which is A,T". Let A be the context

17

(Beta) (Aa)b — alb-id]
(App) @b)ls] - (als) (bls])
(Varld) 1fid] — 1

(VarCons) 1la-s] — a

(Clos) afs]lt] — a[sot]
(Abs) (a)ls] — Aalt- (so1))
(IdL) idos — 8

(Shiftld) Toid — 1
(ShiftCons) to(a-s) — s

(ASSETL’U) (81] 82) oS8z — 810 (82 o 53)
(MapEnv) (a-s)ot — aft]-(sot)

Figure 3: The theory Ao

of s, and let s’ be s after it has crossed A. Then we have to construct s’
as “going from A, A to A,I”. We have that 1 “goes from A, A to A” (the
type of the first variable of the context). 1 becomes less mysterious when
we call it second projection, “going from A, A to A”. The composition of s
and T “goes from A, A to I'”. Finally, putting things together, we have that
s'=1-(soT) “goes from A, A to A,T"”.

Once 1 has been introduced, there is no more need for an infinite pro-
vision of natural numbers, we can encode 2 by 1[1], etc... We shall assume
these encodings implicitly in the rest of the section (in particular we do not
change the name of ShiftCons).

Now we present the syntax of Ao-calculus:

Terms a:= X|1|ab|Aa|als]
Substitutions s:u=x|id|T|a-s|sot

The theory Ao is defined in figure 3. The subtheory consisting of all the rules
except Beta is called 0. The terms and substitutions of the above syntax
are called Ao-terms.

The system o is confluent and strongly normalizing. The proof of strong
normalization actually goes back to [22], in the setting of categorical com-
binators. Recently, a different proof was found [15]. The ground terms in

18

normal form are the classical A-terms (modulo the translation to De Bruijn’s
calculus, see next subsection; see also Proposition 4.10).

The theory Ao is ground confluent [1]. The method used is the interpre-
tation method (cf. section 1). We shall investigate the problem of confluence
without the restriction to ground terms in 3.4, and in section 4. For the time
being, we just point at where the restriction to ground terms appears crucial
for the confluence of Ao-calculus.

One of the three key pieces of the interpretation method consists in
*

proving o(a) LA o(b) whenever a Bett . Here B is defined on o-normal

forms as one Beta step followed by o-normalization. 3 is well named, since
for ground terms it coincides with classical § reduction, as we shall see in
the next subsection.

Consider the case where a = ((Aa1)ag)[s] and b = aq]as - id][s]. Easy

calculations yield: o(a) LA o(ailaz[s] - (s o id)]). But, for ground terms, one
can prove o(soid) = o(s) (cf. claim in Lemma 3.2 and second claim in the
proof of Proposition 3.3). So the right hand side is o(b).

In contrast, when substitution metavariables are present, o(x o id) =
x01d #, x = 0(x), hence this rule must be explicitly added to the system.
This discussion will be pursued in 3.4.

3.2 «a-conversion and (-reduction

We pause a moment and prove in detail that Ao-calculus really implements
0, and that De Bruijn’s notation acts as a quotient w.r.t. a-conversion.

Let us define the set of A-terms in De Bruijn notation (De Bruijn terms
for short) as the subset of terms generated by the clauses

Terms a::= n|ab|Aa

We need a closer look at the explicit definition of § given at the end of
last section. We defined 3 as one Beta step followed by o-normalization. It
is not immediate from this definition that g is a congruence: this needs a
proof.

Lemma 3.1 The two following relations — and —' on De Bruijn terms are
the same:

1.a—biffa*Y and b= a(b) for some b’

2. a —' b is defined by the following inference system:

19

(Aa)b —' o(a[b/x])
a—'a
ab —' a’b
b—'b a—'ad
ab—"abtl Aa—' \d

We shall denote (provisionally) this relation with (.

Proof: The proof is by induction on the structure of a. Suppose a = a;a9
and a — a'. If the Beta step takes place at the root, then a —' a’ by def-
inition. If the Beta step takes place in a;, then we have a Beja alas, with
o(a’ay) = a’. We have o(a)as) = o(a}) as, since as is a o-normal form. And
by induction, a; — o(a)) implies a; —' o(a}), which in turn by definition
implies ajas —' o(a})as = a’. The converse direction, and the abstraction
case are shown in the same way. 5

We have already defined in 2.4 a translation from named syntax to un-
named syntax, which a fortiori translates A-terms to De Bruijn terms.

We shall need a technical lemma. We write f}(s) as a shorthand for
1-(so1) (this abbreviation will become a fruitful new operation in the next

section), and #2(s) for 1(1i(s)), etc...
Lemma 3.2 Let a be a A-term. If L' has length n and z ¢ FV(a), then
ar'zr, =¢ ap L™ (1)]-

Proof: The proof is by induction on the structure of a. The variable case is
handled by easy o-calculations. The application case follows by application
of the rule App. The abstraction case a = Ax.a’ is almost as easy. We have
(Az.d')pr., = Ad;,,;. By induction we have: al;,,; =, alp,[t"T (1))
Thus, by Abs, we have

(Az.d') 21 =0 (Aapp)™ (D] = Aap [(1)] -

This concludes the proof.

The previous proposition, appropriately formulated, holds more widely
for all ground Ao-terms. In the following proposition # denotes the classical
B-reduction [3] and G, the reduction defined in lemma 3.1.

Proposition 3.3 Let ¢ be a A-term. Then c LY iff cp, Pe ¢, (for any L).
If a and b are a-interconvertible, then, for any L, ar and by, coincide.

20

Proof: For the first part of the statement (we limit ourselves to the only if
part), thanks to the lemma 3.1, it is enough to check the axiom case. We

have: ¢, = ((Az.a)b), = (AayL)bL Beta az1[br, - id]. Thus we have to prove
the following

Claim: For any A-terms a and b, and any formal environment L,
a{b/z}r = o(azL[bL - 1d]).

We prove the claim by induction on the size of a. Notice that it is enough
to show that a,p[br, - id] =5 a{b/z} L, since o is confluent and a{b/z} is in
o-normal form.

Of course, the interesting case is: a = \y.a’. We shall omit the other
cases, which are handled like in proposition 2.7. Recall the (quite involved)
definition of substitution in this case.

(Ay.a){b/x} = Az.(a'{z/y}{b/z}) (2 # x and z & FV(a') U FV (b))
We have:
(Az.(a'{z/y}{b/2}))L = Ma{z/yH{b/x}-L)
and
(My.a)or[br - id] = (Aal, 1)[bL - id] = A(ay,[1 - (br - id) 0 1]) .

Observing that a'{z/y} has the same size as @/, we can apply induction and
obtain

a,{z/y}{b/I}ZL =0 a’{z/y}zzL[sz * Zd] .
Applying induction once more, we obtain
al{z/y}mzL =0 a’ysz[z;ch . Zd] .

