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Abstract

The standardisation theorem is a key theorem in
the A-calculus. It implies that any normal form can
be reached by the normal order (leftmost outermost)
strategy. The theorem states that any reduction may
be rearranged in a top-down and left-to-right order.
This also holds in orthogonal term rewriting systems
(TRS), although the left-to-right order is more sub-
tle. We give a new presentation of the standardisation
property by means of four axioms about the residual
and nesting relations on redexes. This axiomatic ap-
proach provides a better understanding of standardi-
sation, and makes it applicable in other settings, such
as dags or interaction networks. We also treat conflicts
between redexes (critical pairs in TRS). The axioms
include Berry’s stability, proving it to be a intrinsic
notion of deterministic calculi.

1 Introduction

The A-calculus has two main syntactic theorems.
One is the Church-Rosser theorem, which induces
uniqueness of normal forms. The second one is the
standardisation theorem [1], which shows that left-
most outermost reduction is a terminating strategy.
These two fundamental theorems can be found in
many different situations, such as in PCF (typed A-
calculus augmented with several §-rules, such as re-
cursion or arithmetic), in orthogonal term rewriting
systems [2], in orthogonal dags and in interaction net-
works. These different settings must share a common
property to yield these two results. As proving these
properties time and again is rather frustrating, there
have been attempts to define an axiomatic version
of the Church-Rosser property [3]. However, to our
knowledge, nothing has been done for the standardi-
sation theorem. We try here to fill this gap, and to
present simple axioms, that we feel are the essence of
the standardisation property.

2 The standardisation property
In the A-calculus, the normal order is a terminating
strategy. For instance, take K = Azy.z, A = Az.zz.
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Then the normal reduction

Ka(AA) — (Ay.a)(AA) —a

reaches the normal form a, while the rightmost reduc-
tion loops. This is a corollary of the standardisation
theorem, which also works for non-normal forms. A
reduction

R R R,
Mo = M; =2 My... 3 M,

is standard, when for every 1, j, such that i < j, the
redex R; is not a copy (residual along this reduction)
of a redex R} outer to or to the left of R; in M;_;.
Clearly, leftmost outermost reductions are standard,
but so are further reductions, like

I(Ka(AA)) — I((Ay.a)(AA)) — Ia

where I = Az.z. In a standard reduction, when a re-
dex is contracted, all redexes to the left of it or outer
to it are frozen. Hence standard reductions work top-
down and left-to-right. The standardisation theorem
[1] states that, if M —* N, there is a standard re-
duction from M to N. The proof [4] is not easy, but
heavily relies on the left-linearity of the A-calculus.

It is rather easy to understand the outside-in part
of the standard reduction, but left-to-right is less nat-
ural. In our examples, the righmost outermost reduc-
tions loop. Intuitively, redexes may be created to the
right, as in (Ay.a)(AA), and a looping redex may be
nested in a K-redex.

But left-to-right is no longer valid with é-rules.
Consider the case of first order term rewriting sys-
tems (TRS) [2], and, for instance, the following system
{A— A,B— C,F(x,C)— D}. Then

F(A,B) — F(A,C) — D

reaches the normal form, whereas the leftmost reduc-
tion loops. Here terminating strategies are clearly
rightmost, and we suspect that we may define a notion
of normal reduction, representing the minimum nec-
essary to reach the normal form. However, strategies



may be subtle, since some operators may solicit right-
most reductions, others leftmost, while others may
change strategy depending on the values of their ar-
guments. In [2], a complicated definition of standard
reduction is given for orthogonal TRS, i.e., left-linear
and without critical pairs, and the standardisation
theorem is proved. This definition is very technical
because it involves tracing (residuals) of any subex-
pression in terms, and the structure of computed ob-
jects is mixed with the nature of transitions (redexes).

