Linear Logic Without Boxes

Georges Gonthier*

*INRIA
Domaine de Voluceau
Rocquencourt, B.P. 105
78153 Le Chesnay Cedex, France

Abstract

Girard’s original definition of proof nets for linear
logic involves boxes. The box is the unit for erasing
and duplicating fragments of proof nets. It imposes
synchronization, limits sharing, and impedes a com-
pletely local view of computation. Here we describe
an implementation of proof nets without boxes. Proof
nets are translated into graphs of the sort used in op-
timal A-calculus implementations; computation is per-
formed by simple graph rewriting. This graph imple-
mentation helps in understanding optimal reductions
in the A-calculus and in the various programming lan-
guages inspired by linear logic.

1 Beyond the A-calculus

The A-calculus is not entirely explicit about the op-
erations of erasing and duplicating arguments. These
operations are important both in the theory of the A-
calculus and in its implementations, yet they are typ-
ically treated somewhat informally, implicitly. The
proof nets of linear logic [1] provide a refinement of
the A-calculus where these operations become explicit;
they are even reflected in the type system for proof
nets (that is, in linear logic). Abramsky, Wadler,
and others have suggested that this new expressive-
ness makes linear logic a good basis for principled and
useful improvements in functional-programming sys-
tems (e.g., [2, 3]).

In some sense, however, linear logic could go fur-
ther. The usual formulation of proof nets involves
boxes. The box is the unit for discarding and copying
fragments of proof nets. It works as a synchroniza-
tion mark. The disappearance, reproduction, open-
ing, and movement of boxes remain global operations;
full boxes are handled at once, not incrementally, so
for example it is not possible to copy a box gradu-
ally, in little pieces. As Girard points out, boxes are
a bridle to parallelism. They are also an obstacle to
sharing: the box formalism does not support some so-

Martin Abadit

Jean-Jacques Lévy™

t Digital Equipment Corporation
Systems Research Center
130 Lytton Avenue
Palo Alto, CA 94301, USA

phisticated mechanisms for “partial sharing” of com-
mon subexpressions available in A-calculus implemen-
tations such as Lamping’s [4] and Kathail’s [5]. These
sharing mechanisms are essential for optimality in re-
ductions, and we believe that they can be of practical
value. Moreover, boxes complicate the proof theory
of linear logic; with boxes, linear logic falls short of
giving a fully local account of computation.

In this paper we describe a translation of proof nets
into a system of sharing graphs. Proof-net reduction is
simulated with graph rewriting. Sharing graphs are in-
teraction nets, in the sense of Lafont [6]; hence rewrit-
ing is obviously Church-Rosser, and a naive imple-
mentation is straightforward. Everything in the graph
system is entirely local. In particular, there are no
boxes. Instead, brackets are included as nodes in the
system, and they represent the boundaries of boxes.
These brackets can propagate and interact with other
nodes independently of one another, so boxes can dis-
integrate. Partial copying and partial sharing become
possible.

The main sources of this work are Girard’s geom-
etry of interaction [7, 8] and Lamping’s optimal im-
plementation of the A-calculus. The geometry of in-
teraction provides a semantics for linear logic. The
semantics does not require any global notion for in-
terpreting boxes. At a more syntactic level, Lamp-
ing invented graphs similar to ours and used them for
implementing the A-calculus. The geometry of inter-
action provides a useful foundation for these graphs,
leading to various enhancements, while the graphs are
a concrete implementation of the geometry of inter-
action; this was the subject of a previous paper [9].
In this work, we exploit the graphs defined in [9] for
evaluating proof nets instead of A-terms.

The graph system described is of some help in un-
derstanding Lamping’s work on the A-calculus and our
previous work. The extant and new encodings of the
A-calculus can be obtained by encoding the A-calculus
in linear logic and then translating linear logic into
graphs. In turn, a further change of formal system
illuminates the encoding of linear logic: a variant of

Girard’s unified logic [10] admits a simpler, more reg-
ular treatment than linear logic.

This graph system may also serve as a basis for ef-
ficient implementations of the various programming
languages inspired by linear logic in recent years
(e.g., [11, 12, 3]). In fact, work on the A-calculus [13]
suggests an optimality criterion for proof-net reduc-
tion; our system is optimal in this sense, and so one
may even envision optimal implementations of those
programming languages.

So far we have not succeeded in treating the full
linear logic. We seem to have encountered new man-
ifestations of the some of the same difficulties that
have troubled Girard for some time. In particular,
we cannot deal with the additive connectives (so far
not covered by the geometry of interaction); also, the
weakening rule is problematic in classical linear logic.
For these reasons, we sometimes focus on the intu-
itionistic multiplicative-exponential fragments of log-
ics. We hope that some of Girard’s current progress on
polarities [14] will help in extending this work to even
richer logical systems. Some evidence in this direction
is provided by a satisfying translation of polarities for
unified logic.

The next section is a review of sharing graphs and of
the corresponding rewrite rules. Sections 3 and 4 then
introduce the translation of multiplicative-exponential
fragments of linear logic and of unified logic. Sec-
tions 5 and 6 discuss correctness and optimality. Fi-
nally, section 7 discusses the additive connectives and
the weakening rule.