Putting together, and replacing z,,;, by its value, we obtain that
a'{z/y}{b/z}.1 is o-equal to ay, ;[2 - id][b,y - id]. We shall now apply
lemma 3.2 twice, to replace a;,.; by a;, o (ff (1)) and b, by b[1]. We
are reduced to check the following equality:

T (1) e (2-2d) o ((br[T]) - id) = 1- (br[T] - 1)

which follows by easy computations.
Finally, we consider the a-axiom Az.a = Ay.a{y/z}, where y &€ FV(a).
Using the claim, we have:

(Ay-a{y/a})L = Ma{y/z}yL) = MaayLlyyL - id]) -

21

Since y is not free in a, we get: azyr[yyL - 1d] =5 azr [(1)][1 - id]. We have:
(1) o(1-49d) =, 1-1d, so we are reduced to the following claim, which we
formulate with a suitable induction load:

Claim: If a is a De Bruijn term , then a[{t" (1 - 1)] =5 a (for any n).

Notice that the claim can be formulated and proved more generally for
all ground Ao-terms. We omit the proof, which is similar to the proof of 3.2.
Using the claim, we get

(My.a{y/z})L =5 Mazr[l - id]) =5 Magr) = (Az.a)L

which ends the proof. o

We need one more auxiliary function for our next statement. It computes
the maximal level of bindings of a De Bruijn’s term:

é(n)=n
6(ab) = max(6(a), (b))
6(Aa) = 6(a) —1 if 6(a) #0, 0 otherwise

Proposition 3.4 1. Gwen any De Bruyn term a and any formal envi-
ronment L of length at least 6(a), and consisting of distinct names,
there exists a A-term b s.t. by, = a.

2. Given a formal environment L, two A-terms b and b have equal trans-
lations a = by = b} iff V' and V' are a-interconvertible.

Proof: We prove the statement by induction on the structure of a. We have
already proved the “if” part of the second part of the statement.

1. If @ = n, then take b = z, where x is the n-th element of L. Moreover
b is the only term s.t. b;, = a, hence the second part of the statement
holds vacuously.

2. If a = ajas, then b, @’ and a” must all be applications, and the result
follows immediately by induction, remarking that if L has length at
least 6(ajas), then it has a fortiori length at least §(a;) and 6(as).

3. If a = Aa and L satisfies the conditions of the statement relatively to
a, then we choose x not occurring in L. By induction, there exists b’
s.t. bl,; = @, whence we get a = (Az.b');. We now prove the second

part of the statement for this case. If b, = Aa, then b/ = Az.b, for

22

some x and 5’, and similarly b’ =)\y.y,, for some y and 5. Hence
ymL = a and EI’yL = a. We choose a variable z not occurring free in
b nor in b, Then ¢ = Az.b'{z/x} is such that ¢, = a by Proposition
3.3. Similarly, ¢ = a, where ¢’ = Az.b {z/y}. Set @ = b{z/x} and
¢ = E”{z/y}. Then, by induction, ¢ =, ¢”, since ¢, = @', = a.
Putting the pieces together, we get: b/ =, ¢’ =, ¢’ =, V".

3.3 Completeness of weak normal strategies

In this subsection, we complete the results of 2.2 and 2.5 by showing that the
weak computation strategies of these subsections reach weak head normal
forms whenever such weak head normal forms exist in the sense of classical
A-calculus. We first recall the (weak) normal order strategy in A-calculus.

(Aa)b ™Y o(alb - id))
wnf
a — a

ab w—n>ﬁ a'b

Proposition 3.5 For any weak (conditional weak) Ao-term a, the S oval-
uation of o(a) terminates (with b) iff the ©% evaluation (' evaluation) of
a terminates (with a' s.t. o(a’) =b).

Proof: We prove the statement for =5, the proof being similar for “". The
statement follows from the following claim, the precise formulation and the
proof of which we leave to the reader:

Claim: If ¢ © b, then o(a) = o(b) if the underlying redex is a o-redex,

and o(a) wnp o(b) if the underlying redex is a Beta-redex.

It follows from the claim, and from the strong termination of o, that any

infinite “% reduction from a would result in an infinite “% reduction from
o(a), which ends the proof.

Putting together proposition 3.5 and proposition 2.2 (respectively 2.8), we
obtain:

23

Theorem 3.6 For any weak (conditional weak) \o-term a, the 0 evalu-
ation of o(a) terminates with a weak head normal form b iff the > evalua-
tion (%" evaluation) of a terminates with a weak head normal form a' s.t.

o(a') =b.

3.4 Non Confluence result

The theory Ao is ground confluent, but not even locally confluent. The
discussion at the end of 3.2 has shown need for a right identity rule to solve
the critical pair arising at ((Aaj)as)[s]. Once the rule

(IdR) soid — s

has been added, the critical pair at (a-s)oid leads us to add the other right
identity rule:

(Id) alid] — a

And here comes the “harmful” critical pair at (Aa)[id], which suggests to
add:

(VarShift) 1-1— id

from which we arrive to surjective pairing, because of the critical pair at

(1-7)os:
(SCons) 1[s]-(1os) —s

We obtain a locally confluent theory, which we shall call Aogp, and which
is described in figure 4.

We devote the rest of this subsection to show that Aogp is not confluent
(it can be shown that it is still ground confluent). We use once more the
interpretation method, to reduce the non-confluence in the Ao-calculus to
the non-confluence of a reduction system on o-normal forms which behaves
like A-calculus extended with surjective pairing. We need to extend lemma
3.1.

Lemma 3.7 The following properties hold:

1. The set of o-normal forms is closed under Id, IdR, VarShift and SCons

reductions.

24

(Beta) (Aa)b — alb-id]
(App) (@b)ls] — (als]) (bls)
(VarCons) ila-s] — a

(Clos) afs]lt] — a[sot]
(Abs) Qa)ls] — Aalt-(so))
(1dL) idos — s
(ShiftCons) to(a-s) — s

(AssEnv) (si083)0s3 — s10(s90853)
(MapEnv) (a-s)ot — aft]-(sot)
(1d) alid] — a

(IdR) soid — s

(VarShift) 1-1 — i

(SCons) 1[s]-(Tos) — s

Figure 4: The theory Aogp

2. The statement of Lemma 3.1 holds for any term/substitution, extend-
ing the definition of —' accordingly.

Proof: The proof is by induction on the structure of f. We carry an
additional load in the induction: if f — g where — is a Beta, Id, IdR,
VarShift or SCons step, and if f is not a cons, then g is not a cons. We
consider only the new cases w.r.t. lemma 3.1. We do not give all the details.