Remark that it is incorrect to simply drop the left-
to-right or right-to-left part of the definition of a stan-
dard reduction, since then

Ka(AA) — Ka(AA) — (Ay.a)(AA) —a

F(A,B)— F(A,B)— F(A,C)— D

would be standard reductions. But, in these two re-
ductions, the first step may be permuted with the fol-
lowing one, which gives

Ka(AA) — (Ay.a)(AA) — (Ay.a)(AA) —a

F(A,B) — F(A,C) — F(A,C) — D

showing a conflict between steps 2 and 3 since, in the
permuted reductions, the third contracted redex is a
copy (residual) of a redex external to the second con-
tracted one. So, looking backwards is not enough for
redexes. It is also necessary to search forwards on
permuted reductions.

Also, note that we did not consider arbitrary per-
mutation of reductions. We have considered permuta-
tion of digjoint (non-nested) redexes. This remark is
technical, and simplifies the introduction to our set-
ting, but will be proved unnecessary.

Thus it seems enough to keep trace of redexes
(through residuals) and to have a notion of nesting
of redexes in each term.

3 Abstract reductions systems

An abstract reduction system is a (possibly infinite)
multi-graph, where vertices are terms, and arcs are
labeled by redexes. Take, for example, the following
TRS

F(A,B)

F(A,C)
4

The structure of terms may be ignored. One just needs
to keep name for redex occurrences and a partial or-
dering between outgoing arcs of a given vertex, which
will represent the nesting property.

T

To trace redexes, each arc u induces a residual re-
lation [u]] between an arc ¢t with same origin as u and
an arc t’ outgoing from the target of u. An arct’, such
that t[u]t’, is a residual of ¢ by u. A redex may only
be residual of a single redex, i.e., the inverse of [u] is
a partial function. Moreover, there is no t' such that
t[t]t', i.e., redexes vanish when contracted.

In the previous example, the only residual relations
that hold are the the following: u[t]u, v[t']v, t[u]t'.
Moreover, the only nesting relation is v < ¢/, which is
graphically represented by marking the corresponding
angle. Note that the formalism embraces both the
examples of the A-calculus and of TRS.

So, we represent an abstract reduction systems by
a multi-graph, a nesting ordering at each node, and
a residual relation for each arc. Now all we do is
state the propertiesneeded to define standard reduc-
tions and prove the standardisation theorem.

Firstly, we restrict ourselves to left-linear systems
(only one occurrence of each meta variable on left hand
side of reduction rules) without incompatibilities (crit-
ical pairs). This is simply stated by the two following
axioms. The first axiom provides Church-Rosser.

Axiom 0 (Finite Developments) Let T be a set of
redexes in a given term M. A reduction relative to T
contracts only residuals of redexes in T'. A develop-
ment of T is a mazimal reduction relative to T. We
assume that:

1. there is no infinite reduction relative to T,
2. all developments of T end on the same term,

3. if u is any redex in M, the residuals of u do not
depend upon the development of F'.

This ensures Church-Rosser, but we do not stress
this property here. See [3, 5, 1, 6, 7, 8] for a careful
study. Finite Developments will just be useful techni-
cally. The first important axiom, which allows us to
define standard reductions, is

Axiom 1 (Linearity) u £ t = 3. t[u]t’



Thus redexes may disappear, or may be duplicated,
only if they are inside contracted redexes. We repre-
sent this graphically, in the example of TRS as

Standard reductions can now be defined as outlined
at the end of section 2. Let ¢t Lu mean that ¢ and u are
incomparable w.r.t. the nesting ordering, i.e., ¢ € u
and u £ t. Graphically the corresponding angle is
marked as perpendicular. Now, by combining axiom 0
and axiom 1, it is easy to show that when ¢ L u there are
two unique redexes t’ and u’ such that t[u]t’, uft]u’;
this gives the following commuting diagram

We call this elementary permutation the square per-
mutation.

Definition 1 The reduction 322 ... 2 is standard
if for every i, j, such that i < j, there is no reduction

I
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] Li ] B
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To prove the standardisation theorem, we make use
of a second axiom.

Axiom 2 (Context free)
(u £ t, t[u]t!, v[u]v’) = (tRv < 'Rv') where R
s < or >.

This axiom means that locations outside the con-
tracted redex are not changed. For TRS, it means

Theorem 1 If M —* N, there is a standard reduc-
tion from M to N.

Proof: by Klop’s method [4]. See section 5 for a
detailed proof.

Now, a third axiom makes our definition of stan-
dard reduction more natural.

