Analysis and Caching of Dependencies®

Martin Abadi Butler Lampson
Digital Systems Research Center Microsoft
ma@pa.dec.com blampson@microsoft.com

Jean-Jacques Lévy
INRIA Rocquencourt

Jean-Jacques.Levy@inria.fr

October 26, 1995

Abstract

We address the problem of dependency analysis and caching in the context
of the A-calculus. The dependencies of a A-term are (roughly) the parts of
the A-term that contribute to the result of evaluating it. We introduce a
mechanism for keeping track of dependencies, and discuss how to use these
dependencies in caching.

1 Introduction

Suppose that we have evaluated the function application f(1,2), and that its
result is 7. If we cache the equality f(1,2) = 7, we may save ourselves the work of
evaluating f(1,2) in the future. Suppose further that, in the course of evaluating
f(1,2), we noticed that the first argument of f was not accessed at all. Then
we can make a more general cache entry: f(n,2) = 7 for all n. In call-by-name
evaluation, we may not even care about whether n is defined or not. Later, if
asked about the result of f(2,2), for example, we may match f(2,2) against our
cache entry, and deduce that f(2,2) = 7 without having to compute f.

There are three parts in this caching scheme: (i) the dependency analysis
(in this case, noticing that f did not use its first argument in the course of the
computation); (ii) writing down dependency information, in some way, and caching
it; (iii) the cache lookup. Each of the parts can be complex. However, the caching
scheme is worthwhile if the computation of f is expensive and if we expect to
encounter several similar inputs (e.g., f(1,2), f(2,2), ...).

We address the problem of dependency analysis and caching in the context
of the A-calculus. We introduce a mechanism for keeping track of dependencies,
and show how to use these dependencies in caching. (However, we stop short of
considering issues of cache organization, replacement policy, etc.) Our techniques
apply to programs with higher-order functions, and not just to trivial first-order

*Keywords: program analysis and optimization
Contact address: M. Abadi, Digital Equipment Corp., Systems Research Center, 130 Lytton
Avenue, Palo Alto, CA 94301, USA.

examples like f(1,2). The presence of higher-order functions creates the need for
sophisticated dependency propagation.
As an example, consider the higher-order function:

fo2 g fst(a(fst(y)(snd(y)))

where pairs are encoded as usual:
(a,b) = Az.z(a)(b) fst = App(Audz.u) snd = Ap.p(Au.rz.z)

The function f takes two arguments x and y; presumably x is a function and y is
a pair. The function applies = to the first and second components of y, and then
extracts the first component of the result. A priori, it may seem that f depends
on x and on all of y. Consider now the arguments:

9

/

g

s

AuAz.(z,u) ro2(1,2)
Az (z, (u, z)) 2 (2,2)

Both functions g and ¢’ seem to depend on their arguments. However, all these a
priori expectations are too coarse. After evaluating f(¢)(r) to 2, we can deduce
that f(g')(r") also yields 2. For this we need to express that f accesses only part
of the pair that g produces, that g accesses only part of the pair that f feeds it,
and that g and ¢’ look sufficiently similar. We develop a simple way of capturing
and of exploiting these fairly elaborate dependencies.

Our approach is based on a labelled A-calculus [Lév78]. Roughly, our labelled
A-calculus is like a A-calculus with names for subexpressions. In the course of
computation, the names propagate, and some of them end up in the result. If
a reduces to v, then v will contain the names of the subexpressions of a that
contributed to producing v. Then, if we are given a’ that coincides with a on
those subexpressions, we may deduce that a’ reduces to v.

In our example, we would proceed as follows. First, when given the expression
f(g)(r), we would label some of its subexpressions. The more labels we use, the
more information we obtain. In this example, which is still relatively simple, we
label only components of g and r:

A

§ = Iudz(eg:z, er:u) P2 (e, e3:2)

where eg, e1, eg, and ez are distinct labels. We extend the reduction rules of the
A-calculus to handle labels; in this case, f(§)(#) reduces to eg:ez:2. Stripping off
all the labels, we can deduce that f(g)(r) reduces to 2. Studying the labels, we
may notice that e; and es do not appear in the result. As we will prove, this
means that f(g*)(r*) reduces to 2 for any expressions ¢* and r* of the forms:

g = udz(z,) 2 (,2)

Obviously, ¢’ and 7' match this pattern, and hence f(g¢’')(r') reduces to 2. As
this small example suggests, our techniques for dependency analysis are effective,
reasonably efficient, and hence potentially practical.