2 Sharing graphs (review)

We deal with undirected graphs built from the follow-
ing nodes:

RO

root vold croissant bracket fan

The fan nodes are the main nodes. Their function
is to allow sharing. Two different parts of a proof
net may share a common subproof; the two parts are
connected to the top ports of a fan node and the com-
mon subproof is connected to the bottom port. The
common subproof may include an inverted fan node,
for “unsharing”; intuitively, then, the common sub-
proof has a hole that is filled differently in different
versions. It is easiest to give an example of unshar-
ing with A-terms: writing @ for application, the term

(MN)(MN') can be depicted

1
/

L

N N'

Here (M _) is shared by the function and the argument
of the top application; the hole is filled with N for the
function and with N’ for the argument.

Root nodes are attached at the important ends of
graphs (for example, in A-calculus encodings, at the
ends that represent results and free variables). Void
nodes are attached at the unimportant ends, those
where information is discarded (so the value of a
discarded subexpression can be fed to a void node).
Croissants and brackets are all bracketing constructs,
and they serve to simulate the edges of boxes.

The easiest way to understand the nodes is as con-
text transformers. A context is a data structure that
serves in navigating a graph, so that matching edges
are taken out of opposing fan nodes (so that sharing
and unsharing are performed correctly). For exam-
ple, traversing a fan node from top to bottom adds to
the context a record of which port was used for entry,
while a traversal from bottom to top removes such a
record to decide on the port of exit.

Several of the nodes are indexed with integers. The
integers indicate the “depth” at which context oper-
ations take place. An alternative presentation of our
system, given in [9], does not rely on indices but de-
composes edges into bundles of parallel edges; this pre-
sentation is somewhat more primitive, but we use the
one with indices for the sake of brevity.

The rules of rewriting are in Figure 1, where it is
assumed that 0 < i < j.

It is clear from these rules that each node has a
preferred port of interaction. When two nodes meet
on an edge facing one another through their ports of
interaction, something may happen—or there may be
a deadlock. Thus, our graphs are interaction nets in
the sense of Lafont. Reduction in interaction nets is
local and automatically Church-Rosser.

Additional garbage-collection rules are natural, and
handy for eliminating useless parts of graphs. For ex-
ample, we may add:

) ;
i L
d ‘. ‘j r
ST

i

5
l
L

&Tﬂjﬂ
H—Ii

i
\

\
H_\j+l
\T—l

i
j-1
i

1

= - 3=
i

[

Figure 1: Reduction rules

iﬂ? T

We do not include these rules in the core system, be-
cause they do not remove all garbage and because they
are not essential for correctness.

3 Implementing linear logic

Now we have the machinery necessary for defining a
translation S from proofs in classical multiplicative-
exponential linear logic (MELL) into graphs in our for-
malism. The logic treated has one-sided sequents, and
includes the multiplicative connectives ® and 2§, and
the exponential connectives ! and 7. As usual, linear
negation ()1 is left in the metalanguage, by viewing it
as primitive on atomic proposition symbols and using
De Morgan laws.

We define the translation by induction on the
length of proofs, rule by rule (omitting the technical
details connected with the exchange rule). The trans-
lation involves an auxiliary function 7', which yields
graphs with unterminated edges. The translation S(7)
of a complete proof 7 is obtained by adding root nodes
labelled with the conclusion formulas of 7 to the dan-
gling edges of T'(7).

Axioms and the cut rule are somewhat dual. Their
effect is to introduce links between complementary for-
mulas, exactly as in proof nets.

e The axiom F A, AL is translated:

A At

e Suppose the proof 7 is obtained by applying the

cut rule

FAT FALYA
FT,A

to proofs ¢ and i, with conclusions - A,T" and
F AL A, respectively. Then T'(7) is

The propositions on dangling edges only serve to in-
dicate the corresponding conclusion formulas of m, ¢,
or Y—they are not part of the graph.

Both the rules for ® and 2§ introduce fan nodes.

e Suppose the proof 7 is obtained by applying the

® rule
AT FBA

FA®B,T,A

to proofs ¢ and 1, with conclusions - A,I" and
F B, A, respectively. Then T'(7) is

Tp

A B

0
A®B

W

A

A

e Suppose the proof m is obtained by applying the

2 rule
FA BT

FA%B, T

to a proof ¢ with conclusion - A, B, T'. Then T'()
is

So both ® and 2 become fan nodes, but typically the
fan nodes obtained are going to face in opposite direc-
tions. More precisely, in the translation of a correct
proof, the fan nodes for ® and 2 connectives are typ-
ically going to meet, face to face, through the edges
generated by the cut rule, and are going to cancel.

The rules for 7 are weakening, dereliction, and con-
traction.

e Suppose the proof 7 is obtained by applying the
weakening rule

rr
F?A, T
to a proof ¢ with conclusion F I'. Then T'(r) is

@ T
?ALﬁO r

Thus, a void node serves to terminate a link to
a conclusion 7A that gets discarded as we go up
the proof.

e Suppose the proof 7 is obtained by applying the
dereliction rule
FAT
F7A, T

to a proof ¢ with conclusion - A,T'. Then T'(m)
is

e Suppose the proof 7 is obtained by applying the
contraction rule

F?A4,74,T
AT

to a proof ¢ with conclusion F?A4,7A,T". Then
T(m) is

As in the rule for %, a fan node gives sharing.