Axiom 3 (Creation)
(t < u, tfu]t!, 2. V[uv) =t <w

This axiom, which appeared in [9], states that it
is impossible to create a redex through another one.
This is due to the fact that our reduction systems are
conflict free (critical pairs for TRS). Graphically,

Vi

The proposition below shows that standard is in-
deed outside-in.

Proposition 1 If a redex x contains the first redex to
be reduced by a standard derivation d, then no residual
of x 1s nested into one redex computed by d.

This third axiom also enables us to give a more
natural, but equivalent, definition of a standard re-
duction.

Proposition 2 The definition of a standard reduc-
tion is equivalent if we replace uj, Loy by uj, £ vg.

4 Uniqueness of standard reductions

In the A-calculus, there is only one standard reduc-
tion to the normal form. However, there may sev-
eral standard reductions between two arbitrary terms.
Take I = Az.xz. Then I(Iz) — Iz is computed by con-
tracting any of the two redexes, and a single step re-
duction is always standard. It is analogous to ambigu-
ous context free languages where a word may be ob-
tained by two different parse trees. However, a parse
tree is totally defined by its leftmost derivation. In
the A-calculus, it is hard to speak of parse trees, but a
permutation equivalence may be defined on reductions
[6, 10, 2, 11], and there is a single standard reduction
in each equivalence class.

The example I(Iz) is rather simply treated with
permutations of reductions. A more contrived exam-
ple is the parallel-or of the reduction system {4 —
T, por(T,z) — T, por(z,T) — T}. The following ab-
stract reduction system, which validates the 3 axioms,
abstracts the parallel-or example on por(A, A)
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. u v
where there are two standard reductions —— and
1"

v u . . .
——, equivalent by permutations. To recover unique-
ness of standard reductions, we must eliminate this
counter example.

Axiom 4 (Stability)
(tLu, t[u]t, w[t]u’, vilu]v’, va[t']v")
= Ju. (v[t]vr, v[u]vs2)

This axiom may seem incredibly complicated. It
appears quite naturally in the uniqueness proof. It
means that the characteristic function of a redex ¢ is
stable in the sense of [12]. Graphically,

t u t u

v

t u' t
2 2

Vi

v, =V,

There i1s an extra problem; the nesting ordering is
not total. There is no notion of left-to-right or right-
to-left. So it is hopeless to achieve a unique standard
reduction in a permutation class, but standard reduc-
tions will be unique up to a square-equivalence. Say
that reductions d =22 ... 22 and e =222 .. 22 are
square equivalent (d ~, ¢) if e may be obtained from

d by a sequence of square permutations.

Proposition 3 Standard reductions are closed w.r.1
to square equivalence.

This last property shows that a standard derivation
is a derivation where no ’standardizing’ permutation,
that is a permutation commuting the nesting redex
before the nested redex, is obtainable after as many
square permutation as one desires. Therefore, stan-
dard is also a notion of minimality.

Theorem 2 In each equivalence class, w.r.t. general
permutations, there is a unique standard reduction, up
to the square equivalence.

5 Constructions and proofs
5.1 Introduction

This section is devoted to the proofs and construc-
tions underlying the paper. We will introduce techni-
cal notations and extension to have proofs more read-

able.

First [u] is extended by induction to [d] where d is
a derivation: v[ud]w iff 3’ v[u]v’ and v'[d]w.

Secondly, f a development of U will be noted f
U, and this notation is extended to f o d[e] by: f
ud[e] if f = f1fa2, f1 < u[e], fo o d[e].

Finally, since f, f' o« U implies that [f] = [f']
when U is a redex verifying finite developments, [U]
can be defined as [f] with f any development of U.

We will also often write ufJv] to express {w/ufv]w}
and [v]w for {u/uv]w}, as it is usually done for rela-
tions; and & = uf[v] means that uf[v] = {z}.