In the next section we review the background for our work and some related
work. In section 3, we study dependency analysis and caching in the pure A-
calculus. In sections 4, we extend our techniques to a more realistic language; this
language includes records and has a weak operational semantics based on explicit
substitutions [ACCL91, Fie90].

2 Motivation and Related Work

The motivation for this work arose in the context of a system-modelling system
called Vesta [LM93, HL93]—roughly a replacement for tools like make and rcs. In
Vesta, the analogue of a makefile is a program written in a specialized, untyped,
higher-order, lazy functional language. The functional character of the language
guarantees that the results of system building are predictable and reproducible.
In Vesta, the basic computation steps are expensive calls to functions like com-
pile and link; hence it is important to avoid unnecessary recomputations. The
programs can be reasonably large; it is therefore desirable to notice cache hits for
large subexpressions rather than for individual calls to primitives (e.g., individual
compilations). Furthermore, irrelevant changes in parameters are expected to be
frequent; so a simple memoisation [Mic68, Hug85] would not suffice, and a more
savvy dependency analysis is necessary.

This paper, however, is not about Vesta. Research on caching in Vesta is
currently in progress. Here we discuss techniques for the A-calculus; these are
somewhat simpler, easier to explain, and perhaps of more general interest.

In the A-calculus, the work that seems most closely related to ours is that of
Field and Teitelbaum [FT90]. They have investigated the problem of reductions
of similar expressions (which may not even yield the same result). Their approach
is based on a A-calculus with a new “fork” primitive (A) rather than on a labelled
A-calculus. For example, they can represent the two similar expressions b(a) and
b'(a) as the single expression A(b, b')(a), with a rule for duplication: A(b,b')(a) =
A(b(a),b' (a)). Their algorithm seems particularly appropriate for dealing with
pairs of expressions that differ at only one or a few predictable subexpressions.

Dependency analysis is also similar to traditional analyses such as strictness
analysis (e.g., [BHAS86]). There is even a recent version of strictness analysis that
relies on a labelled A-calculus [GVSar]. Strictness analysis is concerned with what
parts of a program must be evaluated; in contrast, for doing cache lookups we need
to know what parts may affect the result. Furthermore, we do not use approximate
abstract interpretations, but rather rely on previous, actual executions of programs
similar to the one being analyzed.

3 Dependencies in the Pure A-calculus

In this section we consider incremental computation in the context of the pure -
calculus. This is a minimal system, but it enables us to illustrate our ideas. First
we review some classical results that suggest an approach to dependency analysis;
then we describe a labelled calculus, a basic scheme for caching, some examples,
and finally a more sophisticated scheme for caching.

3.1 The M-calculus

The standard A-calculus has the following grammar for expressions:

a,b,c == terms
| =z variable (x € V)
| Az.a abstraction (z € V)
| b(a) application

where V is a set of variables.
The (rule is, as usual:

(Az.b)a — b{a/z}

where b{a/z} is the result of replacing with a in b. When C is a context (a term
with a hole), we write C{a} for the result of filling C’s hole with a (possibly with
variable captures). We adopt the following congruence rule:

a—b
C{a} — C{b}
The relation —* is the reflexive, transitive closure of —. A computation stops
when it reaches a normal form.
We can now reformulate the problem posed in the introduction. Suppose that
a is a term and a —* v. When can we say that b —* v simply by comparing a
and b7 In order to address this question, we recall a few known theorems.

Theorem 1 (Church-Rosser) The calculus is confluent.

Theorem 2 (Normalization) If a term has a normal form then leftmost outer-
most reduction reaches this normal form.

Clearly the leftmost outermost reduction reduces only subexpressions necessary
to get to the normal form.
A prefix is an expression possibly with several missing subexpressions:

a,b,c == prefixes
| - hole
| =z variable (z € V)
| Az.a abstraction (z € V)
| b(a) application

A prefix a is prefix of another prefix (or expression) b if a matches b except in
some holes; we write a < b. For instance, we have that _(x)(-)(Ay.-(y)) =<
y(x)(z)(Ay._(y)). For the purposes of reduction, _ behaves like a free variable;
for example, (Az.z(-))(a) — a(-).

