Explicit Substitutions

M. Abadi* L. Cardelli*

Abstract

The Ao-calculus is a refinement of the A-calculus
where substitutions are manipulated explicitly. The
Ao-calculus provides a setting for studying the theory
of substitutions, with pleasant mathematical proper-
ties. It is also a useful bridge between the classical
A-calculus and concrete implementations.

1 Introduction

Substitution is the éminence grise of the A-calculus.
The classical 3 rule,

(Az.a)b —p a{b/z}

uses substitution crucially though informally. Here
a and b denote two terms, and a{b/x} represents
a where all free occurrences of z are replaced with
b. This substitution does not belong in the calculus
proper, but rather in an informal meta-level. Similar
situations arise in dealing with all binding constructs,
from universal quantifiers to type abstractions.

A naive reading of the 3 rule suggests that the sub-
stitution of b for x should happen at once, when the
rule is applied. In implementations, substitutions in-
variably happen in a more controlled way. This is
due to practical considerations, relevant in the im-
plementation of both logics and programming lan-
guages. The term a{b/x} may contain many copies
of b (for instance, if a = zazz); without sophisti-
cated structure-sharing mechanisms [13], performing
substitutions immediately causes a size explosion.

Therefore, in practice, substitutions are delayed
and explicitly recorded; the application of substitu-
tions is independent, and not coupled with the 3 rule.

*Digital Equipment Corporation, Systems Research Center.

tEcole Normale Supérieure; part of this work was completed
while at Digital Equipment Corporation.

{INRIA Rocquencourt; part of this work was completed
while at Digital Equipment Corporation.

P.-L. Curien' J.-J. Lévy?

The correspondence between the theory and its im-
plementations becomes highly nontrivial, and the cor-
rectness of the implementations can be compromised.

In this paper we study the Ao-calculus, a refine-
ment of the A-calculus [1] where substitutions are ma-
nipulated explicitly. Substitutions have syntactic rep-
resentations, and if a is a term and s is a substitution
then the term a[s] represents a with the substitution
s. We can now express a [rule with delayed substi-
tution, called Beta:

(Az.a)b —peiq a[(b/x) - id]

where (b/x) - id is syntax for the substitution that
replaces @ with b and affects no other variable (“.”
represents extension and id the identity substitution).
Of course, additional rules are needed to distribute
the substitution later on.

The Ao-calculus is a suitable setting for studying
the theory of substitutions, where we can express and
prove desirable mathematical properties. For exam-
ple, the calculus is Church-Rosser and it is a con-
servative extension of the A-calculus. Moreover, the
Ao-calculus is strongly connected with the categorical
understanding of the A-calculus, where a substitution
is interpreted as a composition [5].

We propose the Aco-calculus as a step in closing
the gap between the classical A-calculus and concrete
implementations. The calculus is a vehicle in design-
ing, understanding, verifying, and comparing imple-
mentations of the A-calculus, from interpreters to ma-
chines. Other applications are in the analysis of type-
checking algorithms for higher-order languages and in
the mechanization of logical systems.

When one considers weak reduction strategies, the
treatment of substitutions can remain quite simple—
and then our approach may seem overly general.
Weak reduction strategies do not compute in the
scope of A’s. Then, there arise no nested substitutions
or substitutions in the scope of A’s. All substitutions
are at the top level, as simple environments. An an-
cestor of the Ao-calculus, the Ap-calculus, suffices in
this setting [5].

However, strong reduction strategies are useful in
general, both in logics and in typechecking higher-

Page 1

order programming languages. In fact, strong reduc-
tion strategies are useful in all situations where sym-
bolic matching has to be conducted in the scope of
binders. Thus, a general treatment of substitutions
is required, where substitutions may occur at the top
level and deep inside terms.

In some respects, the Ao-calculus resembles the cal-
culi of combinators, particularly those of categorical
combinators [4]. The Ac-calculus and the combina-
tor calculi all give full formal accounts of the pro-
cess of computation, without suffering from unpleas-
ant complications in the (informal) handling of vari-
ables. They all make it easy to derive machines for
the A-calculus and to show the correctness of these
machines. ;From our perspective, the advantage of
the Ao-calculus over combinator calculi is that it re-
mains closer to the original A-calculus.

There are actually several versions of the calculus of
substitutions. We start out by discussing an untyped
calculus. The main value of the untyped calculus is
for studying evaluation methods. We give reduction
rules that extend those of the classical A-calculus and
investigate their confluence. We concentrate on a pre-
sentation that relies on De Bruijn’s numbering for
variables [2], and briefly discuss presentations with
more traditional variable names.

Then we proceed to consider typed calculi of sub-
stitutions, in De Bruijn notation. We discuss typ-
ing rules for a first-order system and for a higher-
order system; we prove some of their central proper-
ties. The typing rules are meant to serve in designing
typechecking algorithms. In particular, their study
has been of help for both soundness and efficiency in
the design of the Quest typechecking algorithm [3].

We postpone discussion of the untyped calculi to
section 3 and of the typed calculi to sections 4 and 5.
We now proceed with a gentle technical overview.

2 Informal overview

We start with a review of De Bruijn notation, and
then preview untyped, first-order, and second-order
calculi of substitutions.