5.2 The standardization algorithm

We introduce a non deterministic algorithm called
STD. Given a derivation from M to N, it computes a
standard derivation linking the same terms. To build
this algorithm, one needs to locate an outermost redex
contracted into a derivation d to standardize.

ext u=1u

ext ud = { v if Ju,v[ufext d and u L v

u  otherwise.

ext ud| ———= |ext d

u=ext ud d
—F——= |ext d
u=ext ud d

The algorithm grabs this external redex from the
derivation, and repeats the process untill there is noth-
ing left:

STD computes step by step the sequence

v v v
=2 ...3 ... as follows:

let v1 = ezt d, and choose dy o dfJvq].

let v; = ezt d;, and choose d;11 o d;[v;].

STOP if d; = 0




One should notice that at any step ¢ of the algo-
rithm (v1 ...v;)d;41 reduces M to N.

One needs a lemmaabout ext and « before starting
the termination proof:

Lemma 1 Let ¢ = ext fd with f x U. Then either
z is a redex in U, orYu € U,u £ x and z[Ulezt d.

Proof: Let f = uf’, with u € U and f’ o< U[u]. Sup-
pose the lemma is true for Ufu]: If 2 € U, finished.
If 2 € U then u £ x since u is not the external. One
verifies that z[u] = ezt f'd is not in Ufu] because
two redexes cannot have the same residual. Therefore
z[f] = ezt d and no redex in Ufu] nests ezt f'd. Sup-
pose there is a redex v € U such that v < x; then by
axioms 1 and 2 v[u] < z[u]. Since v[u] € Ufu] and
z[u]] = ext f'd, this is impossible: Vv € U, v £ z, and
z[f] = ext d. The lemma follows by induction on the
finite development.

Proposition 4 STD terminates.

Proof: We use an induction on the length of d. First if
d is a single redex STD stops after one step. Suppose
STD terminates on d, and returns f ==+ ... 24 Let
e= (22 ... % ) be the sequence produced by ud.
Suppose this sequence is not finite. Let U; = u and
Vi > 1,U;y1 = U;[v;]. Then for any i > 1, from the
lemma one deduces that either v; is a redex in Uj;, or
there exists j such that w; = v;[U;]. Note that the
last case can only happen a finite number of times,
though j is counting the times this case happens, and
is strictly bounded by ¢q. There is a rank ig from which
the first case is the only case to occur. But this is
refuted by the finite development axiom, since any of
these redexes comes from the same set U;,. Thus
STD must terminate: the sequence obtained is always
a true derivation.

Proposition 5 STD standardizes

Proof: Now one wants to show that this generated
derivation is standard, that is to say it contains no
conflict. This proof by induction on the length of d,
showing that the first redex in e cannot come into a

squareconflict.

V1 V2

Let e =222 2% bhe what STD computes when

given ud as a datum, and f =223 2% the result it
would have obtained making the same choices than to
obtain e, that is to say efu] = f.

We want to prove that a conflict between v; and vy,
implies a conflict into f. By hypothesis, f is standard,
Suppose there is a conflict between v; and vy in e.

If v1 = u, since e = uf, there would exist a redex
w’ such that w'[u]w; and w’' Lu or w’ < u from the
definition of a conflict. Since w; = ezt d, w’ would

then be ezt ud = u. Therefore, if v1 = u, no conflict
ivolves v;.

Otherwise, u £ vy, and thus v;[u]w;. By a se-
quence of square permutations, vy has a residual xj
nested in v}, and vy a residual of v}, by 2. z2 = v; and
Vi € [2..k), viei]vi, g1 = ai[v)]; with Vi € [1.k —
1], vfLa;. One defines Uy 2 u, Ujyq 2 U;[v], and
U, 2 u, Ui, 2 U.[v!]. Therefore, by finite develop-
ment: U.[z;] = U;, and one verifies easily by axiom 2
by the sequence of v} that Vi € [2,k],Vt € U}, t £ ;.

u d
s

—

Vl= X 2 t

7)

e

X3

A

XK

k o)

e f

Suppose one built Vj < 1, (/)(j),'w;(].) and Yy(j)+1
such that vy ... vifufws.. .w;(j), 2;[U5]yg(j), and w
square permutates with w} ... w’, ... One easily veri-
fies by finite developments that y» = w, ¥j € [2..6(i —
D], wilyilw;, yj+1 = Uj [wi]. ,