1. f = a-s (and similarly f = a[s]). The additional load holds vacuously.
For the second part of the statement, we apply quite simply induction
on a or s. For the first part of the statement, we consider three cases:

(a) The reduction takes place in a or s. Apply induction.
(b) a=1 and s = 1. The reduct id is a o-normal form.
(c) a = 1[t] and s = 1 ot. The reduct is a subterm of f, hence a

o-normal form.

2. f is a composition. Since it is a o-normal form, it can only have one
of the two following forms:

25

(a)

(b)

f = 1 o0s. The only case where the root could be rewritten is
s = 14d, but this is impossible since f is a o-normal form (the
instance Shiftld of IdR is part of o). Hence the reduct of f has
the form 1o s’, where s — s’. By induction, s’ is a o-normal form
which is not a cons, since s is not a cons. So the only possibility
left for the reduct not to be a o-normal form is: s’ = id. This
could only happen either if s is a VarShift or SCons redex, which
is impossible since s is not a cons, or if s = id o «d, which is
impossible since id o id is also an IdL redex. Thus 1o s is a
o-normal form, and is not a cons.

f =xos. There are two cases:

1. s = 2d: The reduct x is a o-normal form and is not a cons.

ii. s — s’: One concludes by induction.

Proposition 3.8 Let f be a Ao-term/substitution.

1 If f
2. If f
3. If f
4- If f

*
Beta g, then o(f) A 1dR,Id o(g) .

Id,IdR

1dR,Id, VarShift*
LR g, then o(f) M IRLES

o(g) -
g, then o(f) a(g) -

3 *
SCi)ns g, then O'(f) VarShzﬁiSCons 0_(9))

VarShift VarShift*
— —

Proof: We show this by induction on (depth(f), size(f)), where the depth
of f is the maximal length of a o derivation from f, and the size is the
number of nodes in the tree representation of f. We proceed by cases on the

form of f.

We prove all the four parts of the statement simultaneously. We

shall content ourselves with writing f — g, o(f) N o(g) when our argument

is the same for all four cases.

1. f =1,X,id,1,or x. No reduction can apply to f, thus the statement
holds vacuously.

2. f = Aa. Then g = A\b for some b, and a — b. We can apply induction
to a, and thus have o(a) = o(b). But o(Xa) = A(o(a)), so we conclude

that also o(Xa) = o(Ab).

26

3. f = ab. There are three cases:

(a)

(b)
(c)

The reduction f — g takes place in a. Thus ¢ = a’b, and a — d'.
Applying induction to a, we get o(a) = o(a’). But o(ab) =
o(a)o(b), thus we deduce o(ab) = o(a’b).

The reduction takes place in b: symmetric to the previous case.

The reduction takes place at the root. It can be only a Beta

reduction, and we must have @ = Aa¢’ and g = d/[b- id]. Then

a(f) = (Aa(a'))o(b) feje o(a’)[o(b) - id]. Now notice that o(a’[b-

id]) = o(o(a')[o(b) - id]). Thus, by definition of 3, we have:
o(f) % o(g).

4. f = a-s. We proceed similarly to the application case:

(a)

The reduction takes place in a or s, say in a. Thus g = a’ - s
and @ — o/. Applying induction to a, we get o(a) = o(a’). We
conclude similarly to the application case, noticing that o(a-s) =
o(a) - o(s).

The reduction takes place at the root. It can only be a VarShift
or a SCons redex:

VarShift Then f = 1:1, g = id. The result follows obviously

from o(f) = f and o(g) = g.
SCons Then a = 1[s'], s = 1os’ and g = s'. We have three cases:

i. o(s') is not a cons and is different from id. Then o(f) =

1o (s")] - (10 o(s")) "% o(g).

ii. o(s') =4d. Then o(f)=1-1
iii. o(s") =d'-s". Then o(f) = o(g).

VarS hzft

o(g)-

5. f is a composition:

(a) f =1o0s. There are two cases:

i. s > s and g = 7o s'. By induction, we have o(s) = o(s').

We distinguish three cases:

A. o(s) is not a cons and is different from id. Then o(f) =
Toa(s) = Toa(s") = o(f o o(s)) (notice the equality,
which follows from Lemma 3.7) , which proves this case,
since o(Too(s')) = o(10s") = o(g).

27

B. o(s) = id. Then o(s') = id follows from o(s) = o(s').
Hence o(f) = id = o(g).
C. o(s) = a-t. There are three cases:

o(s') = a/-t' and t = t'. Then we conclude o(f) = o(g),
since o(f) =t and o(g) =t

The reduction o(s) = o(s’) reduces the root at some
step, by VarShift, ie. a 5 1, t 5 1 and o(s') = id.
Then o(f) =t 5 1 =0o(toid) = o(g).

The reduction o(s) = o(s’) reduces the root at some
step, by SCons, i.e. a 5 1[t'], t = 7ot and o(s') = t'.
Then o(f) =t 5 1ot = o(Tot') = o(g).

ii. s=1d and g = 1: Then o(f) =1 = o(g).

(b) f = xos. The situation is similar to, but simpler than the
previous case. We have either s — s’, and then conclude from
induction and o(x 0 s) = x00(s), or s = id and g = x, and then
conclude from o(f) = f and o(g) = g.

(c) f=(s"0s")os. We distinguish the following cases:

i. The reduction takes place in s”, s’ or s, say in s”. Thus
s" — tand g = (t o s’) o s. We can apply induction to the
o reduct 5" o (s' o s) of f. Thus o(f) = o(s" o (s' 0 5)) =
a(to(s'os)) =o(g).

ii. s’ =4d and g =s" 0os. Then f 5, g, hence o(f) = o(g).

iii. s = id and ¢ = s” o s’. We have f 5 5" o (s' 0 id) and
s" o (s 01d) 1A% ¢ 5 s'. By induction, we get: o(f) =o0(s" o

(s" 0 id)) = o(g).
(d) f=(a-t)os. We distinguish subcases:

i. The reduction takes place in a, t or s. If it takes place in a or
t, we reason like in the corresponding subcase of f = (s”0s)o
s. If it takes place in s, then let s — s’ and g = (a-t)os’. We
have: f 2 a[s]-(tos), and we can apply induction to a[s] and
tos, and derive: o(a[s]) = o(a[s']) and o(t o s) = o(t o s').
Combining, we get o(f) = o(a[s]) - o(t o s) = a(g).

ii. s =4d and g = a-t. We have f % a[id] - (t o id), and by
induction o(a[id]) = o(a) and o(t o id) = o(t), from which
we get o(f) = o(alid]) - o(t o id) = o(g).