2.1 De Bruijn notation

In De Bruijn notation, variable occurrences are re-
placed with positive integers (called De Bruijn in-
dices); binding occurrences of variables become un-
necessary. The positive integer n refers to the variable
bound by the n-th surrounding A binder, for example:

Az Ay.xy becomes AA21

In first-order typed systems, the binder types must
be preserved, for example:
Ax:Ady:B.xy AAAB. 21

becomes

In second-order systems, type variables too are re-
placed with De Bruijn indices:

AA Xz Ax becomes AXl.1

De Bruijn notation is unreadable, but it leads to sim-
ple formal systems. Hence we use indices in inference
rules, but variable names in examples.

Classical § reduction and substitution must be
adapted for De Bruijn notation. In order to reduce
(Aa)b, it does not suffice to substitute b into @ in the
appropriate places. If there are occurrences of 2, 3,
4, ...1in a, these become “one off,” since one of the A
binders surrounding a has been removed. Hence, all
the remaining free indices in @ must be decremented;
the desired effect is obtained with an infinite substi-
tution: the 8 rule becomes

(Aa)b —p a{b/1,1/2,2/3,.. }

When pushing this substitution inside a, we may
come across a A term (Ae){b/1,1/2,2/3,...}. In this
case, we must be careful to avoid replacing the oc-
currences of 1 in ¢ with b, since these occurrences
correspond to a bound variable and the substitution
should not affect them. Hence we must “shift” the
substitution. In addition, we must “lift” all the in-
dices of b in order to prevent captures. We obtain
Ac{1/1,b{2/1,3/2,...}/2,2/3,...}.

This informal introduction to De Bruijn notation
should suffice to give the flavor of things to come.

2.2 An untyped calculus

We shall study a simple set of algebraic operators
that perform all these index manipulations—without
...’s, even though we treat infinite substitutions that
replace all indexes. If s represents the infinite substi-
tution {ai/1,a2/2,as/3, ...}, we write a[s] for a with
the substitution s. A term of the form a[s] is called a
closure. The change from { }’s to []’s emphasizes that
the substitution is no longer a meta-level operation.

The syntax of the untyped Ao-calculus is:

Terms a:= 1|ab|Aa]als]
Substitutions s:=id|T|a-s|sot

This syntax of substitutions corresponds to the in-
dex manipulations described in the previous section:

e id is the identity substitution {i/i} (for all 7).

Page 2

o T (shift) is the substitution {(i+1)/i}; for exam-
ple, 1[1] = 2. Thus, we need only the index 1;
n+1is coded as 1[1"], where 1™ is the composition
of n shifts, T o...o 1. We also write 1° for id.

e i[s] is the value of the De Bruijn index 7 in the
substitution s, also written s(#) when s is viewed
as a function.

e a - s (the cons of a onto s) is the substitution

{a/1,s(i)/(i + 1)}; for example,
a-id = {a/1,1/2,2/3,..}
1 = AL 10/2,12)/3,.) = id

e sot (the composition of s and t) is the substi-

tution such that a[s o t] = a[s][t], hence sot =

{s(i)/i} ot = {s(4)[t]/i} and, for example,

idot = {id()[t]/i} = {t(D)/i} =1
To(as) = {0l s)/i} = {s(i)/i} = s

At this point, we have shown most of the algebraic
properties of the substitution operations. In addition,
composition is associative and distributes over cons
(that is, (a-s) ot = a[s] - (s ot)). Moreover, the last
example above indicates that | o s is the “rest” of s,
without the first component of s; thus, 1[s]-(Tos) = s.

Using this notation, we can write the Beta rule as
(Aa)b —Betq alb - id]

To complement this rule, we can write rules to eval-
uate 1, for instance

1fe-s] — ¢
and rules to push substitution inwards, for instance

(cd)[s] — (c[s])(d[s])
In particular, we can derive an intriguing law for the
distribution of substitution over A:

(Ae)[s] = Aleft - (s o 1)])

This law uses all the operators (except id), and sug-
gests that this choice of operators is natural, perhaps
inevitable. In fact, there are many possible varia-
tions, but we shall not discuss them here.

Explicit substitutions complicate the structure of
bindings somewhat. For example, consider the term
(A(1[2-id]))[a-id]. We may be tempted to think that 1
is bound by A, as it would be in a standard De Bruijn
reading. However, the substitution [2 - id] intercepts
the index, giving the value 2 to 1. Then, after crossing
over A, the index 2 is renamed to 1 and receives the
value a. One should keep these complications in mind
in examining Ao formulas—for example, in deciding
whether a formula is closed, in the usual sense.

2.3 A first-order calculus

When we move to a typed calculus, we introduce
types both in terms and in substitutions. We assume
a set of constant types K. The syntax becomes:

Types A:=K|A— B
Environments F :=uil|AE
Terms a:= 1|ab|AA.a|a[s]

Substitutions s :=id|T|a:A-s|sot

The environments are used in the type inference
rules, as is commonly done, to record the types of
the free variables of terms. Naturally, in this set-
ting, environments are indexed by De Bruijn indices.
The environment A, Ao, ..., A,, nil associates type
A; with index i. For example, the axiom for 1 and
the rule for A abstraction are:

AEF1:4

AEFb:B
EF AMb:A—B

In the first-order Ao-calculus, environments also
serve as the “types” of substitutions. We write s .". £
to say that the substitution s “has” the environment
E. For example, the typing rule for cons is:

EFa:A EF s . B
Et aA-s. . AFE

The main use of this new notion is in typing closures.
Since s provides the context in which a should be
understood, the approach is to compute the environ-
ment £’ of s, and then type @ in that environment:

Etr s E E'Fa:A
E F a[s]: A

2.4 A second-order calculus

When we move to a second-order system, new sub-
tleties appear, because substitutions may contain
types, and environments may contain place-holders
for types; for example, Bool:: Ty -id .. Ty, nil.