Proposition 1 (Maximality of terms) If b < d and b is a term, then b= d.

Proposition 2 (Monotonicity) If a, b, and ¢ are prefizes, a —* b, and a =< ¢,
then there exists a prefizx d such that ¢ —* d and b < d.

Theorem 3 (Stability) If a term has a normal form, then there is a minimum
prefiz of the term which has a normal form.

The stability theorem follows from the stability of Bohm trees [Ber78].

We can give a first solution to our problem, as follows. Suppose that a —* v
and v is a term in normal form. Let ag be the minimum prefix of a such that
ap —* v. Given b, if ag < b then we can reuse the computation a —*
conclude that b —* v.

It remains for us to compute ag. As we will show, this computation can be
performed at the same time as we evaluate a, and does not require much additional
work. Intuitively, we will mark every subexpression of a necessary to compute v

along the leftmost outermost reduction.

v and

3.2 A labelled)-calculus

In order to compute minimum prefixes as discussed above, we follow the underlined
method of Barendregt [Bar84], generalized by use of labels as in the work of Field,
Lévy, or Maranget [Fie90, Lév78, Mar91]. Our application of this method gives
rise to a new labelled calculus, which we define next.

We consider a A-calculus with the following extended grammar for expressions:

a,b,c == terms
| ... as in section 3.1
| e:a labelled term (e € E)

where F is a set of labels.
There is one new one-step reduction rule:

(e:0)(a) — e:(b(a))

The essential purpose of this rule is to move labels outwards as little as possi-
ble in order to permit § reduction. For example, (ep:(Ax.xx))(e1:y) reduces to
eo:((Az.zz)(e1:y)) via the new rule, and then yields eg:((e1:y)(e1:y)) by the 5 rule.

There are clear correspondences between the unlabelled calculus and the la-
belled calculus. When a’ is a labelled term, let strip(a’) be the unlabelled term
obtained by removing every label in a'.

Proposition 3 (Simulation) Let a, b be terms, and let a’, V' be labelled terms.
o Ifa =V, then strip(a’) —* strip(b’).
o Ifa=strip(a’) and a — b, then ' —* b for some b such that b = strip(b’).

The labelled calculus enjoys the same fundamental theorems as the unlabelled
calculus: confluence, normalization, and stability. The confluence theorem follows
from Klop’s dissertation, because the labelled calculus is a regular combinatory
reduction systems [Klo80]; the labelled calculus is left-linear and without critical
pairs. The normalization theorem can also be derived from Klop’s work; alterna-
tively it can be obtained from results about abstract reductions systems [GLM92],
via O’Donnell’s notion of left systems [O’D77]. The proof of the stability theorem
is similar to the one in [HL91].

3.3 Basic caching

Suppose that a —* v, where a is a term and v is its normal form. Put a different
label on every subexpression of a, obtaining a labelled term a’. By Proposition 3,
a’ —* v for some v’ such that v = strip(v’). Consider all the labels in v'; to each
of these labels corresponds a subterm of o’ and thus of a. Let G(a) be a prefix
obtained from a by replacing with _ each subterm whose label does not appear in
v'. We can prove that G(a) is well-defined. In particular, the value of G(a) does
not depend on the choice of a’ or v'; and if the label for a subterm of a appears in
v' then so do the labels for all subterms that contain it.

When a —* v, we may cache the pair (G(a),v). When we consider a new term
b, it is sufficient to check that G(a) < b in order to produce v as the result of b.
The next theorem states that G(a) is the part of a sufficient to get v (what we
called ag in section 3.1).

Theorem 4 If a is a term, v is a term in normal form, a —* v, and G(a) <X b,
then b —* v.

Theorem 4 supports a simple caching strategy. In this strategy, we maintain
a cache with the following invariants:

e the cache is a set of pairs (ag,v), consisting each of an unlabelled prefix ag
and an unlabelled term v in normal form;

e if (ag,v) is in the cache and ag < b then b —* v.