/ if i §/ k—l/, if v [[/UZ]] =, since z;[Uj] = Yo(i-1) and
vl v [u]wh .. Wy (;_qy, one defines é(i) = ¢(i — 1),
and the istep is completed. If v![U}] # 0, let us define
é(i) as ¢(¢ — 1) + 1. Since two redexes never have the
same residual, v} € U} implies that v; € U;. Since v; is
defined as the external of a derivation beginning by a
development of U;, by the lemma above, V¢t € U;,t £
v; and v;[U;Jwy(i). One notes that V¢ € Uj,t £ v} by
axiom 2. One defines wy (i) = v;[U}] and notices that
'w;(i)[[y(r/,(i)]] = wy(;). Finally, by axiom 2, since v} Lz,
w;(i)J_yﬂi) and one defines yg(;)41 = yd,(i)ﬂw;(i)]].

if i = k, since v}, < zp and Vt € Uj,t £ xx, by
transitivity V¢ € U}, ¢ £ v,. One defines ¢(k) = ¢(k—



1)+ 1 and v}, [[U;C]]w;(k) with by finite developments:

w;(k)ﬂyﬂk_l)]]'wﬂk) and by axiom 2: w;(k) < Yg(k)-
There is a squareconflict between wy and wgr). o

Uil
. Xi-1 Yo(i-1)
Vi-l U -1
i Wi-1)
W .
XI V|_1 y I) (p(l'l)
Ui
_ i
i+1 |

The existence theorem is now a corollary of our
construction:

Theorem 1 If M —* N, there is a standard reduc-
tion from M to N.

5.3 Unicity proof
Proof of Proposition 1
By induction on the length of d. Let d = u; ... u,,

and z; 2 z.

if n = 2, there exists a unique residual z5 such that
z1[u1]z2. Suppose ug < z9. By axiom 3 , there exists
a redex uf, such that ufJu;]us, and it is unique by left-
linearity. One checks by axiom 2 that if us < z5 then
uh < z1 and by transitivity uhy < uy, and if us = 24
then uf, = z1 < wuy, both leading to an impossible
squareconflict in d. Finally, us € z3, the lemma is
proved for n = 2, and by axiom 1, one defines z1[d] =
{zs}.

let d =243 Y2t pe standard, and z; < ui. 29
is easily defined as z1Ju1]z2. If z9 < us then by induc-
tion, no residual of z; is ever contained into a redex
reduced into d. because 2223 ... """ ig also standard.
Since ujug is standard, one knows from above that
us cannot nest zy. The last case to study is therefore
us Lz, By axiom 3 there exists a redex u} such that
ubuiJua. Since d is standard, uf £ u;. By axiom 2,
uh is also disjoint to z1, by transitivity u; € ub. Mix-
ing both results, one obtains that u; Luj, and notices

that there is a unique residual u} such that uq[Jub]uf.
The same for z1, there exists a unique residual z{ of z;
by uf. Finally, one checks by axiom 2 that 2] < u} and

D¥e " g still standard. Thus by induction, no

residual of 2] is ever contained into redex reduced by
ujusz ... uy41, therefore since nor z1 nor zs is contained
into uy or wus respectively, and z;[ujus] = 2{[u}], no
residual of z; is ever contained in one reduced by d.

Proof of Proposition 2

d is not standard with our last definition, it can-
not be with the new one, since a conflict with square
permutations is also a conflict with generalized ones.
To prove the equivalence, one has to prove that a
generalized conflict in a derivation implies one with

square permutations. Let d =2 ... %2 be a deriva-
tion where there is a generalized conflict between wuy
and u; (k < !). After any permutation, one knows by
axiom 1 that vz has only one residual. If no redex
in ' "5 is nested by this residual, then any of
these is digjoint to the residuals of v, and therefore
the generalized conflict is only a square conflict. Oth-
erwise, let k' be the first indice such that the residual

of uy, nests uj,. Then if d' =2 M was standard, no
redex reduced by d’ could nest a residual of vg. But
this happens on indice I: d’ is therefore not standard,
d' neither. o