The typing rules become more complex because
types may contain type variables, which must be
looked up in the appropriate environments (this
problem arises in full generality with dependent
types [12]). In particular, the typing axiom for 1
shown above becomes the rule:

EF ATy
AE F 1: A1

The extra shift is required because A is understood
in the environment F in the hypothesis, while it is

Page 3

understood in A, F in the conclusion. An alterna-
tive (but heavy) solution would be to have separate
index sets for ordinary term variables and for type
variables, and to manipulate separate term and type
environments as well.

Another instance of this phenomenon is in the rule
for A abstraction, given above. Notice that A must
have been proved to be a type in the environment
FE, while B is understood in A, F/ in the assumption.
Then A — B is understood in £ in the conclusion.
This means that the indices of B are “one off” in A —
B. The rule for application takes this into account; a
substitution is applied to B to “unshift” its indices:

EFb:A—B EFa:A
E + b(a): Bla:A - id]

The Bla:A - id] part is reminiscent of the rule found
in calculi for dependent types, and this is the correct
technique for the version of such calculi with explicit
substitutions. However, since here we do not deal
with dependent types, a will never be substituted in
B (B will never contain the index 1). The substitu-
tion is still needed to shift the other indices in B.

The main difficulty in our second-order calculus
arises in typing closures. The approach described for
the first order, while still viable, is not sufficient. For
example, if not is the usual negation on Bool, we cer-
tainly want to be able to type

(A.not(1))[Bool - id]
or, in a more familiar notation,

Let X = Bool in Az:X.not(z)

(We interpret Let via a substitution, not viaa A.) Our
strategy for the first-order calculus was to type the
substitution, obtaining an environment (X ::Ty) - id,
and then type Az:X.not(z) in (X::Ty) - id. Unfortu-
nately, to type this term, it does not suffice to know
that X is a type; we must know that X is Bool To
solve this difficulty, we have rules to push a substi-
tution inside a term and then type the result. As in
calculi with dependent types, the tasks of deriving
types and applying substitutions are inseparable.
Finally, as discussed below, surprises arise in writ-
ing down the precise rules; for example the rule for
typing conses has to be modified. Even the form of
the judgement £ F s .. B/ must be reconsidered.

Higher-order calculi (possibly with dependent type
constructions) are also of theoretical and practical im-
portance. We do not discuss them formally below,
however, for we believe that the main complications
arise already at the second order.

3 The untyped Ao-calculus

In this section we present the untyped Ao-calculus.
We propose a basic set of equational axioms for the
Ao-calculus in De Bruijn notation. The equations
induce a rewriting system; this rewriting system suf-
fices for the purposes of computation. We show that
the rewriting system is confluent, and thus provides
a convenient theoretical basis for more deterministic
implementations of the Ao-calculus. We also consider
some variants of the axiom system and treatments us-
ing variable names.

As in the classical A-calculus, actual implementa-
tions would resort to particular rewriting strategies.
We discuss a normal-order strategy for Ao evaluation.
Then we focus on a more specialized reduction sys-
tem, still based on normal order, which provides a
suitable basis for abstract Ao machines. We describe
one machine, which extends Krivine’s weak reduction
machine [11] with strong reduction.

3.1 The basic rewriting system

The syntax of the untyped Ac-calculus is the one
given in the informal overview,

Terms a:= 1|ab|Aa]als]
Substitutions s:=id|T|a-s|sot

Notice that we have not included metavariables over
the sorts of terms and substitutions—we consider
only closed terms, and this suffices for our purposes.
(In De Bruijn notation, the variables 1,2, ... are con-
stants rather than metavariables.)

In this notation, we now define an equational the-
ory for the Ao-calculus, by proposing a set of equa-
tions as axioms. When they are all oriented from
left to right, the equations become rewrite rules and
give rise to a rewriting system. The equations fall
into two subsets: a singleton Beta, the equivalent of
the classical 8 rule, and ten rules for manipulating
substitutions, which we call o collectively.

Beta (Aa)b = alb - id]

Varld 1[id] =1

VarCons 1la-s]=a

App (ab)[s] = (a[s])(b[s])
Abs O] = AGalt (5o 1))
Clos a[s][t] = a[s o t]

IdL tdos=s

Page 4

Shiftld ~ toid =1

ShiftCons To(a-s)=s
Map (a-s)ot=alt]-(sot)
Ass (s1 082) 083 =51 0(s2083)

The equational theory follows from these axioms
and rules for replacing equals for equals.

Our choice of presentation is guided by the struc-
ture of terms and substitutions. The Beta rule elim-
inates A’s and creates substitutions; the function of
the other rules is to eliminate substitutions. Two
rules deal with the evaluation of 1. The next three
deal with pushing substitutions inwards. The re-
maining five express substitution computations. We
prove below that the substitution rules always pro-
duce unique normal forms; we denote by o(a) the o
normal form of a.