Therefore, whenever we know that v is the normal form of a, we may add to
the cache the pair (G(a),v). Theorem 4 implies that this preserves the cache
invariants.

Suppose that a is a term without labels. In order to evaluate a, we do:

e if there is a cache entry (ag,v) such that ag < a, then return v;

e otherwise:

let a’ be the result of adding distinct labels to a, at every subexpression;
— suppose that, by reduction, we find that a’ —* v’ for v in normal form;
— let v = strip(v’) and ayp = G(a);

optionally, add the entry (ag,v) to the cache;

— return v.

Both cases preserve the cache invariants. In both, the v returned is such that
a —*v.

In a refinement of this scheme, we may put labels at only some subexpressions
of a. The function G can be easily generalized to this case: in this case, G(a)
should replace with _ a subexpressions of a only if this subexpression is initially
labelled. The more labels we use, the more general the prefix G(a); this results in
better cache entries, at a moderate cost. However, in examples, we prefer to use
few labels in order to enhance readability.

Another refinement of the scheme consists in caching pairs of labelled prefixes
and results. The advantage of not stripping the labels is that the cache records the
precise dependencies of results on prefixes. We return to this subject in section 3.5.

3.4 Examples

The machinery that we have developed so far handles the example of the introduc-
tion (the term f(g)(r)). We leave the step-by-step calculation for that example as
an exercise to the reader. As that example illustrates, pairing behaves nicely, in
the sense that fst(a,b) depends only on a, as one would expect.

As a second example, we show that the Church booleans behave nicely too.
The encoding of booleans is as usual:

true = A\z.A\y.xz false = Az.Ay.y if a then b else ¢ = a(b)(c)
In the setting of the labelled A-calculus, we obtain as a derived rule that:

if (e:a) then b else ¢ —* e:(if a then b else c)

It follows from this rule that, for example,
(Az.if eg:z then e;:y else eg:z)(es:true) —* ep:esierty
We obtain the unlabelled prefix:
(Az.if = then y else _)(true)

and we can deduce that any expression that matches this prefix reduces to y.
Similar examples arise in the context of Vesta (see section 2). A simple one is
the term:
(if isC(file) then Ccompile else M3compile)(file)

where isC(f) returns true whenever f is a C source file, and file is either a
C source file or an M3 source file. If isC(file) returns true, then the term
(if isC(file) then Ccompile else M3compile)(file) yields Ccompile(file). Using la-
bels, we can easily discover that this result does not depend on the value of
MS3compile, and hence that it need not be recomputed when that value changes.
In fact, even isC(file) and the conditional need not be reevaluated.

3.5 Limitations of the basic caching scheme

The basic caching scheme of section 3.3 has some limitations, illustrated by the
following two concrete examples.
Suppose that we have the cache entry:

((Az.(snd(z), fst(x)))({true, false)), (false, true))
Suppose further that we wish to evaluate the term:
fst((Azx.(snd(x), fst(x)))({true, false)))

The cache entry enables us to reduce this term to fst((false, true))), and eventually
we obtain false. However, in the course of this computation, we have not learned
how the result depends on the input. We are unable to make an interesting cache
entry for the term we have evaluated. Given the new, similar term

fst((Az.(snd(x), fst(x)))({false, false)))

we cannot immediately tell that it yields the same result.
As a second example, suppose that we have the cache entry:

(if true then true else _,true)
and that we wish to evaluate the term:
not(if true then true else true)
In our basic caching scheme, we would initially label this term, for example as:

not(if true then eg:true else e;:true)

Then we would have to reduce this term, and as part of that task we would have
to reduce the subterm (if true then eg:true else ej:true). At this point our cache
entry would tell us that the subterm yields true, modulo some labels. We can
complete the reduction, obtaining false, and we can make a trivial cache entry:

(not(if true then true else true), false)

However, we have lost track of which prefix of the input determines the result,
and we cannot make the better cache entry:

(not(if true then true else _), false)

The moral from these examples is that cache entries should contain dependency
information that indicates how each part of the result depends on each part of the
input. One obvious possibility is not to strip the labels of prefixes and results
before making cache entries; after all, these labels encode the desired dependency
information. We have developed a refinement of the basic caching scheme that
does precisely that, but we omit its detailed description in this paper. Next we
give another solution to the limitations of the basic caching scheme.