28

iii. a=1,t=1and g =s. Then f % 1[s]- (10 s) and 1[s] - (1 o

) SCl)ns

s s. By induction, we deduce: o(f) = o(s) = o(g).

iv. a=1[t'], s =10t and g =t o s. We argue similarly to the

previous subcase, noticing f 2, 1[t'os]-(To(t'0s)) 59918 yios.

6. f is a closure. As for composition, we further decompose f:

(a) f =1[s] or f = X[s]. This situation is handled like f = 1o s or
f = x o s, respectively.
(b) f = (Xa)[s]. There are two cases:

i. The reduction occurs in a or s. This case is handled like the
corresponding subcase of f = (s" 0 s') o s.
ii. s = id and g = Aa. We have: f 5, Aa[l-1]), and A(a[l -
i) VerSht . Applying induction, we have: o(f) = o(\a).
(c) f = alt][s]. This case is handled like the case f = (s o s) 0 5.
(d) f = (ab)[s]. There are three cases:

i. The reduction occurs in a, b or s, say in s: This case is
handled as the corresponding subcase of f = (a-t) o s.
ii. s =1d and g = ab. This case is handled as the corresponding
subcase of f = (a-t) o s.
iii. @ = Ad/, g = d'[b-1d][s]. Notice that we have already finished
the proof of the three last parts of the statement: we shall
make use of this below. We have f 5, (A(a/[1-(so1)]))(b[s])

and (A(“'[l'(S"T)D)(l}gﬂ)[;ﬁ’a a'[1-(so1)][b[s]-id]. By induc-
tion, we have: o(f) P18, a(a'[1-(so1)][b[s]-id]) = a(a’[b]s]-

(soid)]). We also have: a'[b[s]- (soid)] [a'[b[s] - s]. By the

ik
statement, part 2, we have: o(a’[b[s] - (s 0 id)]) [af,1d, orShift

o(a’[b[s] - s]) = o(g). Concatenating the derivations, we get:
B,1dR,1d*

o(f) =" olg)
This ends the proof. 4

The following is the key lemma.

Lemma 3.9 The rules 3, Id, IdR, VarShift, SCons do not define a confluent

system on o-normal forms 3.

3We are thankful to A. Rios for pointing out an error in a first version of this proof.

29

Proof: In the proof, — stands for a 8, Id, IdR, VarShift or SCons step.

Recall the term presented in [1] in support of the non confluence conjecture:
B =YC where C =YV where V = AXX[1[xo(1-id)]-(To(xo((21)-1d)))]

where Y = (AA1(221))(AA1(221)) is Turing fixed point combinator. We
shall actually need to consider a parameterized version of this term. For
any substitution s, let:

Bs =Y C,; where Cs =YV, where V; = AXX[1[xo(1-5)]-(To(xo((21)-5)))]

We shall omit subscripts s, when clear from the context. First observe, for
any a, that:

(*) Ca 5 VCaSX[1[xo(a-s1)]-(To(xo((Ca)-s1)))
where s1 = o(so (a- C -id)). Thus, for some s':

B CB 5 X[1[xo (B-s")]- (1o (xo(CB-s")))

*
*,
% X[ifxo (CB-)]-(to(xo (CB-)))] - Xixo (CB-s)] = A

and

B 5 CB5 CA (since BS A).

We show that A and C;A cannot have a common reduct, whatever is s.
A fortiori this will show that the reduction is not confluent. We proceed by
contradiction, and suppose that a common reduct exists for some s. Let K
be a common reduct of minimum size (relatively to every s). We analyze
all possible reductions of CA to K. We shall denote by O substitution
occurrences which are irrelevant to the proof. It is not meant that they are
all equal, they are just “black boxes”.

First C' and A are reduced independently. Let us examine the reductions

from C:

C (A1(Y'1))V (no choice)

(MZ)V (where Y1 5 Z)

VC' (where o(Z[V -id]) 5 C")

AX[1[xo (1-0)]-(to (xo (a(C'[1])1-0)))] (Abs has been used)
Mtxo (1-0)]- (1o (x0 (C"-0)))] (where o(C"[1])1 2 C")

el e lx]

Notice that o(Z[V - id)) % ¢ implies C 5 o(Z[V - id]), by proposition
3.8, since C = o((Y1)[V - id]). Hence C 5 C'.

30

Can surjective pairing be applied? Only if o(C’[1])1 = 1%, which implies
o(C[1])1 = 1, which in turn entails o(C[id])A = o((C[1]1)[A - id]) > A.
Notice that o(Cs[id]) = Cgn for some s” (specifically, s” = 1-((1-(so1))o1)).
We have then:

CA 5 (M[xo(1-0))A" (where A 5 A)
— X[xo(A-DO)]S5K

The derivation from X[x o (A’-0O)] to K can only reduce A’ and O inde-
pendently: notice that the topmost cons node can never become the root of
a SCons redex, since a reduct of A’ always begins with X. Hence K has the
form X[x o (K’ -0O)]. But then K’ is a reduct of A, and a fortiori of Csn A,
which has a smaller size than K: contradiction.

Thus we may assume that the independent reduction of C stops with

M[1[xo (1-O)]- (T o (xo (C"-0O)))]. We have:

CA 5 X[1[xo(A-O)]-(To(xo(c(C"[A"-id])-0)))] (where A 5 A"
f X[xo (Q-0)] (where A’ % Q,0(C"[A’-id]) - Q)

K

This is the only way in which the reduction can proceed, as follows from
the following observations.

e The only way to reach K = X[x o 0] is to apply surjective pairing at
some stage in the substitution part of the top level closure.

e The form of A’, which begins with X, prevents a reduct of A’- 0O to be
a SCons redex.

e No reduct of o(C"[A" - id]) - O can be a SCons redex either. To show
this, we observe that the reduct of a SCons redex which is in ¢ normal
form must have the form To...oToxoO. Hence if the root is rewritten
using SCons during the reduction from o(C"[A’-id])- 0O, the end point
of the derivation must have the form 7o...01 0 x o 0O, which cannot
match a reduct of (4’ - 0O).

*More slowly, surjective pairing can only be applied if o(C’'[{])1 - O and 1 - O have a
common reduct. On one hand, observe that the only possible reducts of 1 -0 are either id
(if VarShift is applied) or again of the form 1-0. On the other hand, to see that the only
case to consider is o(C'[{])1 = 1, observe that if o(C'[{])1- O reduces to a SCons redex,
then (C'[1])1 = 1[s] for some s which reduces either to id or to 1 - O. Since 1[s] is a &

normal form, s can only be 1" or x o O or 1" o (x o O), none of which can reduce to id or
to1-0.

31

Hence the derivation must reduce A’, o(C"[A’-1d]) and the two ”black box”
substitutions independently. But observe that) is a common reduct of A
and CygrA. We conclude as in the previous case by noticing that Q 5 K
for some subterm K’ of K. We obtain again a contradiction to our size
assumption, and this completes the proof.