The classical § rule is not directly included, but
it can be simulated. The crucial fact is that, if
ai,...,0n,... 18 a sequence of consecutive integers
after some point, then the meta-level substitution
{a1/1,...,a,/n,...} corresponds closely to an ex-
plicit substitution:

Proposition 3.1 If there exist m > 0 and p >
0 such that amyq = p+ q for all ¢ > 1, then

a{ai/1,...,an/n,...} =o(ala; -az ... am -17]).

Therefore, the simulation of the £ rule consists in
first applying Beta and then ¢ until a o normal form
is reached.

As usual, we want a confluence theorem. This the-
orem will guarantee that all rewrite sequences yield
identical results, and thus that the strategies used by
different implementations are equivalent:

Theorem 3.2 Beta + o is confluent.

The proof does not rely on standard rewriting tech-
niques, as Beta + o does not pass the Knuth-Bendix
test (but o does). We come back to this point below.

Instead, the proof relies on the termination and
confluence of o, the confluence of the classical A-
calculus, and Hardin’s interpretation technique [7].

First we show that ¢ is noetherian (that is, o re-
ductions always terminate) and confluent.

Proposition 3.3 o is noetherian and confluent.

Since o is noetherian, let us examine the form of ¢
normal forms. A substitution in normal form is nec-
essarily in the form a; - (a2 - (... (am - U)...)) where
U is either id or a composition To (...(To1)...). A
term in normal form is entirely free of substitutions,

except in subterms such as 1[1"], which codes the De
Bruijn index n+1. Thus, a term in normal form is a
classical A-calculus term (modulo the equivalence of
1[1"] and n+1).

In summary, the syntax of o normal forms is:

Terms a:= 1]|1[1"]|ab|Aa
Substitutions s:=id|1"|a-s

After these remarks on o, we can apply Hardin’s
interpretation technique to show that the full Ao sys-
tem is confluent. First, we review Hardin’s method.
Let X be a set equipped with two relations R and
S. Suppose that R is noetherian and confluent, and
denote by R(z) the R normal form of #; that Sg is a
relation included in (R U S)* on the set of R normal
forms; and that, for any z and y in X, if S(z,y) then
S} (R(z), R(y)). An easy diagram chase yields that if
Sg is confluent then so is (R U S)*.

In our case, we take R to be the relation induced
by o, that is, R(z, y) holds if & reduces to y with the
o rules. We take Sg to be classical g conversion, that
is, Sr(z,y) holds if y is obtained from z by replacing
a subterm of the form (Aa)b with o(a[b - id]).

Thus two lemmas suffice for proving confluence:

Lemma 3.4 3 is confluent on o normal forms.

Lemma 3.5 If a —peq b then o(a) —>2 o(b). If
$ —Beta t then o(s) —>E o(t).

3.2 Variants

Some subsystems of o are reasonable first steps to
deterministic evaluation algorithms. We can restrict
o in three different ways. The rule Clos can be re-
moved. The inference rule

s=s t=t

sot=s"ot!

can be removed, and the inference rule for the closure
operator can be restricted to

1[s] = 1[s']

These restrictions (even cumulated) do not prevent
us from obtaining ¢ normal forms and confluence,
through the interpretation technique.

Confluence properties suggest a second kind of vari-
ant. Although Beta 4 ¢ is confluent, when we view it
as a standard rewriting system on first-order terms it
is not even locally confluent. The subtle point is that
we have proved confluence on closed Ao terms, that
is, on terms exclusively constructed from the opera-
tors of the Ao-calculus. In contrast, checking critical

Page 5

pairs involves considering open terms over this signa-
ture, with metavariables (that is, variables x and u
ranging over terms and substitutions, different from
De Bruijn indexes 1,2,...).

Consider, for example, the critical pair:

((Aa)b)lu] = a[b[u] -]
((Aa)b)u] = a[b[u] - (uoid)]

For local confluence, we would want the equation
(s o id) = s, but this equation is not a theorem of
o. Similar critical pair considerations suggest the ad-
dition of four new rules:

Aa
Aa

Id alid) = a
IdR soid =s
VarShift 1-1=id
SCons 1[s]-(fos)=s

These additional rules are well justified from a theo-
retical point of view. However, confluence on closed
terms can be established without them, and they are
not computationally significant. Moreover some of
them are admissible (that is, every closed instance is
provable). More precisely Id and IdR are admissible
in o, and SCons is admissible in o + VarShift.

We should particularly draw attention to the last
rule, SCons. It expresses that a substitution is equal
to its first element appended in front of the rest.
This rule is reminiscent of the surjective-pairing rule,
which deserved much attention in the classical A-
calculus. Klop has showed that surjective pairing de-
stroys confluence for the A-calculus [10].

Similarly, we conjecture that our system is not con-
fluent when we have metavariables for both terms and
substitutions. (Local confluence still holds.) The fol-
lowing term, inspired by Klop’s counterexample [10],
seems to work as a counterexample to confluence:

Y (Y (AAx[1[uo (1-id)] - (To (uo ((21) - id)))]))

where Y is a fixpoint combinator, x is a term
metavariable, and u is a substitution metavariable.