Finally, we have the rule for !. Suppose the proof 7
is obtained by applying the ! rule
F AT
LA, 7T

to a proof ¢ with conclusion F A, ?T". Then T'(7) is

T

\
0 i
T
1A ?

In proof nets, a box would be drawn around 7. Here
the box is simulated with a line of brackets.

As in the A-calculus, computation in proof nets is
cut elimination. Cut elimination involves the global
manipulation of boxes. In the graph formalism, com-
putation is performed with local rewriting steps. We
explain the correspondence between these steps and
the exponential cut-elimination steps in proof nets.
First note that the edge implementing an exponential

cut always connects a pair of facing index-0 brackets,
which reduces to a single edge e. There are four cases:

1. The cut is between F!A, 7T, obtained by the ! rule,
and F?(AL1), A, obtained by the weakening rule.
In the proof-net formalism, the box with the proof
of F1A, 7T is discarded all at once when the cut is
eliminated. In our graphs, the edge e connects the
box contents to a void node. With the garbage-
collection rule this void node may propagate, and
the proof of H!A, 7T is discarded gradually.

2. The cut is between F!A, 7T, obtained by the ! rule,
and F?(AL), A, obtained by the dereliction rule.
In the proof-net formalism, the box around the

proof of F!A, 7T’ evaporates when this cut is elim-
inated and a cut appears between F A,7I" and
F AL A. In our graphs, e connects the box con-
tents to an index-1 croissant. This croissant may
propagate over the proof of F!A 7T'; this is the
equivalent of opening a box gradually.

3. The cut is between H!A 7I', obtained by the !
rule, and F?(AL), A, obtained by the contraction
rule. In the proof-net formalism, the box with
the proof of F!A, 7T is copied all at once when
this cut is eliminated; the result is two cuts with
F?(AL),?(AL), A, one for each ?(At). In our
graphs, e connects the box contents to an index-1
fan node. This fan node may propagate over the
proof of F!A, 7', which is then duplicated node
by node. The two index-0 brackets above the fan
become the new main doors of the box copies.

4. The cut is between ! A, 7T", obtained by the ! rule,
and F?(A1), A, obtained also by the ! rule. In
the proof-net formalism, the box with the proof
of F!A, 7T moves to the inside of the box with
the proof of F A+, A when this cut is eliminated.
In our graphs, e connects the box contents to an
index-1 bracket. This bracket may propagate over
the proof of F!A 7T, changing indices in other
nodes; this is the equivalent of lifting a box inside
another box a node at a time. The remaining
index-0 bracket becomes the new door of the lifted
box.

Our translation, then, gives a local implementa-
tion of linear-logic proofs. It also clarifies and sys-
tematizes some aspects of Lamping’s implementation
of the A-calculus and ours. Those implementations
can be seen as resulting from encoding the A-calculus
in linear logic and then translating linear logic into
graphs. They rely on the use of a recursive type D
defined by D =!(D —o D). However, the more tradi-
tional equation D = (D) —o D can be used instead,
and another implementation of the A-calculus results.
This implementation gives call-by-name. It seems to
be less surprising for orthodox logicians.

4 Implementing unified logic

Girard introduced unified logic as a synthesis of clas-
sical, intuitionistic, and linear logics. FEach of these
logics appears as a fragment of unified logic. The syn-
thesis is achieved by distinguishing zones in sequents.
Each zone is either classical or linear; the zones dif-
fer in what structural rules apply for them. Roughly,
some of the exponential connectives of linear logic dis-
appear in favor of structural information: formulas in
the classical zones correspond to formulas with an ex-
ponential in linear logic, and are managed accordingly
(so for example they can be duplicated).

Here we present a “lightweight” variant tw of Gi-
rard’s unified logic LU and describe its implementa-
tion. One advantage of Lw with respect to MELL is
that it admits a simpler treatment of proof nets, with
a more abstract approach to structural rules. This
simplicity also eases the translation into graphs, and
the related statements and proofs of correctness and
optimality results.

4.1 1w and its implementation

In Lw, sequents are not broken into zones, but some
of the formulas in them are marked with a (7). These
are the formulas that are managed classically. In the
description below, I' and A are sequences of formulas,
possibly marked with (?); A and B are linear formulas
(with no (?7)); C and D are formulas, possibly marked
with (7); and (?)I" is a sequence of formulas marked
with (7).

There are three groups of rules for Lw: identity
rules, logical rules, and structural rules. We present
them and at the same time give their graph implemen-
tation, which is rather straightforward. The notation
is as in section 3; in particular, in all cases, 7 is a
proof obtained by following a proof ¢ with an appli-
cation of the rule under consideration; we also reuse
the notations S and T

The identity rules are the usual axiom F A, AL and
the cut rule. Their implementation is as in MELL.

The logical rules are those for ® and 2§, as in MELL,
and two new rules for the exponentials:

e ! is introduced with

F A, ()T
FIA, (7)T

and T'(7) is
(%)

A nr

0 1
!ALFI %?)r

e 7 1s introduced with

F(?7)A,T
F7A, T

and T'(7) is

Thus, each of the logical rules is implemented by
adding a node with index 0: a fan for the multiplica-
tive connectives and a bracket for the exponential con-
nectives. In addition, the introduction rule for ! in-
volves some nodes with index 1; such nodes are typi-
cal in the treatment of structural rules, which we give
next.