Remark 3.1 The counterexample used in proof of the last proposition sug-
gested [14] a counterexample for A-calculus extended with surjective pair-
ing, leading to a simpler proof of non-confluence than the proofs known so

far [29, 21]. The counterezample is: Y (Y (Azy.D(D1(Ey))(Dy(E(zy))))),
where D 1is pairing and Dy, D5 are the projections.

We are now able to prove the main result of the subsection.
Theorem 3.10 Aogp is not confluent.

Proof: By the interpretation lemma of section 1, and the previous lemmas.

a

4 The confluent \o-calculus

In this section, we consider a confluent version of Ao-calculus, initially in
[23], called the Aoy-calculus, or the confluent Ao-calculus for simplicity. In
addition to being confluent, this calculus presents the particularity that a
rather simple proof of termination of the substitution rules could be found
for it, in contrast to the situation with categorical combinators or o.

We introduce the syntax and the rules (4.1) of Aoy-calculus, we show
the termination of the set of substitution rules (4.2), and the confluence
of the full theory Aoy (4.3), by a technique which is different from the
interpretation method. We end by showing that Aoy-calculus relates well to
the classical A-calculus (4.4).

4.1 Syntax and rules

The main modification is to transform the rule:

(Aa)[s] = Ala[L- (s 1))

into

32

(Aa)[s] — Aa[frs])
in order to escape the non confluence of the Ao-calculus. Terms and substi-
tutions are now as follows:
Terms a:== X |n|ab|Aa|als]
Substitutions s:u=x |id|T]|a-s|sot|(s)

The confluent Ao-calculus Aoy is defined by the rules given in figure 5.
o4 is the rewriting system obtained by removing the rule (Beta) from the
system Aoy.

Remark that this system takes care of full De Bruijn’s notation. Vari-
ables of the calculus are represented by any n instead of 1[1"]. We could
have followed the treatment that we adopted in previous sections. Nothing
would have been changed for the results. Rules of the new calculus would
have been less numerous, since we could have then erased rules VarShift1,
VarShift2, RVarCons, RVarLiftl, RVarLift2. Proofs are simply more diffi-
cult when taking n for any n.

The system is rather robust: rules for additional data types are possible.
We take the instance of pairs, with a pairing operator (arity 2) and two
projections Fst and Snd (arity 1) and we add the rules described in figure
6. This data type could have been tuples or lists instead. It can be proved
that the confluence and termination properties still hold for this extension.

4.2 Substitution rules

We show that the sub-system o4 is terminating and confluent. Remember
that the termination of o was derived in [1] from the termination of the
corresponding system for categorical combinators [22, 15]), which turned
out to be a difficult problem. Surprisingly, the proof given here is quite
simple. In fact, our calculus does not reproduce every possible calculations
of o (but enough to simulate S-reductions, as we shall see). Moreover the
rule Lift2 for example does not correspond to a derivation in o, but only to
an equality.

Proposition 4.1 The system o4 is locally confluent.

Proof: First, notice that the rules preserve the sorts. Then, the untyped
system is shown to be weakly confluent. For this, we use the KB system,

33

(Beta)
(App)
(Lambda)
(Clos)
(VarShift1)
(VarShift2)
(FVarCons)
(FVarLift1)
(FVarLift2)
(RVarCons)
(RVarLift1)
(RVarLift2)
(AssEnv)
(MapEnv)
(ShiftCons)
(ShiftLift1)
(ShiftLift2)
(Lifu1)
(Life2)
(LiftEnv)
(1dL)

(IdR)
(Liftld)
(1d)

(Aa)b
(ab)[s]
(Aa)[s]

(als])[t]

n[f]

n[fos]

1la - §]
1[fi(s)]
1[fi(s) o t]
n+ifa - s]
n+1[f}(s)]
n+1[f}(s) o]
(sot)ou

L A A A A

alb - id]
(als]) (bls])
Malfis)
alsot]

n+1

n+1[s]

1

1[t]

n[s]

n[so]
n[so(tot)]
so(tou)
aft] - (sot)
so?l
so(tot)
fi(s01)
f(sot)ou
a-(sot)
ud

a

Figure 5: The rewriting system Aoy

34

(Fst) Fst(<a,b>) — a

(Snd) Snd(<a,b>) — b
(PairClos) <a,b>[s] — <a[s],b[s]>
(F'stClos) Fst(a)[s] — Fst(a[s])
(SndClos) Snd(a)[s] — Snd(a[s])

Figure 6: Rules for Pairing

developed at INRIA, which is an implementation of the Knuth-Bendix com-
pletion algorithm [31]. 4

Proposition 4.2 The system oy 1s terminating.

Proof: The termination of o is proved by a simple lexicographic ordering
on two weights P; and P, defined on any terms or substitutions. These
functions are defined by:

Notation 4.1 Let P, and P, be defined by:

P1 (n) =27 P2 (n) =1
Pl(ab)Zpl((L)+P1(b) Pg(ab)ng a)+P2(b)+1
Pi(Xa)) = Pi(a) + 2 Py(Aa) = 2 % Py(a)

Pi(a[s]) = Pi(a) * Pi(s) Py(als]) = Py(a) * (1 + Pa(s))
Pi(a-s)= Pi(a)+ Pi(s) Py(a-s)= Pya)+ Py(s)+1
P1) =2 Py =1

Py(id) =2 Py(id)=1

Pi(sot) = Pi(s) * Py(t) Py(sot) = Py(s) * (1 + Py(t))
Pi(f(s)) = Pi(s) Py(1(s)) = 4 x Pa(s)

Pi(<ai,as>) = Pi(a1) + Pi(a2) Py(<ai,as>) = Py(a1) + Pa(az) +1

Py (Fst(a)) = Pi(a) + 2
Py(Snd(a)) = Pi(a) + 2

Py(Fst(a)) = Pa(a) + 2
Py(Snd(a)) = Py(a) + 2

Lemma 4.3 P, is decreasing on all the rules. Moreover it is strictly de-
creasing on (Lambda).

Proof: The proof follows the usual technique using polynomial interpreta-
tions for proving termination of rewriting systems. First, it is easy to check
that Py(a) > Pi(a’) implies Py (Cla]) > Pi(Cla’]) for any context C[]. Simi-
larly for s. This is because polynomials are considered for values of variables
greater than 1. Now, let us prove that the left hand sides of any rule of our
system have a weight L greater that the corresponding one R of the right
hand sides. We have to check every rule which is not a simplification rule
and it will be simpler in this proof to identify terms a and their weights

Pi(a).