The reader may wonder what thwarts the tech-
niques used in the last subsection. The point is that
in Lemma 3.5, our reduction to the classical substitu-
tion lemma depended on the syntax of substitutions
in normal form, which is not so simple any more (the
syntax allows in particular expressions of the form
uo(1-id), as in the claimed counterexample).

We can go half way in adding metavariables. If
we add only term metavariables, the syntax of sub-
stitution o normal forms is unchanged. This protects

us from the claimed counterexample. There are two
additional cases for term o normal forms:
a:= 1|1[1"]|ab|Aa|x]|x[s]

We believe that confluence can be proved in this
case by the interpretation technique. Confluence on
normal forms would be obtained through an encoding
of the normal forms in the A-calculus extended with
constants, which is known to be confluent (x becomes
a constant; x[s] becomes a constant applied to the
elements of s).

Terms

3.3 The Ao-calculus with names

Let us discuss a more traditional formulation of the
calculus, with variable names z,y,z,... , as a small
digression. Two ways seem viable.

In one approach, we consider the syntax:

Terms a:= z|ab|Az.a|als]
Substitutions s :=1id|(a/x)-s|sot

The corresponding theory includes axioms such as:

Beta (Az.a)b = a[(b/z) - id]
Vart z(a/z)-s] = a

Va2 al(afy)-sl=2ls) (¢ #)
Var3 z[id] = «

Abs (Ar.a)ls] = Ay.(al(y/2) - 5))

(y occurs in neither a nor s)

The rules correspond closely to the basic ones pre-
sented in De Bruijn notation. The Abs rule does not
require a shift operator, but involves a condition on
variable occurrences. (The side condition could be
weakened.) The consideration of the critical pairs
generated by the previous rules immediately suggests
new rules, for example:

(a/z)-((b/y) -s) = (b/y) - ((a/z)-5) (2 #Y)

These are unpleasant rules. The given rule destroys
the existence of substitution normal forms. Intu-
itively, we may take this as a hint that this calcu-
lus with names does not really enjoy nice confluence
features. In this respect, the calculus in De Bruijn
notation seems preferable.

There is an alternative solution, with the shift op-
erator. The syntax is now:
Terms a:= z|ab|Az.a|als]
Substitutions s :=1id|T|(a/z) s|sot
In this notation, intuitively, z[f] refers to = after the

first binder. The equations are the ones of the Ao-
calculus in De Bruijn notation except for:

Page 6

Bela (Az.a)b = a[(b/x) - id]

Varl z[(a/x)-s]=a

Vart al(afy) sl =als] (e #)
Var3 z[id] =z

Abs (Az.a)[s] = Az.(a[(x/z) - (s071)])

This framework may be useful for showing the dif-
ferences between dynamic and lexical scopes in pro-
gramming languages. The rules here correspond to
lexical binding, but dynamic binding is obtained by
erasing the shift operator in rule Abs.

3.4 A normal-order strategy

As usual, we want a complete rewriting strategy—a
deterministic method for finding a normal form when-
ever one exists. Here we study normal-order strate-
gies (the leftmost-outermost redex is chosen at each
step). Completeness follows from the completeness of
the normal-order strategy for the A-calculus.

The normal-order algorithm naturally decomposes
into two parts: a weak normal-order algorithm, for
obtaining weak head normal forms, and recursive calls
on this algorithm. In our setting, weak head normal
forms are defined as follows:

Definition 3.6 A weak head normal form (whnf for
short) is a Ao term of the form Aa or nay - -ap,.

We write = for the usual (one step) weak normal-

order f reduction in the A-calculus, and write — for
the (one step) weak normal-order Beta 4+ o reduction

in the Ao-calculus. Clearly, iﬁ and = are related:

Proposition 3.7 Ifa = b then either o(a) ~5 o(b)
or o(a) and o(b) are identical. The = reduction of
a terminates (with a weak head normal form) iff the
lg reduction of o(a) terminates.

Corollary 3.8 = is a complete strategy.

We can also define a system —, which incorpo-
rates some slight optimizations (present also in our
abstract machine, below). In 22 the rule

(Aa)[s])b =2 ab - s]
replaces the rules
(Aa)b = alb - id]

(Aa)[s] = Aa[t - (s o 1)])

The new rule is an optimization justified by the o
reduction steps

(Aa)[s])b =" a[(1-(so1)) o (b-id)] —* a[b - s]

which is not allowed in .

Both = and 2% are weak in the sense that they do
not reduce under X’s. In addition, == is also weak in
the sense that substitutions are not pushed under A’s.
In this respect, — models environment machines—
while = is closer to combinator reduction machines.

We do not exactly get weak head normal forms—
for instance, =% does not reduce even (A11)(A11) or
(1[(A11) - id])(A11). This motivates a syntactic re-
striction which entails no loss of generality: we start
with closures, and all conses have the form a[s]-¢t. Un-
der this restriction, we cannot start with (A11)(A11),
but instead have to write ((A11)(A11))[id], which has
the expected, nonterminating behavior. We obtain:

Proposition 3.9 If a “% b then either o(a) and
o(b) are identical or o(a) “5 o(b). The == reduc-
tion terminates (with a term of the form (Aa)[s] or
nay ...an) iff the =5 reduction of o(a) terminates.

3.5 Towards an implementation

As a further refinement, we adapt —, to manipulate
only expressions of the forms a[t] and s ot. The sub-
stitution ¢ corresponds to the “global environment,”
whereas substitutions deeper in a or s correspond to
“local declarations.” In defining our machine, we take
the view that the linear representation of @ can be
read as a sequence of machine instructions acting on
the graph representation of ¢.