Proof of Proposition 3

We want to show that a standard derivation re-
mains standard after a square permutation. This will
be proved by an induction on the length of the deriva-
tion, since the proposition is clear for a two redexes
derivation. Suppose proved the property for deriva-
tions with a length less than n, and let d =232 . %2
be a standard derivation. Suppose that e =222 . 22
obtained from d by permuting the (u;,u;y1)square
contains a square conflict between v, and v (with
k < l). Many cases are straightly impossible using
induction or the definition of a square conflict: if
(i =0,k > 2),0r (i > 1,k > 1) by induction with
Uy ... up, if (i =0,k=0)or (i=0k=1) by defini-
tion of a squareconflict. if (i > 2, k = 0) by induction:
suppose there is a squareconflict between ug and v;
in e, with [ > 2 otherwise the conflict existed in d,
there exists u} such that w)} _Lug; therefore with wuy
the unique residual of ug by uf, there is a conflict in

7 I
Ug v v . . . Ugu u
-2 ... 2, and therefore by induction in 3-=3 ... =2,

This refutes that d is standard, and proves this case
cannot hold.

The last case is a bit more complicated to check:
k=0andz=1. Let us call from now z = ug = vg.

if { = 1, there exists v such that v{[z]v; and v} <
z. By axiom 3, there exists u} such that uf[z]u,
otherwise v; would nest w;. If  nests u} then by
transitivity v} nests u) and therefore by axiom 2 v,



nests u1. So z does not nest u}, and vice versa since
d is standard, u} does not nest z. Since zLu}, there
exists a unique residual z’ of z by u}. If u} was nesting
v}, it would nest x, therefore by axiom 1 and 2 one
obtains that there exists a unique residual uf, of v{ by
u} and u} < #’: since there is no conflict in d, the case
(k=0,i=1,l=1) cannot refute our lemma.

if | = 2 then there exists v}, v§ and 2’ such that
v La, vi[z]vl, z[vi]e’, vh < 2’ and vh[zve. Since
u1Lvy and ugfvi]va, by axiom 4 there exists a redex u)
such that uf[v]]v} and w)[z]u;. By axiom 2, v} < z,
this proving that the case (k = 0,7 =1,/ = 2) cannot
refute the lemma.

if | > 2 then there exists v, v, 2’ and 23 such that
viLa, vi[z]vr, z[vi]e’, vhLa’, vh[2]ve and 2'[vh]as.
By axiom 4, there exists a redex uf such that v} [v]]v}
and uf[z]u;. By axiom 2, u}lz and there exists a
unique residual 2’ of z by u}. By the axiom 2, v} L v}
and there exists a unique residual uf of v} by u). By
the axiom 2, 2" Lu} and by finite development, z3 is
the unique residual of 2" by u}. Therefore there is a
square conflict between & and wu; into d. This being
impossible implies that the case (k = 0,7 = 1,1 > 2)
cannot refute our lemma.

Proof of Theorem 2
Lemma 2 Letd = uj...u, be a standard derivation.

If z[d] = 0 then d[z] is a standard derivation.

Proof: We will proceed by induction on the length of d.
By Proposition 1 and Axiom 1, for any ¢ u; cannot be
nested in a residual of z by wuy ...u;_1, hence d[[2] is
a derivation of length at most n. It follows that the
induction hypothesis can be strengthened to:

For all standard derivations d' shorter than
d, if 7 s a family of redexes such that
Z[d'] =0, d'[Z] is standard.

which is easily proved by induction on the develop-
ment of Z.

If d[z] has length 1 it is trivially standard; if not,
let d = wjuad' and dz] = vivee’. We consider the
possible relations between u; and z. If z = u; then
d[[z] = us2d’ is standard. Otherwise, z < u; is forbid-
den by Proposition 1 and Axiom 1, so u1[z] = {v1}.
Since usd’ is shorter than d, we can apply our strength-
ened induction hypothesis and deduce that vse’ =
uad'[z[u1]] is standard. So all we need to show is
that v; does not conflict with the rest of d[[z]. This is
obviously true if v1 creates v or if [vi]ugs < vy. Hence

assume there is v} 2 [vi]ve £ v1.