There is an uninteresting permutation rule, and
three more structural rules for classical formulas:

e The rule
FAT

() A, T

is similar to the dereliction rule, and T'(w) is

o The rule
F (DA (DA T

F(7)A,T

is similar to the contraction rule, and T'(7) is

o The rule

T

F(M)AT
is similar to the weakening rule, and has an anal-
ogous implementation.

For the sake of cut elimination, Girard adds a
derivable rule for exponential cuts, which we would
rephrase:

FA (D F ()AL A
F(T, A
We do not have a need for this rule.

On the other hand, it is useful to distinguish the

following derivable axiom in the implementation:

F(7)A,1(AY)

The sequent corresponds to the empty box in proof
nets. Its implementation is:

0
zA\Tﬁ MA

(This implementation is somewhat optimized; a direct
translation of an empty box from linear logic involves
additional nodes.)

With this axiom, it is possible to show that Lw
is equivalent to MELL. The translation from Lw to
MELL replaces (7) with 7, and the other translation
is the identity; both translations preserve provability.
Dereliction and weakening in MELL are simulated in
two steps in Lw: first the corresponding structural
rule introduces a (7) A formula, then the ? introduction
turns the (?7) into a ?. Contraction and ! introduction
require three steps: first a sequence of cuts with the
empty-box axiom to change ?’s into (7)’s, then the
corresponding Lw rule, and finally ? introductions.

Now we have a two-phase implementation of MELL,
via Lw. This indirect procedure seems clearer than the
direct one of section 3. There, some of the rules are
implemented by adding many nodes, which here are
accounted for one by one. Moreover, the graph imple-
mentations of linear-logic proofs in normal form are
not always in normal form. This phenomenon is ex-
plained by looking at the translation from linear logic
to unified logic, which can introduce cuts.

4.2 Lightweight proof nets

It is useful to introduce also a proof-net notation for
Lw. The proof nets of Lw are very similar to those of
linear logic, but more abstract. For the sake of brevity,
we assume that the reader is familiar with Girard’s
definition of proof nets, and focus on the novelties of
Lw proof nets.

Like MELL proof nets, Lw proof nets consist of a set
of occurrences of MELL formulas connected by a set of
links. Each link L has a set of premises and a set of
conclusions; a premise or conclusion of a link is said
to be adjacent to the link. In the Lw net that denotes
an LW proof P, there is a link for every logical or
identity rule in P, and alink for each Lw formulain the
conclusion of P. There are no links for structural rules,
as these affect only the arrangement of conclusions.

Links for identity rules (axioms F A, AL and cuts)
and multiplicative rules are just the same as for MELL.
Conclusion links are new to Lw nets. There are differ-
ent kinds of conclusion links. The conclusion link for a
linear (MELL) conclusion formula A has no conclusions
and a single premise which must be an occurrence
of A. The conclusion link for a classical conclusion
formula (7) A has no conclusions but can have an arbi-
trary number of premises A, possibly 0; this abstracts
away all structural rules applied to that conclusion.
(In MELL nets, only the linear case occurs, so a con-
clusion link can be identified with its only premise;
but this identification does not work for classical con-
clusions. The Lw approach is rather uniform, in that
every formula is conclusion of exactly one link, and
premise of exactly one link.)

The net implementation of the exponential rules in
Lw is quite different from that for MELL. The 7 link has

- - -

| AX ‘}
S By
— |
A B |
ASTB O AX_

?
€

|

__A®IB | _AX
\(A2!B)" B _ B

I(A®! B)®B

(I(A®! B)®B)

Figure 2: An 1w proof net

a single conclusion conclusion 7A, but can have any
number of premises A; it abstracts over all previous
structural rules, just as the (?7) conclusion link. The !
link has a single conclusion !A and a single premise A.
In addition, for every ! link L there is a set of links
and formulas called the !-box contents of L, or !-box
for short. In contrast, in MELL the ! link has several
premises and conclusions, one of them is distinguished
as the “main door,” and the box contents is defined
by connectivity from the premises.

The !-box of the link corresponding to a ! introduc-
tion contains exactly the links corresponding to iden-
tity or logical rules above the rule application, and
their adjacent formulas. Also, because of side con-
dition of the ! introduction rule, only n-ary links ((7)
conclusion or ? links) may reach inside a !-box for some
of their premises.

Rather than draw Lw nets for each of the cases of
this definition, we give as an example in Figure 2 the
net for a proof ending with the cut-rule

F(?)(CmAY), 1A F7AL [(A9!B) © B, (?)B*
F(?)(C3AtL),!(A®!B) @ B, (7) B+

Cut elimination for Lw nets is simpler than usual
since there is only one exponential cut-elimination
rule. The rule simultaneously opens the !-box and
copies its contents at any number of locations, pos-
sibly inside other boxes (see Figure 3, ignoring the
labels).

LW net reduction can be simulated in MELL nets
by lumping together exponential reductions, so that
entire 7 link trees are handled at once. Conversely,
MELL net reduction can be simulated in Lw nets, but
only up to exponential cut elimination.