In this approach, some of the original rules are no
longer acceptable, since they do not yield expressions
of the desired forms. For example, the reduct of the
App rule, (a[s])(b[s]), is not a closure. In order to
reduce (ab)[s], we have to reduce a[s] to a weak head
normal form first. In the machine discussed below,
we use a stack for storing b[s].

The following reducer whnf() embodies these mod-
ifications to =*. The reducer takes a pair of argu-
ments, the term @ and the substitution s of a clo-
sure, and returns another pair, of one of the forms
(nay - - -am, id) and (Ad', s"). To compute whnf(), the
following axioms and rules should be applied, in the
order of their listing. We proceed by cases on the
structure of a, and when a is n by cases on the struc-
ture of s, and when s is a composition t o t' by cases
on the structure of ¢.

whnf(Aa, s) = (Aa, s)

Page 7

whnf(a,s) = (Ad', s")
whnf(ab, s) = whnf(a’,b[s] - s')
whnf(a,s) = (a’,id) (a’ not an abstraction)
whnf(ab, s) = (a'(b[s]), id)
whnf(n, id) = (n, id)
whnf(n, 1) = @+1, id)
whnf (1, a[s] -t) = whnf(a,s)
whnf@+1, a - s) = whnf(n, s)
whnf(n, sos’) = whnf(n[s],s")
whnf(n[id], s) = whnf(n,s)
whnf (n[1], s) = whnf@+1, s)
whnf(1[a - s], s') = whnf(a,s")
whnf@+1a - s],s') = whnf(n[s], s")
whnf (n[s o s'],s") = whnf(n[s], s’ o s")

whnf(a[s], s') = whaf(a,sos’)

A simple extension of the rules yields normal forms:

whnf(a,s) = (Ad',t)
nf(a: 5) = A(nf(a/: 1 (t © T)))
whnf(a,s) = (n(a1[s1]) . . . (am[sm]), id)
nf(a,s) =n(nf(a1, s1))...(nf(am, $m))
The precise soundness property of whnf() is:

Proposition 3.10 Given a and s, whnf(a,s) =
(a',s") is provable if and only if o(a'[s']) is the weak
head normal form of o(a[s]).

The last step we consider is the derivation of a tran-
sition machine from the rules for whnf(). One basic
idea is to implement the recursive call on a[s] during
the evaluation of (ab)[s] by using a stack to store the
argument b[s]. Thus, the stack contains closures.

The following table represents an extension of Kriv-
ine’s abstract machine [11, 5]. The first column rep-
resents the “current state,” the second one represents
the “next state.” Each line has to be read as a tran-
sition from a triplet (Subst, Term, Stack) to a triplet
of the same nature. To evaluate a program a in the
global environment s, the machine is started in state
(s,a,()), where {) is the empty stack. The ma-
chine repeatedly uses the first applicable rule. The
machine stops when no transition is applicable any
more. These termination states have one of the forms
(id,n,ay - -+ - am) and (s, Aa,()), which represent
naj - - - am and (Aa)[s], respectively.

The machine can be restarted when it stops,
and then we have a full normal form A reducer.

Subst Term Stack | Subst Term Stack
1 n S id n+1 S
afs]-t 1 S s a S
a-s n+1 S s n S
sos n S s n[s] S
s ab S s a b[s]-S
s Aa b-S b-s a S
s n[id] S s n S
s n[f] S s n+1 S
s 1fa - 5] S s a S
s n+ifa-s] S s n[s] S
s n[sos’l] S s’ o8 nls] S
s als] S sos’ a S

Specifically, when the machine terminates with the
triplet (s, Aa, ()), we restart it in the initial state
(1-(so1),a,{)), and when the machine termi-
nates with the triplet (id,n, a1[s1] ... an[sn] - (),
we restart n copies of the machine in the states

(s1,a1,()), -, (8n,an, ().

The machine is correct:

Proposition 3.11 Starting in the state (s,a,({)),
the machine terminates in (id,n,a; - Cam) iff
whnf(a,s) = (nay...am,id), and it terminates in

(s, Aa, () iff whnf(a,s) = (Aa,s).

By now, we are far away from the wildly non-
deterministic basic rewriting system of Section 3.1.
However, through the derivations, we have managed
to keep some understanding of the successive refine-
ments and to guarantee their correctness. In great
part, this has been possible because the Aco-calculus
is more concrete than the A-calculus, and hence an
easier starting point.

4 First-order theories

In the previous section, we have seen how to derive
a machine that can be used as a sensible implemen-
tation of the untyped Ao-calculus, and in turn of the
untyped A-calculus. Different implementation issues
arise in typed systems. For typed calculi, we need not
just an execution machine, but also a typechecker. As
will become apparent when we discuss second-order
systems, explicit substitutions can also help in deriv-
ing typecheckers. Thus, we want a typechecker for
the Ao-calculus.

At the first order, the typechecker does not present
much difficulty. In addition to the usual rules for a
classical system L1, we must handle the typechecking
of substitutions. Inspection of the rules of L1 shows

Page 8

that this can be done easily, since the rules are deter-
ministic.