If 2 L uq, then 2 has a unique residual 2z’ by uq, and
z' ¢ us by Proposition 1. If 2/ = us then zvjvqe’ is a
square permutation of d, hence is standard by Propo-
sition 3. Otherwise we can apply Axiom 4 and deduce
the existence of a uy = [ui]us = [z]vs. Moreover
uh & uy since d is standard, and we assumed v} 2 vy,
so by Axiom 2 we have both u}, L u; and v}y L v;.
Let u} and v| be the unique residuals of uw; and vy
by uh and vf, respectively. By Axiom 2, 2’ £ us
implies z £ uh,m so uh[z] = {vh}. Hence by Ax-
iom 0 u)[[z[uy]] = wizv4] = {vi}. Also d'[z[ujus]] =
d'[z[urus]] = €', so that wid'[z[ub]] = vie’. By
Proposition 3 uhu}d' is standard, so applying the in-
duction hypothesis to u}d’ and z[u,] we get that vie’
is standard too. Since any conflict from vy in vivqe’
would have to go through v}, it follows that d[z] is
standard.

Finally, we have the z > u; case. Here Axiom 3
implies that z cannot create vy 2 vy, so there is a



wy 2 [z]vh. By construction of vivqe’, the first index k
such that uy is not a residual of z exists, and verifies
upzfur ... ux — 1]] = va. Set for every 1 < i < k,
wi+1 = wifu;]. Each w; is a single redex, and for each
i < k we have u; £ w;. For ¢ = 1 this follows from
vy & vh. Since z > wuy by transitivity this implies that
z & wy, and all ¢ > 1 cases follow from Axiom 2. Since
d is standard we also have up_1 % wr_1. If k > 2 this
implies by Axiom 2 that w; ¥ w; for all 1 < ¢ < k,
and that z ¥ w1, which gives u; ¥ w; by transitivity
with z > uy. In all cases we have u; L w; for all
i < k,and v; L v} by Axiom 2. Now we can define
u} = u;fw;], v] = v1[vh], and finish the argument as
in the uq L z case: wiu} ... uf_jug...uy, is a square
permutation of d, hence is standard by Proposition 3,
its residual by z is vhvie’, hence by induction vie’ is
standard, and d[[z] is standard.

Proof of Theorem 2: Let d = u;...u, and e =
v1 ...V, be two standard derivations in the same
equivalence class w.r.t to general permutations. First
observe that it is a basic property of equivalence by
permutation that u;[e] =  and v;[d] = §. By Propo-
sition 1 these imply that either u; = vy or uy Lv;.
Using this, we show that uj(efui]) ~1 e. Consider
the largest integer k such that for all 0 < i < k, there
is a unique residual w; of uy by v1...v;_1 and w; L v;
if i < k. Since ujfe] = 0, k is clearly bounded. Now
wy, is the first redex in the derivation efv; ... vk_1],
which is permutation equivalent to vt ...v,s, and is
standard by Lemma 2. By the above observation we
must thus have wp = wvg, so ui(efui]) ~1 e. By
Proposition 3, uy(e[u1]) is standard, hence e[u;] and
us . ..u, are shorter equivalent standard derivations.
By induction on n they are square permutation equiv-
alent, hence d and e are too.

6 Abstract systems with incompatibil-
ity.

Permutations of reductions have been considered
even in the presence of conflicts (critical pairs) in [5].
These TRS are incredibly more difficult to treat. The
main reason is that the Church-Rosser property no
longer holds. Take {A — B, A — C}. This system
has two trivial overlapping rules, and is not Church-
Rosser. However, finite developments are still correct,

if one considers a set of non overlapping redexes. So,
in the setting of abstract reduction systems, it is nec-
essary to introduce a new relation between outgoing
arcs of a given term: the incompatibility relation #.
We also write u | v for two compatible redexes.

First, three relations are needed between | and <.

Relation 1 t#u = At'. t[u]t’

Relation 2 t <u=—=1t T u

Relation 3 (t[u]t’, v[u]v) = @t Tv ot 1)
Then the 4 previous axioms have to be modified.

Axiom 1 (Linearity) (u £ ¢, t | u) = 3. t[u]t’

Axiom 2 (Context free)
(u £ t, tu]t’, v[u]v') = (tRv & t'Rv’) where R
s < or >.