3.6 A more sophisticated caching scheme

In this section we describe another caching scheme. This scheme does not rely
directly on the labelled A-calculus, but it can be understood or even implemented
in terms of that calculus.

With each reduction a —* v of a term a, we associate a function d from prefixes
of v to prefixes of a. We write a —7 v to indicate the function. This annotated
reduction relation is defined by the following rules.

o Reflexivity:
a—7ra
where id is the identity function on prefixes.

e Transitivity:
a—5b b—%c

@ = lara) ©
where d'; d is the function composition of d’ and d.

e Congruence: Given a function d from prefixes of b to prefixes of a, we define
a function C{d} from prefixes of C{b} to prefixes of C{a}. If ¢y < C then
C{d}(c) = cp; otherwise, there exists a unique by < b such that cp = C{by},
and we let C{d}(cy) = C{d(by)}. We obtain the rule:

a—5b
Cla} =%y C{b}

o (: If ¢g % b{a/z}, then there exist least ap < a and by =< b such that
co = bo{ag/x}. We obtain the rule:

(\e.b)(a) —3, bla/a)

where dg(co) = (Az.bg)(ag), and ag and by are defined from ¢g as above.

The rules may seem a little mysterious, but they can be understood in terms of
labels. Imagine that every subexpression of a is labelled (with an invisible label),
that @ —7 v, and that vy < v; then d(vg) is the least prefix of a that contains all
of the labels that ended up in vy.

The rules give rise to a new caching scheme. The cache entries in this scheme
consist of judgements a — v, where a and v are terms and d is a function from
prefixes of v to prefixes of a. The representation of d can be its graph (i.e., a set
of pairs of prefixes) or a formal expression (written in terms of id, dg, etc.); it can
even be the pair of a labelling of a and a corresponding labelling of v. Whenever
we encounter a term b such that d(v) < b, we may deduce that b —7% v:

Theorem 5 If a is a term, a —} v, and d(v) < b, then b —} v.

This caching scheme does not suffer from the limitations of the basic one. In
particular, each cache entry contains dependency information for every part of the
result, rather than for the whole result. Moreover, the rules of inference provide a
way of combining dependency information for subcomputations; therefore, we can
make an interesting cache entry whenever we do an evaluation, even if we used
the cache in the course of the evaluation.

4 Dependencies in a Weak A-calculus with Records

The techniques developed in the previous section are not limited to the pure A-
calculus. In this section, we demonstrate their applicability to a more realistic
language, with primitive booleans, primitive records, and explicit substitutions.
The operational semantics of this language is weak (so function and record closures
are not reduced).

4.1 A weak calculus with records

We consider an extended A-calculus with the following grammars for terms and
for substitutions:

a,b,c == terms
| .. as in section 3
| als] closure
| (h=a1,...,ln = an,else = any1) record (I; € L, distinct)
| al selection (I € L)
| true true
| false false
| if a then b else ¢ conditional

s H== X1 =a1,...,Tp = Gy, €lse = apqq substitutions

(xz; € V, distinct)

where L is a set of names (field names for records) and else is a keyword. As
we show below, the “else” clauses in records and substitutions are useful in de-
pendency analysis. We typically think of the “else” clauses as corresponding to
run-time errors (missing fields, unbound variables). The term a,; in an “else”
clause can be arbitrary; a term that represents a run-time error will do.

We use the following notation for extending substitutions. Let s be 1 =

A1y .., Ty = Ap, else = apy1; then (r=a)-sisc =a,x1 = a1,...,T, = an, else =
Gpn+1 if is not among the variables z1,...,x,, anditisz =a,21 = a1,...,Ti—1 =
Qi1y Tig] = Qjgly .-y Ty = Oy, else = a4 if T is ;.