5 Correctness

In proving the correctness of the graph implementa-
tions, we face some of the same difficulties encoun-
tered in connecting linear logic with the geometry of
interaction. As usual, it is not too hard to obtain a

correctness theorem for “observables.” Roughly, this
theorem says that if a proof reduces to the represen-
tation of a boolean value then its translation reduces
to a representation of the same value.

In some situations, it is important to have correct-
ness criteria and theorems for graphs other than ob-
servables. For example, optimality was a central con-
cern in our work on the A-calculus, and optimality can
be discussed only by considering intermediate results
which are not observable. Unfortunately, it is hard to
recover an appropriate proof from an arbitrary result
of reducing the translation of a proof, in general. As
in the A-calculus, part of the problem is that copying
and lifting may be done in several different but equiva-
lent ways, so the corresponding context operations can
be permuted; and part of the problem is that graph
reductions do not include garbage collection, and so
large portions of graphs may be dead (correspond to
erased subnets or subterms).

The key to the correspondence between proof nets
and sharing graphs is the semantics of graphs as con-
text transformers. This context semantics keeps track
of the subtle copying information needed to unwind
the sharing in graphs. In order to “match” a net and
a graph, we combine this information with an embed-
ding of the net in the graph. The matching is estab-
lished by the initial translation into sharing graphs,
and, as we show, both net reduction and graph reduc-
tion preserve it.

In order to derive a procedure for reading back a
proof net from a sharing graph, we need to find con-
ditions under which the matching relation is injective.
We characterize the live (non-garbage) parts of proof
nets and find that injectivity holds on live parts. Fi-
nally, we obtain a full correctness theorem for ILw, an
intuitionistic fragment of Lw for which we can define
a sound garbage-collection procedure.

5.1

The basic semantics of sharing graphs is given by
paths labelled with context marks, as in [9]. As the
labelling rules there were explained for the “bus” pre-

The context semantics

sentation of the graphs, we reformulate them in terms
of indexed nodes.

Context marks (contexts for short) are partial or-
dered binary trees with variables:

e O is a context. It represents a tree leaf.

e Any v in a set V of variables is a context. It is a
variable leaf.

o If a is a context then so are o.a and *.a. These
terms represent the trees obtained by taking a
node and putting @ under it, either to the left or
to the right. (The notations o and % come from
Lamping’s work, where they are used instead of
our grey and black marks, respectively.)

e If @ and b are contexts then so is (b, a). This term
represents the cons of b and a.

All the contexts ¢ that we use to label paths have
only binary nodes on the left branch, so they are of
the shape ¢ = (... (0,an_1),...,a0). We say that n
is the width of the context ¢. Now in the translation
from logics to sharing graphs we assign a width to each
edge, equal to 1 4 the box depth of the edge if the edge
bears a linear type in the translation, and 2 + the box
depth if the edge bears a classical (?) type. (Here, by
“box depth” we refer to the number of ! introduction
rules in the sequent proof below the bottom formula
of the edge.)

A consistent context-labelled path in a graph G is
an undirected path in G where each edge is labelled
with a context of same width, such that any consecu-
tive pair of edges satisfies one of the following labelling
constraints below. In this table A?[b] denotes a context
(.. {byai—1),...,a0) with b at “depth” i.

AP[b] ([A'[(b, D)]
AT[((b, @), c)] —— [—— A'[(b, (a,c))]
A, a)] — P A'[(b,0.a)]
A(b,)] 1 AI[(b, %.a)]

Among other things, these constraints forbid turn-
arounds in a consistent path.

Note that the constraints are consistent with the
edge widths: if the left-hand context has width w,
then the right hand context has width w + 1 for a
croissant, w — 1 for a bracket, and w for a fan node.
Conversely, these rules are enough to reconstruct the
edge widths of the graph, given that the width of the
edge to a root labelled with a linear type is 1, and
the width of edges to a root with a classical type is 2.
Moreover, the same rules give a unique and consistent
width assignment for all reducts in Figure 1, so we can

assume all edges in our graphs have widths satisfying
these rules.

Closer inspection shows that the rules in Figure 1
preserve not only width consistency but also all con-
sistent labelled paths:

Theorem 1 If o is a consistent labelled path in G
and G —> G’ with a redex not involving the endpoints
of o, then there is a unique path o' in G’ identical to
o except for the redex nodes and the labelling of the
redex edge.

A special case is when ¢ is a root-to-root path:
thus, the symmetric one-to-one relation between
(root,context) pairs induced by such paths is preserved
by reduction. This gives rise to the “context seman-
tics” of [9].

5.2 Matching nets with graphs

As proof of correctness for the graph implementa-
tion of Lw, we define a notion of matching between
proof nets and sharing graphs, consistent with the Lw
translations and with reduction. In some sense, this
is easier than for the A-calculus because we seek to
match two differents sorts of graphs, not a term and
a graph.

The Lw-to-graph translation gives the first compo-
nent of this matching: conclusion links of a net corre-
spond to roots of a graph, and logical links to index-
0 node. Hence we define a mapping ¢ from an Lw
net N to a sharing graph G to be a function from
non-identity links of N to nodes in GG that sends

e conclusions of N of Lw type C onto roots of G
labelled with C,

o multiplicative links to index-0 fans of G, and
e exponential links to index-0 brackets of G.