Axiom 3 (Creation)
(t <u, tu]t/, ' T v, 2. V' [ulv) = ¥/ <wv

Axiom 4 (Stability)
(1 u, tlu, tult, ult]e’', viu'Tv’, valt']v")
= Ju. (v[t]vr, v[u]vs)

Standard reductions are defined just as they were
with no critical pairs. The proofs for existence and
property 3 are exactly the same in both frameworks
since they proceed only by properties on local per-
mutations. The proposition 1 still holds, but such a
non-overlapped redex might have no residual, since a
redex in the derivation can be incompatible with its
residual. And the standard derivations do not verify
lemma 2 anymore, in fact the proposition is only true
when any residual of z is compatible with the redexes
computed in the derivation.

Nevertheless, the uniqueness can be showed by
proving that there exists a redex which is reduced but
whose residuals are never overlapped by a derivation
equivalent to d. (therefore this redex is compatible
with any equivalent derivation).

We will sketch this proof of unicity in this new
framework: At first, one extends the notion of com-
patibility on the derivations, and then proceeds by in-
duction on the length of a standard derivation in the
permutation class. If a redex is a standard, by the ax-
iom 3 and the finite developments the only standard
derivation in its class is itself.

Let d = zd’ be standard. We will prove that no
redex in a derivation equivalent to d nests a residual
of . Suppose there exists a derivation e equivalent to
d such that one of its computed redex nests a residual
from x. Hence there exists a sequence d = dy,...,d,
with d;41 obtained from d; by a general permutation,
such that no residual of z is ever nested into one of



these derivations, and that d, = ex’y'f, and 3/ con-
flicting with 2, the only residual of z by e. This con-
flict means that there exists y such that y < z’ and
y[=']y'-

Since any residual of z is compatible with the one
reduced by e, one can choose a derivation e’ o e[z]
compute STD on ¥ f and in the same time compute
STD on €'y’ f. Let fI and d, be the results. Since d,
is square equivalent to d’ by induction zd’, is standard,
and ef[zd.] = 0, the two derivations being compatible
by construction. Hence z'f is standard by lemma
2, and y < z’. By the property 1, there should be a
residual of y by 2’ f1, but there is not since y[z'y’ f'] =
0.

Hence z is never nested before being computed into
any derivation equivalent to d (and therefore cannot
be incompatible to an equivalent derivation). Now,
suppose there are two standard derivation in the gen-
eral permutation class, for instance d and e. Then d[z]
and e[[z] are easily defined, equivalent, and are both
standard. So they are square equivalent, and therefore
d ~] €.

O

7 Examples

It is straightforward to show that the A-calculus and
orthogonal TRS verify the different axioms (without
conflicts). A more interesting fact is to take the top-
down and left-to-right ordering in A-terms for <. It
satisfies axioms 1-4. As it is a total ordering, L is the
empty relation, which means that the square equiva-
lence is the identity. Thus, it is obvious that there is a
unique standard reduction in each permutation class.
Similarly, the case of strongly sequential orthogonal
TRS [2] gives the same result by taking the leftmost
of the “sequential indexes”.

Instead of merely considering pure A-terms, we may
also examine typed versions, with é-rules, such as
PCF.

As for dags, the nesting relation has to be carefully
designed since several paths may lead to a given ex-
pression. However, we say that ¢ < u if there is a path
from ¢ to u in the corresponding dag. Then checking
that orthogonal dag systems fulfill axioms 1-4 is not
difficult.

Finally, the case of interaction networks [13] is also
interesting, since it deals with graphs. There is not a

single root, but the non-cyclic property enables us to
define nesting. It can be used for proof networks of
linear logic.

8 Conclusion

An axiomatic version of the standardisation has
been presented. It shows the necessary basic prop-
erties between nesting of redexes and residuals. Sim-
ilarly, one may hope that an analogous treatment of
the sequentiality property is feasible, although a priori
more difficult because of the uniformity of this prop-
erty. Thinking of sequentiality in terms of transitions
and redexes would shed a new light at an operational
level, instead of always thinking of this property in
terms of denotational semantics.
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