The one-step reduction rules now use explicit substitutions:

T[T = a1, .., Ty = Qp, else = an41] — a; (x = ;)
T[T = a1, ..., Ty = Qp, €lse = any1] — Any1 (x # all z;)
(b(a))[s] — b[s](als])
(Az.b)[s])a — b[(z = a)-]
(b.D)[s] — (b[s]).l
((l1 = a1y... .l = an, else = any1))[s].l — a;s] (=1
(<ll =ay,...,ly = ay, else = an-l—l))[s]'l - a’n+1[8] (l # all ll)
true[s] — true
false[s] — false
(if @ then b else ¢)[s] — if a[s] then b[s] else c[s]
if true then belsec — b
if false then belse ¢ — ¢

An active context is a context generated by the following grammar:

C == active contexts
| - hole
| Cl(a) application (left)
| b(C) application (right)
| al9] closure
| Cl selection (I € L)
| if C then b else c conditional (guard)
| if a then C else ¢ conditional (then)
| if a then b else C' conditional (else)

S == x1=01,...,2; =Cj,... Tpn = ap, €lse = ap11 substitutions

| T1=Q1y---, Ty = Gy, else =C
We adopt the following congruence rule: for any active context C,

a—b

Cla} = C{b)

Notice that this rule allows us to compute inside substitutions, but not under A,
inside records, or in the term part of closures. The relation —*
transitive closure of —.

The prefix ordering for this language is interesting. Let s be the substitution
T1 = ai,...Tn = Qn, else = an41, let 7 be the record (l1 = a1,...,l, = an, else =
an+1). We associate with s and r the following functions from variables or field
names to prefixes:

is the reflexive,

a; if x = x; o ifl=1
) = { Ay ifz # all z; 1) = { anyr if 1 all I;

The prefix ordering is as before except for substitutions and records where s < s’ if
[s](z) 2 [¢'](z) for all z € V, and r < " if [r](I) X ['](1) for all | € L. According

10

to this definition, the order of the components of substitutions and records does not
matter. In addition, we obtain that, if the “else” clause has a hole, then any other
holes can be collapsed into it; for example, the prefixes (I = a,lo = _, else = _),
(I3=_,l=a,else =_), and (I = a, else = _) are all equivalent.

This A-calculus enjoys the same theorems as the pure A-calculus of section 3.1
(modulo that now =< is actually a pre-order, not an order). These theorems should
not be taken for granted, however. Their proofs are less easy, but they can be done
by using results on abstract reduction systems [GLM92]. The stability theorem
ensures that there is a minimum prefix for obtaining any result; moreover, the
maximality and monotonicity propositions are the basis for a caching mechanism.

Finally, we should note that, in this calculus, closures may contain irrelevant
bindings. For example, consider the function closure (Ay.y)[z = z, else = w], where
z is a variable and w is an arbitrary normal form. This closure reduces only to
itself; the irrelevant substitution does not disappear. In this case, we will consider
that the result depends on the substitution. We could add rules for minimizing
substitutions but, for the sake of simplicity, we do not.

4.2 A weak labelled calculus with records

Following the same approach as in section 3, we define a labelled calculus:

a,b,c == terms
| ... as in section 4.1
| e:a labelled term (e € F)

There are new one-step reduction rules in addition to those of section 4.1:

(e:b)(a) — ex(b(a))
(e:b)[s] — e:(b]s])
(e:b).l — ex(b.l)
if (e:a) then b else ¢ — e:(if a then b else ¢)
The grammar for active contexts is extended with one clause:

C u== active contexts
| e as in section 4.1
| e:C labelled context (e € E)

The congruence rule is as usual—it permits reduction in any active context.

4.3 Dependency analysis and caching (by example)

The labelled calculus provides a basis for dependency analysis and caching. The
sequence of definitions and results would be much as in section 3. We do not go
through it, but rather give one instructive example.

We consider the term:

(Az.zdy)(lh = y1,lo = y2, else = w)) [y1 = 21, Y2 = 22, else = W]
This term yields z;. We label the term, obtaining:

(Az.z.dy)(lh = (e1:y1),l2 = (e2:y2), else = (e3:w)))
[y1 = (ea:21),y2 = (e5:22), else = (eg:w)]

11

This labelled term yields ej:e4:21, so we immediately conclude that the following
prefix also yields z;:

(Az.zly){(lh =y1,la = _,else= _))[y1 = z1,y2 = -, else = _]

Thanks to our definition of the prefix ordering, this prefix is equivalent to:

(Az.z.dy)(lh = y1, else = _))[y1 = 21, else = _]

Suppose that, in our cache, we record this prefix with the associated result z1; and
suppose that later we are given the term:

((Az.z.lh){l1 = y1,13 = y17(y17), else = W) [y17 = 21,1 = 21, else = W]

This term matches the prefix in the cache entry, so we immediately deduce that
it reduces to z1.