For each non-identity link L of N, such a ¢ induces a
local mapping ¢ from formulas adjacent to L to edges
incident to ¢(L), as follows:

e If L is a multiplicative link, ¢y sends the conclu-
sion (resp., left premise, right premise) of L to the
edge incident to the unmarked (resp., grey, black)
point of the fan ¢(L).

e If L is an exponential link, ¢; sends the con-
clusion (resp., any premise) of L to the edge
incident to the closed (resp., open) side of the
bracket ¢(L).

e If L is a conclusion link, ¢ sends any premise
of L to the edge incident to the root ¢(L).

Obviously, for a net to match a graph the map-
ping should also satisfy some connectivity properties.
Namely, given two formulas adjacent to non-identity
links and connected by a chain of identity links, it

should be possible to connect the corresponding edges
by a path in the graph that traverses only positive-
index nodes.

This is much too weak a constraint, since the large
amount of sharing and unsharing that goes on in
graphs allows paths to merge and cross arbitrarily. We
want paths to respect sharing and unsharing, so we re-
strict ourselves to consistently labelled paths. We can
restrict the path labels to marks of the form (b, O),
since the paths cross only positive-index nodes. Such
paths are entirely determined by the left subtrees of
the context marks labelling the end edges.

Thus the matching between an Lw net and a shar-
ing graph should provide those context marks. We
define a marking p of an Lw net N to be a family of
local marking functions gy, one for each non-identity
link L of N; each up sends formulas adjacent to L to
context marks, subject to the restrictions detailed be-
low. The local markings induce a marking of the links
themselves, as follows:

e If L is a conclusion, then p(L) = O.

e If L is a logical link, and A its sole conclusion,

then pu(L) = ur(A).

The link markings completely characterize the sharing
in the graph: in a matching, every link L should have
a different (¢(L), (L)) pair.

The markings should be consistent with the type
of nodes the links are mapped to, hence the following
restrictions:

e If A is a premise of a linear conclusion or multi-
plicative link L, then ur(A) = p(L).

o If Aisa premise of a (?) conclusion or exponential
link L, then there is a context pul(A) such that

pr(A) = (u(L), p* (A)).

The residual markings u” of n-ary nodes encode the
arity of the node. Different premises can be shared,
but not identified in the graph, so the u” should be
injective. Dually, for a ! link, the unique u” should be
compatible with the arity of any opposing 7 link:

e If A and A’ are different premises of an n-ary link,
then pl(A) and pl(A’) are non-unifiable.

e If A is the sole premise of a ! link L, then pl(A)
is a context variable.

Finally, the pul(A) variable of a ! link should trace
the contents of its box, so that u contains all the box
information of N:

e A non-identity link L’ is in the I-box of L iff uL(A)
appears in p(L'), and a formula A’ adjacent to L'
is in the -box of L iff u*(A) appears in up(A’).

Now we can define matchings precisely:

Definition 1 A matching from an tw net N to a
sharing graph G is a pair (¢,p) of a mapping ¢ :
N — G and a marking p of N, such that for any
non-identity links L and L' of N :

o If L# L and ¢(L) = ¢(L') then pu(L) and p(L')

are non-unifiable.

e If formulas A and A’ respectively adjacent to
L and L' are connected by a chain of identity
links, and A # A’ if L = L', then there is
a consistent labelled path in G from ¢(L) to
o(L'), starting with (1 (A), (pL(A),D)), ending
with (ép/(A"), (pr(A"), D)), and traversing only
positive-index nodes.

We say net N matches G when there exists a matching
from N to G.

The translation from sequent-calculus proofs to
sharing graphs establishes a matching:

Proposition 1 Let © be a proof in Lw. Then its
proof net translation N matches its sharing graph im-
plementation G.

The next two propositions establish the links be-
tween matching, graph reduction, and reduction in
proof nets. Combined with the injectivity results
in the next subsection, they give the readback and
correctness theorems for the graph implementation.
Combined with the redex labelling results in the next
section, they imply that “matches” is a bisimulation
between graph reduction and parallel labelled reduc-
tion in LW nets.

Proposition 2 Let N be an Lw net that matches a
graph G, and assume G —> G’ by one of the rules in
Figure 1, then N reduces to a net N’ that matches G'.

(i) If G = G’ is not a index-0 fan elimination then
N —* N' need not contain exponential cut elim-
inations.

(ii) If G = G’ is not a indez-0 bracket elimination
then N —* N’ need not contain multiplicative
cut eliminations.

(iit) If G = G' is neither of these then we can take
N'=N.

Proposition 3 If the net N matches G, and N —
N', then G reduces to a graph G' and N’ reduces to a
net N that matches G'. Furthermore if N —> N’ is
a multiplicative cut elimination, then G —* G' need
not involve any index-0 bracket nodes and only two
indez-0 fans, ending with theiwr elimination, dually for
ezponential cuts, and we can take G = G' for ariom
cuts.

5.3 Readback and garbage collection

The “matches” relation is actually almost a bijec-
tion between marked nets and graphs. It fails to be
a function (i.e., a net can match several graphs) be-
cause graphs cannot emulate the box erasures per-
formed by exponential cut elimination, since there are
no garbage-collection rules in Figure 1. Hence, when
a marked net matches a graph, there can be an arbi-
trary amount of garbage in the net that lies outside
the codomain of the mapping.