App L=as+bs=R

Lambda L = (a+2)s>as+2= R since s > 2 for every s.
Clos L=ast=R

VarShifti L =2""'=R

VarShift2 L =2"(2s) =R

FVarCons L=2(a+s)>a=R
FVarLift1 L=2s>2=R

FVarLift2 L =2st>2t=R
RVarCons L =2"t1(a+s)>2"s=R
RVarLifti L =2"t's=R

RVarLift2 L =2""1st = (2"s)(2t) =R
AssEnv L=stu=R

MapEnv L= (a+ s)t=(at)+ (st) =R

ShiftCons L=2(a+s)>s=R
ShiftLift! I —=2s =R
ShiftLift? I —2st—=R

36

Luft1
Luft2
LiftEnv
IdL
IdR
Luftld
Id

Fst
Snd
DPair

L=st=R
L=stu=R
L=s(a+t)>a+st=R
L=2s>s=R
L=2s>s=R
L=2=R
L=2a>a=R
L=2a+b)>a=R

L=2(a+b)>b=R
L=(a+b)s=(as)+ (bs) =

Lemma 4.4 P, is strictly decreasing on all the rules but (Lambda), on
which it 1s increasing.

Proof: As previously, if Py(a) > P2(a’), then Py(Cla]) > P2(Cla’]) for every

context C[]. Now, we use the same notations as for P;. We work by cases

on the rules:

App

Lambda

Clos

VarShafti

VarShift2

L=(a+b+1)(1+s)>a(l+s)+b(1l+s)+1=R
L—-—R=s

L=(2a)(1+s)<2a(l+4s)=R

L - R= —6as
L=a(1+s)(14+1t)>a(l+s(1+1))

L—-R=at

L=1(141)=2>1=R

L-R=1

L=11+11+s))>1(1+s)=R

L-R=1

37

FVarCons L=1(14(a+s+1))>a=R
L-R=2+s

FVarLift! L=1(1+4s)>2=R
L-R=4s

FVarLift2 L=1(1+4s(1+t))>1+t=R
L—-R=4s+1t(4s—1)

RVarCons L=11+(a+s+1)>1(1+s)=R
L-R=1+a

RVarLifti L=1(1+4s)>1(1+s(1+1))=R
L-R=2s

RVarLift2 L =1(1+4s(1+1)>11+s(1+(1+1)) =R
L—-R=2s+3st

AssEnv L=s(1+t)(1+u)>s(1+t(l+u))=R
L—-R=st

MapEnv L= (a+s+1)(1+t)>a(l+t)+s(1+t)+1=R
L-R=t

ShiftCons L=1(14+(a+s+1))>s=R
L-R=1+a

ShiftLift1 L =1(1+4s)>s(1+1)=R
L—-R=2s

ShiftLift2 L =1(1+4s(1+1)) >s(1+1(1+1) =R
L-R=1+2s+3st

Lift1 L=4s(1+4t)>4s(1+1t) =R
L—-R=12st

Lift2 L=4s(1+4t(1+u)) >4s(1+t)(1+u)=R
L — R =12st + 12stu — 4su

LiftEnv L=4s(1+(a+t+1))>a+s(1+t)+1=R
L—-R=a(4s—1)+7s—1+3st

L L=11+s)>s=R

38

IdR L=s(1+1)>s=R

Liftld L=4>1=R

1d L=a(l141)>a=R

Fst L=2a+b+1)>a=R

Snd L=2a+b+1)>b=R

Dpair L=(a+b+1)(1+s)>14+a(l+s)+b(1+s)=R
L-R=s

a

4.3 Confluence

Now we address the confluence of the full theory Aoyy. We shall use a general
lemma coined in [42]:

Lemma 4.5 Let R and S be two relations defined on the same set X, R
being confluent and strongly normalizing, and S verifying the diamond prop-
erty, i.e. s.t. the following diagram holds, for any f,g,h in X (as usual,
dashed arrows mean: “there exists k s.t. ...):

S
f———>9
S 'S

\"2
hoo S sk

Then the relation R*SR* s confluent.

39

Proof: First, by induction on the R-depth of f, we get

S
f———>9
R*l R

* * \y
R RISRT_

Then we conclude, again by induction on the R-depth of f, and distin-
guishing between depth zero and non-zero.

R* S R*
f 1 p) g
R R* R* R*
R* R*SR* R
f! fi f g
R*SR* by induction R*SR*
R*SR*
h k
and
S R*
f f g
S S R*SR*
S R*
f fi g
R* R* R*
% * *
b R*SR h R ;
O

40

We shall apply the lemma with the following datas. We take o as R
and Betal|| as S, where Betal| is the obvious parallelization of Beta defined
by:

a—a s— s
a—a' b— b a—a s — s
ab — 't a-s—a s

! !
a—a s— 8
Na = AT 1) = 1)

! / ! /
a—a s — S s — S t—t
als] — a'[¢] sot — s ot

! /
a—a b—b

(Aa)b — 'V - id]
Proposition 4.6 o and Beta|| satisfy the conditions of lemma 4.5.

Proof: The strong confluence of Betal| is obvious since Beta by itself is a
left linear system with no critical pairs [25, 26].

We check the second diagram. When the two steps from f to g and from
f to h do not overlap (more technically do not make a critical pair), the
lemma is easy since the system is left linear (i.e. without two occurences of
a same variable on left hand sides of rules)[25, 26]. So we have to inspect
every critical pair (in a sense slightly different from the standard one since
Beta|| is a parallel reduction). Since a strict subexpression of a Beta|| redex
can never overlap with a oy redex, it is sufficient to work by cases on the
derivation from f to h.

Case App: f = (ab)[s] RN a[s]b[s] = h. Then there are two cases:

1 = (@)l " @¥)ls] = g with o "2 o, 0 P ana s P
Then by definition of Beta||, we have a[s]b[s] Beta| o/[s')b/[s'] = k. But also

g k.

Betal|
—

2. f = (Qa)b)[s] ZEN aty - id][s') = g with a1 P a5 P4y and

s P4 g Then h = (Aa1)[s]b[s]. We must then take h RAN (Aaq[frs])b]s] =

hi. Then

41

Betal|
—

hy ai[s'])[b'[s'] - id] = he. Then one checks easily that hy 1, k and

ag
g = k where k = a//[t'[s] - s']. This subcase is the only interesting one.

Case Lambda: f = (Aa)ls] RN A(a[fts]) = h. Then f Betall g implies

g = (A\d)[s] with a Beig] a, s Bl o Thus b 2% (d'[fts]) and g

A(d[fs']).

Case Clos: ...In fact all other cases are similar to the previous one. 5

Theorem 4.7 The rewriting system Aoy is confluent.

Proof: Notice that Aoy C R*SR* C Aoy*.