In this section we describe the first-order typed Ao-
calculus. We prove that it preserves types under re-
ductions, and that it is sound with respect to the
A-calculus. We move on to the second-order calculus
in the next section. We start by recalling the syntax
and the type rules of the first-order A-calculus with
De Bruijn’s notation.

Types A:=K|A—B
Environments F :=nil| A F
Terms a:=n|XA.a|ab

Definition 4.1 (Theory L1)

(L1-var) AEF1:A
EFn:B

(L1-varn) AFE Fn+1: B
AEF b:B

(L1-lambda)

ErF Mb:A—B

FrHb:A—B FFa:A

(L1-app) E F ba:B

We do not include the § rule, because we now focus
on typechecking—rather than on evaluation.

The first-order Ao-calculus has the syntax:

Types A:=K|A—B
Environments F :=nil|AFE
Terms a:= 1|ab|AA.a|als]

Substitutions s:=id|T|a:A-s|sot

The type rules come in two groups, one for giving
types to terms, and one for giving environments to
substitutions. The two groups interact through the
rule for closures.

Definition 4.2 (Theory S1)

(S1l-var) AEF1:A

AEF b:B
EF AMb:A—B

(Sl-lambda)

g1 EFrb:A—B FFa:A
(S1-app) EF F ba:B

Etr s . E E'Fa:A
(S1-clos) E F a[s]: A

(S1-id) Etrid. . FE
(S1-shift) AEFTL
Etr a: A EF s B
(S1-cons) EF aA-s. . AE
"o " " ro- !
(Sl_comp) EFF S F E'"F s F

EF sos" - E

In S1, we include neither the Beta nor the o axioms.

Clearly, typechecking is decidable in S1. We pro-
ceed to show that S1 is sound. As a preliminary,
we prove two lemmas. The first lemma relies on the
notion of ¢ normal form, which was defined in the
previous section. We use a modified version of the ¢
rules for typed terms; four of the rules change.

VarCons 1lla:A-s] =a

Abs (AM.a)[s] = AA.(a[l:A-(so1)])
ShiftCons 1o (a:A-s)=s

Map (a:A-s)ot=aft]:A-(sot)

The typed version of o enjoys the properties of the
untyped version.

A term in ¢ normal form is typeable in S1 iff it is
typeable in L1, and o reduction —4 preserve typings:

Lemma 4.3 For all a in o normal form, ' kg1 a:A

ff E by oaA.

Lemma 4.4 (Subject reduction) If a —4 a' and
E b5y a:A, then E ks a':A. Similarly, if s —4 '
and E' V51 s .. E", then E' b5 s’ . E".

Together, the two lemmas give us soundness:

Proposition 4.5 (Soundness) If ' k51 a:A then
E tz1 o(a):A.

One may wonder whether a completeness result
holds, as a converse to our soundness result. Unfor-
tunately, the answer is no. For instance, if L1 gives a
type to a but not to b, then S1 cannot give a type to
1[a - b-id], while L1 gives a type to o(1[a-b-id]), that
is, to a. However, if L1 gives types to a and b, then
S1 gives a type to 1[a- b - id]. Conversely, if S1 gives
a type to 1[a - b - id], then L1 gives types to a and b.

These observations suggest a reformulation of the
soundness and completeness claim. Informally, one
would like to show that S1 can give a type to a term
iff L1 can give a type to the normal forms of the term
and of some subterms that o normalization discards.

Page 9

5 Second-order theories

Type rules and typecheckers are also needed for
second-order calculi. Unfortunately, the situation is
more complex than at the first order, because types
include binding constructs (quantifiers). These in-
teract with substitutions in the same subtle ways in
which A interacts with substitutions. (We have no
equivalent of 3 reduction here, but this too reappears
in higher-order typed systems.)

In implementing a typechecker (or proofchecker)
for the second or higher orders, we face the same
concerns of efficient handling of substitution and cor-
rectness of implementation that pushed us from the
untyped A-calculus to the untyped Ao-calculus. It is
nice to discover that we can apply the same concept
of explicit substitutions to tackle typechecking prob-
lems as well.

In order to carry out this plan, we must first ob-
tain a second-order system with explicit substitu-
tions, which already incurs several difficulties. Then
we must refine the system, and obtain an actual type-
checking algorithm. During this enterprise, we should
keep in mind the goal of deriving an algorithm that
is correct and close to a sensible implementation by
virtue of handling substitutions explicitly.

Second-order theories are considerably more com-
plex than untyped or first-order theories, both in
number of rules and in subtlety. The complication
is already apparent in the De Bruijn formulation
of the ordinary second-order A-calculus (L2, below).
The complication intensifies in the second-order Ao-
calculus (S2) because of unexpected difficulties. (We
mentioned some of them in the overview.)

We begin with a description of L2, then we define
S2 and prove that it is sound with respect to L2.
Unlike L1, L2, and even S1, the new system S2 is
not deterministic. Therefore, we also define a second-
order typechecking algorithm S2alg, and prove that
it is sound with respect to S2.