As this example illustrates, the labelled reductions help us identify irrelevant
components of substitutions and records. The prefix ordering and the use of else
then allow us to delete those irrelevant components and to add new irrelevant
components.

In some applications, irrelevant components may be common. For example, in
the context of Vesta, a large record may bundle compiler switches, environment
variables, etc.; for many computations, most of these components are irrelevant.
In such situations, the ability to detect and to ignore irrelevant components is
quite useful—it means more cache hits.

5 Conclusions

We have developed techniques for caching in higher-order functional languages.
Our approach relies on using dependency information from previous executions
in addition to the outputs of those executions. This dependency information is
readily available and easy to exploit (once the proper tools are in place); it yields
results that could be difficult to obtain completely statically. The techniques are
based on a labelled A-calculus and, despite their pragmatic simplicity, benefit from
a substantial body of theory.

Acknowledgements

We thank Tim Teitelbaum for discussions about his work with John Field; Allan
Heydon, Jim Horning, Roy Levin, and Yuan Yu for discussions about Vesta; Alain
Deutsch and Simon Peyton Jones for comments on strictness analysis; and Georges
Gonthier for assorted remarks on a draft of this paper.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitu-
tions. Journal of Functional Programming, 1(4):375-416, 1991.

[Bar84] Henk P. Barendregt. The Lambda Calculus. North Holland, Revised
edition, 1984.

12

[Ber78]

[BHAS6]

[Fie90]

[FT90]

[GLMY2]

[GVSar]

[HL91]

[HLO3]

[Hug85]

[Klo80]

[LévT8|

[LM93]

[Mar91]

G. Berry. Stable models of typed lambda-calculi. In Proc. 5th Coll. on
Automata, Languages and Programming, Lectures Notes in Computer
Science, pages 72—89. Springer-Verlag, 1978.

G. L. Burn, C. Hankin, and S. Abramsky. Strictness analysis for higher-
order functions. Science of Computer Programming, 7:249-278, 1986.

John Field. On laziness and optimality in lambda interpreters: Tools
for specification and analysis. In Proceedings of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages, pages 1—
15, 1990.

John Field and Tim Teitelbaum. Incremental reduction in the lambda
calculus. In Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, pages 307-322. ACM, 1990.

Georges Gonthier, Jean-Jacques Lévy, and Paul-André Mellies. An
abstract standardisation theorem. In Seventh Annual IEEE Symposium
on Logic in Computer Science, 1992.

Milind Gandhe, G. Venkatesh, and Amitabha Sanyal. Labeled A-
calculus and a generalised notion of strictness. In Asian Computing
Science Conference, LNCS. AIT, Springer-Verlag, December 1995 (to

appear).

Gérard Huet and Jean-Jacques Lévy. Computations in Orthogonal
Term Rewriting Systems. MIT Press, 1991.

Chris Hanna and Roy Levin. The Vesta language for configura-
tion management. Research Report 107, Digital Equipment Cor-
poration, Systems Research Center, June 1993. Available from
http://www.research.digital.com/SRC/publications/src-rr.html.

John Hughes. Lazy memo-functions. In Jean-Pierre Jouannaud, editor,
Functional Programming Languages and Computer Architecture, pages
129-146, September 1985.

Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, CWI,
1980.

Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda
Calcul. PhD thesis, University of Paris 7, 1978.

Roy Levin and Paul R. McJones. The Vesta approach to precise config-
uration of large software systems. Research Report 105, Digital Equip-
ment Corporation, Systems Research Center, June 1993. Available
from http://www.research.digital.com/SRC/publications/src-rr.html.

Luc Maranget. Optimal derivations in weak lambda-calculi and in
orthogonal term rewriting systems. In Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages,
1991.

13

[Mic68] D. Michie. ‘Memo’ functions and machine learning. Nature, 218:19-22,
1968.

[O’D77] Michael O’Donnell. Computing in Systems described by Equations. PhD
thesis, Cornell University, 1977.

14