4.4 Relation with classical A-calculus

We pause to compare the technique used in this section to prove the con-
fluence of Aoy to the interpretation method which we used to show the
confluence of weak Ao-calculus (or ground Ao-calculus [1]). The order of
the reductions in the conclusion of Lemma 2.5 is : Beta followed by ¢ nor-
malization, followed by Beta... The order of the reductions indicated by the
bottom line of the second picture of Lemma 4.5 is: some steps of o, followed
by some steps of Beta, followed by some steps of o... The interpretation
method relates better the classical calculus to the various explicit calculi.
But, for the purpose of confluence, the method used in subsection 4.3 seems
more direct: in the interpretation method, one has still to prove that the
interpreted relation is confluent (cf. Lemma 2.4), while here some magic of
diagrams is at work.

Since we want to relate the classical A-calculus to the confluent Ao-
calculus, we shall also consider the interpretation method for the confluent
Ao-calculus, but we shall not give all the details.

Like in Ao, we prove that it is possible to identify De Bruijn terms and
ground terms in oy-normal form, and that -derivations correspond to one
Beta step followed by op-normalization. Moreover we prove that, for any
derivation of a ground term a to b, there is a corresponding [-derivation
from oy (a) to o4(b).

First we describe the set of ground o4-normal forms.

42

Lemma 4.8 Let s be a ground substitution in oy-normal form. Then, s
may have only one of the following forms:

s=1d,

s =a-t where a, t are oy-normal,

s=1" thatis To(...(To1)...),

s = f}(t) o 1™ where t is oy-normal and n > 0.

Let a be a ground term in oy-normal form. Then, a may have only one
of the following forms:

a =n,

a = bc, where b and c are oy-normal,

a = A(b) where b is oy-normal,
Therefore, ground terms in og-normal form and A-terms (in de Bruijn’s
notation) are the same.

Proof:

1. The proof is by induction on the structure of the substitution s. We
have only to examine the case s = s1 0 s9. We have:
(a) s1 # a- 511 (otherwise s would be a MapEnv redex).
(b) s1 # s11 0 s12 (otherwise s would be a AssEnv redex).

(c) if s1 = 1", then n must be equal to 1 and s, which is in o (Aof)
by induction, can only be 1? (otherwise s would be a ShiftCons
or ShiftLift1 or ShiftLift2 redex).

(d) if s1 = (s11), then sy can only be 1™ (otherwise s would be a
Lift1 or Lift2 redex).

2. We prove, by induction on the structure, that a term a in O’ﬂ(AO’,ﬁ)
cannot contain any substitution.

a) a = n|s] where s € g4(Acy). This case cannot appear: whatever
T 0 pPp
s is, by part 1, n[s] contains a redex.
(b) a =ajaz or a = A(a1). Just use induction.

(¢) @ = b[s|]. This case cannot appear as b[s| should contain no
Lambda or App or Closure redex.

a

Let 3y be defined on A-terms by: a & biffa 2% cand b= aq(c).

43

We prove the counterpart of the first statement of proposition 3.3, namely
that 8 and B4 may also be identified. It is convenient to use yet another
definition of S-reduction (in abstract notation) which was proposed by De
Bruijn, and used later on in works on categorical combinators.

Definition 4.9 The substitution a{1+ b} is defined inductively by:
(ac){n+b} = a{n b} c{n+ b}
Aa{n b} = A(a{n+1—1b})

m{n—b} = m—1 if m>n
tg(b) if m=n
m if m<n
where ¢7'(b) is defined by:
ti (ac) =t} (a)ti (c)

ti(Aa) = A1 (a))
t'(m)= m+n—1 if m>i+1
m if m<i

When performing the substitution, we count how many A nodes we cross
between the occurrence of the redex and the occurrence currently reached:
when getting a{n« b}, we crossed (n — 1) X nodes. Now in order to avoid
capture, when meeting a De Bruijn number which has to be substituted, we
have to update De Bruijn numbers of the substituted term. ¢{(b) says that
b will be placed under n X’s. t?(c) is obtained after crossing 7 A between the
root of the substituted term and its occurrence.

First we state that this notion of g-reduction is not exotic w.r.t. what
we have developped so far (subsection 3.2).

Proposition 4.10 For any terms A-terms a and b, the two following rela-
tions are the same:

1. B, (c¢f. Lemma 3.1),
2. BpB, defined as the congruence generated by the axiom

(Aa1)az — a1{1—as} .

Proof: Omitted. o

Proposition 4.11 For any A-terms a and b, a Pz 4, iff a ﬁ—> b.

44

Proof: Let a be a term with a f-redex at occurrence u, that is: a =
C[u «— (Aaq)az]. Suppose that:

a N b and a o, c
Therefore
b= Clu—ai{1—ay}] and ¢ = op(Clu—a;[ay - id]]) .

Note that ¢ = Clu+—oy(ai[ay - id])] : since a is a oy-normal form, the
replacement of the Beta-redex by the oy-normal form of its reduct cannot
create oy-redexes at prefix occurrences. Therefore we only have to prove
that a1 {1 —as} = oy(aifas - id]).

We prove the following equality for any terms a and b and for any n:

a{n b} = op(a [" [b-id]])

by induction on the structure of o (a). The sole non trivial case is a = m.
The following equality, where m — p > 1, will help:

[17(s)] 5 (m—p) [" P(s) 0 17]

Using this equality, we get:
opm [b id]])= (m—1) if m>n
m if m<n

op(b[1™ 1)) if m=n
It remains to prove for any term b:
Vn € bt (b) = oy (b [11")])
This is done by induction on oy (b), for all n. The only non trivial point is

b = m. Note that, if m—p > 1, we have: m[/(")] SN (m—p)[* P(1™)o1P .
With this equality we obtain:

opm [M)])= m+n if m>i+1
m if m<i

Summarizing, we have considered four definitions of the [-reduction,
among which three exactly equivalent ones are defined on De Bruijn terms.

45

These three relations are: 3, (Lemma 3.1), Spp (Proposition 4.10) and 3 .
The equivalence with the classical S-reduction has been shown in Proposition
3.3. It is thus natural to call all these relations simply .

The rest of the interpretation method can be carried in the same style as

in section 2.3 (one is left to show that, for any ground Aoy term a, a Beta o1

*
implies o4 (a) LA oq(a’)).

5 Conclusion

We have extensively studied the confluence of the Ao-calculus, and found
a first theory (Aoy) which is fully Church-Rosser. This point is interest-
ing not only from a theoretical point of view, but also for an important
practical aspect: it may be the right calculus for calculations on contexts
of A-expressions. It may be considered as an important extension of the
classical A-calculus. It seems also to be a good framework for the study of
the abstract properties of implementations for functional languages, such as
correctness or optimisation. But before making a full use of the confluent
Ao-calculus, a more extensive study of it should be done. In particular, it
would be interesting to describe a calculus of shared terms in order to prove
formally the soundness of “optimal” § reducers [34, 19, 33, 28]. The theory
of the Ao-calculus could also be a good basis for the control of environments
inside programming languages.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, J.-J. Lévy, Ezplicit Substitutions,
Journal of Functional Programming 1(4), 375-416, 1991.