In [9] this problem was solved for the A-calculus
by determining which part of a net could be accessed
by a A-term mapping. Unfortunately, the problem is
much worse for Lw because the garbage in a graph can
look just like part of a different net, so the “matches”
relation is not injective. Injectivity can hold only for
the subgraph of a net N that cannot possibly map to
garbage, which we define as the live part of N below.

Definition 2 The live part of an Lw net N is the
smallest subset N’ of N such that:

e All conclusion links of N belong to N'.

o If any A adjacent to a link L belongs to N’, so
do L and all conclusions of L.

e [f a non-n-ary link L belongs to N, then so do all
premises of L.

We call the complement of the live part the garbage
part. We say a link or formula of N is live (resp.,
garbage) when it belongs to the live (resp., garbage)
part; a net s live when it equals its live part.

The garbage part of a net is clearly stable by cut elim-
ination: if a link becomes garbage, then it remains
garbage after cut elimination.

Proposition 4 If two Lw nets N and N' match the
same sharing graph G, and both N and N’ are cut free,
then the live parts of N and N' are identical, and the
respective matchings coincide on the live parts up to a
renaming of the box variables.

Proof: Let (¢, p) and (¢', i) be the mappings from N
and N’ to G, respectively. Consider the maximal sub-
set M of live non-axiom links of N such that there is a
function ¢ from M to N’ making the matchings coin-
cide, up to a renaming of box variables. M is unique
and 1 is one-to-one because of the non-unifiability con-
dition on matchings. Since all conclusions have the
same mark O, both ¢ and ¢’ are bijections from con-
clusions to roots, so M contains all conclusion links
of N. We show that M is downwards closed. Let
A be the premise of a link L that is the conclusion
of a logical link K in M, then the conclusion A’ of
K' = ¢(K) is the premise of a link L’ in N'. Both

N and N’ match G, so there must be consistent la-
belled paths from ¢(K) = ¢'(K') to ¢(L) and ¢(L’).
By definition of M both paths start with the same la-
belled edge, so the constraints on paths force them to
end with the same labelled edge, hence the matchings
coincide on L and L' and ¢(L) = L’. Since both nets
are cut-free this forces ¥ to respect link types, and
especially to map non-n-ary links to non-n-ary links.
A similar argument on labelled paths shows that if a
premise of a non-n-ary link L is connected, possibly
through an axiom, to a formula adjacent to some non-
axiom link L', then I’ € M and the congruent premise
of (L) is similarly connected to a formula similarly
adjacent to ¢(L'). It follows that M contains all the
live non-axiom links in N, and that ¢ can be extended
to an isomorphism 1/; from the live part of N to the
live part of N/, that makes the matchings coincide. O

Proposition 4 defines a readback for the live part
M of a normal proof net. The subset Cace of the con-
text semantics generated by paths inside ¢(M) can be
constructed from the topology of M plus the residual
markings ,uL; conversely Cacc determines both of these.
(By introducing shunts and access paths as in [9], Cacc
could also be characterized directly, and then global
correctness results follow.)

In general, it is impossible to read back nets with
cuts, because arbitrary types may be hidden by cuts
with a proof containing a weakening, and the defini-
tion of the live part depends on the distinction be-
tween ! and 7 types. So, in order to define a general
readback procedure, we consider typed sharing graphs,
which are sharing graphs where every index-0 node is
labelled with a linear type. Graph reduction ignores
the labels, but preserves them when a positive-index
node crosses an index-0 node. A net matches a typed
sharing graph only if the mapping sends a logical link
with conclusion A to a node labelled A. Proposi-
tions 1-3 go through unchanged for typed graphs, and
we have:

Proposition 5 If two LW nets N and N' match the
same typed sharing graph G, and both N and N' are
ariom-cut free, then the live parts of N and N' are
tdentical, and the respective matchings coincide on the
live parts up to a renaming of the box variables.

Proposition 5 provides us with a natural defini-
tion for readbacks; and its proof gives a procedure for
constructing them: we propagate breadth-first known
contexts from the conclusions up, generating links as
we go, stopping at the closed side of 7 brackets and
upon reaching a node with the same context twice.

Definition 3 The readback R(G) of a typed sharing
graph G s, when it exists, the unique live and axiom-
cut free LW net N that matches G.

The obvious way to derive a correctness theorem
from the results above is to define an operation GC(N)

A" B A B

_— —0
A®PB* v a A®B \
CUT
AX
A a A% A B At
CUT CuT

A B' 1 B
I (o) |
CUT (@) 2
CUT
A a@B Al

Figure 3: Labelled Lw cut elimination

that restricts a net N to its live part, by removing all
garbage from the premises of live n-ary links and of
boxes of live I-links. Unfortunately, GC' is an unsound
operation for full Lw, e.g., when all the conclusions
of N are classical, GC(N) has only empty conclusion
links. However, GC'is sound for the intuitionistic frag-
ment ILW of Lw (the analogue of ILL, the intuitionistic
fragment of linear logic [2]).

Theorem 2 Let N and G be the proof net and shar-
ing graph translations of an 1ILW proof, respectively. If
G —* G', then R(G') exists and N reduces by cut
elimination to some N' such that GC(N') = R(G").
Furthermore, one can take N' = N if G' = G, and
N" to be the normal form of N if G' is the normal
form of G.