[2] S. Abramsky, The Lazy A-calculus, in Declarative Programming, D.
Turner ed., 65-116, Addison Wesley, 1989.

[3] H. P. Barendregt, The Lambda-Calculus, vol 103, Elsevier Science
Publishing Company, Amsterdam, 1984.

[4] H. P. Barendregt, Pairing without conventional restraints, Zeitschr.
Math. Logik und Grundlagen der Math, 20, pp 289-306, 1974.

[5] G. Berry, J.-J. Lévy, Minimal and Optimal Computations of Recursive
Programs, J.A.C.M. 26 (1), 1979.

46

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

G. Boudol, A Lambda-calculus for (Strict) Parallel Functions, Infor-
mation and Computation 108, 51-127, 1994.

V. Breazu-Tannen, A Combining Algebra and Higher-Order Types,
Proc. LICS 88, Edinburgh.

N. de Bruijn, Lambda-Calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-

Rosser Theorem, Indag. Math., 34(5), pp 381-392, 1972.

N. de Bruijn, Lambda-Calculus notation with namefree formulas in-
voling symbols that represent reference transforming mappings Indag.
Math., 40, pp 348-356, 1978.

A. Church, The Calculi of Lambda-Conversion, Ann. of Math. Studies,
6, 1941.

G. Cousineau, P.-L.. Curien, M. Mauny, The Categorical Abstract Ma-
chine, Science of Computer Programming 8, 173-202, 1987.

P.-L. Curien, Categorical Combinators, Sequential Algorithms and
Functional Programming, Research Notes in Theoretical Computer Sci-
ence, Pitman, London, 1986, Revised edition, Birkhauser, 1993.

P.-L. Curien, An Abstract Framework for Environment Machines, The-
oret. Comput. Sci. 82, 389-402, 1991.

P.-L. Curien, T. Hardin, Yet Yet Another Counterexample for A+ SP,
Journal of Functional Programming 4(1), 113-115, 1994.

P.-L. Curien, T. Hardin, A. Rios, Strong Normalization of Substitu-
tions, in Proc. Mathematical Foundations of Computer Science, Prague,
Lecture Notes in Computer Science 629, 1992.

H. B. Curry, Combinatory Logic, vol 1, North-Holland, 1958.

H. B. Curry, J. R. Hindley, and J. P. Seldin, Combinatory Logic, vol 2,
North-Holland, 1972.

N. Dershowitz, Ordering for term rewriting system, Theoret. Computer
Sc., 17(3), pp 279-301, Mar 1982.

47

[19]

[20]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Field, On Laziness and Optimality in Lambda Interpreters, ACM
Conference on Principle of Programming Languages, San Francisco,
1990.

T. Hardin, Résultats de confluence pour les Régles fortes de la Logique
Combinatoire Catégorique et Liens avec les Lambda-calculs, these de
Doctorat, Université de Paris 7, 1987.

T. Hardin, Confluence Results for the Pure Strong Categorical Logic
CCL. A-calculi as subsystems of CCL, Theoret. Computer Sc., 65, pp
291-342, 1989.

T. Hardin and A. Laville, Proof of Termination of The Rewriting Sys-
tem Subst on C.C.L. Theoret. Computer Sc., 46, pp 305-312, 1986.

T. Hardin, J.-J. Lévy, A Confluent Calculus of Substitutions, France-
Japan Artificial Intelligence and Computer Science Symposium, Izu,
1989.

R. Hindley and J. Seldin, Introduction to Combinators and A-calculus,
Volume 1 of London Mathematical Society Student texts, Cambridge
University Press, 1986.

G. Huet, Confluent Reductions: Abstract Properties and Applications
to Term Rewriting Systems, J.A.C.M., vol 27(4), pp 797-821, October
1980.

G. Huet and J.-J. Lévy, “Computations in Orthogonal Rewriting Sys-
tems 1 et 2”7, Computational logic, Essays in Honor of Alan Robinson,
ed. J.-L. Lassez & G. D. Plotkin, MIT Press, 1991.

S. Kamin, J.-J. Lévy, Two generalisations of recursive path orderings,
Unpublished note, 1980.

V. Kathail, Optimal interpreters, PhD Thesis, MIT, 1990.

J. W. Klop, Combinatory Reduction Systems, PhD, Mathematisch
Centrum Amsterdam, 1982.

J. W. Klop, R. de. Vrijer, Unique Normal Forms for A-calculus with
Surjective Pairing, Rapport 87-03, Centre of Mathematics and Com-
puter Science, Amsterdam, 1987.

48

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

D. Knuth and P. Bendix, Simple Word Problems in Universal Algebras,
In J. Leech, editor, Computational Problems in Abstract Algebra, pp
263-297, Pergamon, 1970.

J. Lambek, P.J. Scott, Introduction to Higher Order Categorical Logic,
Cambridge University Press, Cambridge Amsterdam, 1987.

J. Lamping, An Algorithm for Optimal Lambda Calculus Reduction,
ACM Conference on Principle of Programming Languages, San Fran-
cisco, 1990.

J.-J. Lévy, Réductions correctes and optimales dans le Lambda- Calcul,
These d’Etat, Université de Paris 7, 1978.

L. Maranget, Optimal Derivations in Weak Lambda-calculi and in Or-
thogonal Term Rewriting Systems, POPL 91.

M. Mauny, Compilation des Langages Fonctionnels dans les Combi-
nateurs Catégoriques, Theése de Troisieme Cycle, Université Paris 7,
Septembre 1985.

C.-H. Luke Ong, Fully Abstract Models of the Lazy A-calculus, Proc.
FOCS 88.

S. L. Peyton Jones, The Implementation of Functional Programming
Languages, Prentice Hall, 1987.

D. Turner, A new implementation technique for applicative languages.
Software Practice and Experience, 9, pp 31-49, 1979.

R. de Vrijer, Surjective Pairing and Strong Normalisation: two themes
i A-calculus, Dissertation, University of Amsterdam, 1987.

P. Weis et al, The CAML Reference Manual, Projet FORMEL, INRIA-
ENS, technical report, Version 2.6, 1989.

H. Yokouchi, T. Hikita, A rewriting system for categorical combinators
with multiple arguments, preprint, 1988.

H. Yokouchi, Relationship between A-calculus and Rewriting Systemns
for Categorical Combinators, Theoret. Computer Sc. 65, 1989.

49