It can be shown that all nets obtained as translation
of typed A-terms are live, hence that in this case the
provisions for GC' in Theorem 2 above can be omitted.
This fact was used implicitly in the treatment of the
pure A-calculus in [9], and it also extends to system F
proofs, the original domain for Girard’s geometry of
interaction [7].

6 Optimality

In the A-calculus, there is a formal criterion for saying
whether a reduction strategy is optimal, in the sense
that it performs as few 3 steps as possible [13]. Op-
timality can also be defined for other formal systems,
such as proof nets, where it is about as hard to attain.

As for the A-calculus, a labelled calculus with la-
belled proof nets may be defined. In this calculus, it
greatly simplifies matters to put labels only on iden-
tity links, and not on formulas. In order to capture all
the sharing power of a given proof net, it is necessary
to start from a proof net where every formula is either
premise or conclusion of an identity link. Adding in-
termediate axiom cuts when necessary achieves this.
Similarly, we take only a weak version of the axiom
cut; this does not change the behavior of reduction,
since asymmetric axiom cut can always be postponed.
The reductions rules for labelled nets are defined by
Figure 3.

Clearly, residuals of cut links keep the same label.
Hence, a theory of duplication and families of cut links
may be developed as for the A-calculus [13]. Tt is easy
to show that two cut links have a same label iff they
are in a same family. For sharing graphs, it is proved
as in [9] that different redex edges never bear the same
label; this means that sharing graphs capture exactly
the family notion for cut links.

A shared reduction step in a labelled net consists
in reducing simultaneously all the cuts in a family.
Sharing graphs thus implement shared reduction steps
with a single index-0 node elimination.

A redex is needed if it is accessible from a root of the
graph through a consistent access path. (Access paths
are defined much as in [9].) A call-by-need reduction
strategy in graphs will contract only needed redexes.

Theorem 3 Shared call-by-need reductions are opti-
mal for computing the live part of normal forms.

7 The additives and weakening

We close with a brief discussion of the difficulties re-
maining in treating the full linear logic.

Our translation excludes the additive connectives of
linear logic. In the standard formulation of proof nets,
these connectives also require boxes. We have not suc-
ceeded in removing these boxes, in part because of the
well-known problems in breaking symmetries during
cut elimination with additives. Girard’s polarities are
a promising way to break this symmetry, and one may
hope to use them for extending our translation.

Some of the results of section 5 not only exclude the
additive connectives but also restrict the uses of the
weakening rule. They apply only to intuitionistic log-
ics, where the weakening rule is least devastating. It
might be possible to recover the full power of classical
logics by encodings.

Acknowledgements
We are grateful to Pierre-Louis Curien, Jean-Yves

Girard, Yves Lafont, and John Lamping for fruitful
discussions.

References

[1] J.-Y. Girard, “Linear logic,” Theoretical Com-
puter Science, vol. 50, pp. 1-102, 1987.

[2] S. Abramsky, “Computational interpretations
of linear logic,” Theoretical Computer Science,
1990. Special Issue on the 1990 MFPS Workshop,
to appear.

[3] P. Wadler, “Linear types can change the world!,”
in IFIP TC 2 Working Conference on Program-
ming Concepts and Methods, April 1990.

[4] J. Lamping, “An algorithm for optimal lambda
calculus reduction,” in Seventeenth Annual ACM
Symposium on Principles of Programming Lan-

guages, pp. 16-30, ACM, Jan. 1990.

[5] V. Kathail, Optimal interpreters for lambda-
calculus based functional languages. PhD thesis,

MIT, May 1990.

[6] Y. Lafont, “Interaction nets,” in Seventeenth An-
nual ACM Symposium on Principles of Program-
ming Languages, pp. 95-108, ACM, Jan. 1990.

[7] J.-Y. Girard, “Geometry of interaction I: Inter-
pretation of system F,” in Logic Colloquium ’88
(Ferro, Bonotto, Valentini, and Zanardo, eds.),
pp- 221-260, Elsevier Science Publishers B.V.
(North Holland), 1989.

[8] J-Y. Girard, “Geometry of interaction II:
Deadlock-free algorithms.”.

[9] G. Gonthier, M. Abadi, and J.-J. Lévy, “The ge-
ometry of optimal lambda reduction,” in Nine-
teenth Annual ACM Symposium on Principles of
Programming Languages, pp. 15-26, ACM, Jan.
1992.

[10] J.-Y. Girard, “On the unity of logic,” tech. rep.,
June 1991. INRIA Report 1467.

[11] J. Chirimar, C. Gunter, and J. Riecke, “Linear
ML.” 1991.

[12] P. Lincoln and J. Mitchell, “Operational aspects
of linear lambda calculus,” in Seventh Annual
Symposium on Logic in Computer Science, IEEE,
June 1992.

[13] J.-J. Lévy, “Optimal reductions in the lambda-
calculus,” in To H.B. Curry: FEssays in Com-
binatory Logic, Lambda Calculus and Formalism
(J. Seldin and J. Hindley, eds.), pp. 159-191, Aca-
demic Press, 1980.

[14] J.-Y. Girard, “A new constructive logic: Classical
logic,” tech. rep., June 1991. INRIA Report 1443.