The syntax and the type rules for the second-order
A-calculus are:

Types Ai=n|A—B|VA
Environments E :=nil | A E| Ty, E
Terms a:=n|AAa|Aa]|ab]|aB

Definition 5.1 (Theory L2)

(L2-nil) F nil env
F E env EF ATy
(L2-ext) F A E env

F F env
(L2-ext2) F Ty, E env
F F env
L2-t
(var) Ty, E F 1Ty
Fkrn:T EFrF A:T
(L2-tvarn) 1 Y Y

AE F n+t1:: Ty

EFn:Ty

(L2-tvarn2) Ty, E F n+1:: Ty

IR
T T

(2 A,EE T j{yﬂ

(L2-varn2) Ern:B

Ty, E F n+1: B{1}

AEFb:B
EF MMb:A—B

(L2-lambda)

Ty,E + b: B
(L2-Lambda) T E AL VB
(L2) Frb:A—B Ftka:A
“app E + b(a): B{a:A -id}
EF+ b:VB EFF A:T
(L2-App) :

E + b(A): B{A:Ty -id}

We now move on to the S2 system, with the follow-
ing syntax:
Types Au=1|A— B|VA| Als]
Environments F :=nil| A, E| Ty, E
Terms a:=1|XA.a|Aa|ab|aB|a[s]
Substitutions s:=id|{]a:A-s|A:Ty-s|sot

In the previous section, we have seen how to for-
mulate a first-order Ac-calculus (S1) by adding one

Page 10

closure rule and a group of substitution rules to the
first-order A-calculus (L1). In S1, the task of deriv-
ing types can be separated from the task of applying
substitutions. As indicated in the informal overview,
this approach does not extend to S2. The rules of
S2 described below are structured in such a way that
substitutions are automatically pushed inside terms
during typechecking. The unfortunate side effect is
a small explosion in the number of rules. We do not
include an analogue for S1-clos (in fact, we conjecture
that it is admissible).

S2 is formulated with equivalence judgments, for
example judgments of the form £ F a~b: A. This
judgment means that a and b are equivalent terms of
type A in the environment E. We can recover the
standard judgments, with definitions such as

Etra:A =43 EFa~a:A

In S2, equivalence judgments are needed because it is
not always possible to prove directly £ F a : A, but
only £ F b: A for a term b that is o-equivalent to a
(as in the example above). Formally, in order to prove
EF F a~a: A, wefirst prove £ F a~b: A, and
then use symmetry and transitivity. Similarly, it is
not always possible to prove directly £ F a : A, but
instead £ + a : B for a type B that is o-equivalent
to A—then we “retype” a from B to A.

We have seen in section 2 how the typing axiom
for 1 has to be modified. Similar considerations show
that the rule for conses, S1-cons, needs to be modified
as well, and suggest the following, tentative rule:

EF a~b: Als] EFr s~t. . F

E F Als] ~ B[t] :: Ty
EtraA-s~bB-t. . AFE

Note that, in the hypothesis, we require that a have
type A[s] rather than A: the reason is that A is well-
formed in E’ rather than in . Furthermore, we re-
quire that s and ¢ be equivalent substitutions of type
E’, but in truth their type is irrelevant. This suggests
a new approach: we deal with judgments of the form

E F s~t subst,

where p records the length | E' | of E’.

In fact, we could hardly do more than keep track
of the lengths of substitutions. As the following ex-
ample illustrates, the type of a substitution cannot be
determined satisfactorily. In the tentative rule above,
let £ = nil, s =t = Bool::Ty-id, a = b = true, and
A =1 and B = Bool. We obtain

nil & true:l-s ~ true:Bool -t .. 1::' Ty, nil

where we would more naturally expect Bool:: Ty, nil.
The information that 1 is Bool is not found in the en-
vironment: s has to be used to check that 1 is indeed
Bool. Tt seems thus that the type of a substitution
cannot be intrinsically defined.

With these explanations in mind, the reader should
be able to approach the rules of the theory S2.

Definition 5.2 (Theory S2) See appendiz 7.

S2 is sound, in the following sense:

Proposition 5.3 (Soundness)

1. If E ksg a~b: A
then o(E) bpa o(a) : 0(A) and o(a) = o(b).

2. If £ ksg A~ B :: Ty
then o(F) tpa o(A) 2 Ty and o(A) = o(B).

3. If ts9 E~E' env
then tpo o(E) env and o(E) = o(E").

4. If E ts9 s~ s' subst, then for some m and n

L J U'(S) = G1 HP
Gy ... -G 1n,

o for all ¢ < m, either G,=G{=A = Ty
and o(E) ta A = Ty for some A,
or Gy=a:A, Gy =a:A', a(A[l? o s]) =
o(A'[1%05]), and o(E) tza a:o(A[1%05s]

for some a, A, and A’,

ep=m+|E|—n.

<G - 1" and o(s') =

As for S1, we speculate that the soundness claim for
S2 can be strengthened, and that a converse com-
pleteness result then holds.

We now provide a typechecking algorithm S2alg for
the second-order calculus. The algorithm is formu-
lated as a set of rules, for easy comparison with S2.

For terms that are not closures, S2alg and L2 op-
erate identically. However, these are the least inter-
esting cases: an actual implementation would manip-
ulate only closures (as in subsection 3.5). In order to
typecheck a term a[s], the strategy is to analyze sim-
pler and simpler components of a while accumulating
more and more complex substitutions in s. When we
reach an index, we extract the relevant information
from the substitution or from the environment.

Informally, the algorithmic flow of control for each
rule is: start with the given parts of the conclusion,
recursively do what the assumptions on top require,
accumulate the results, and from them produce the
unknown parts of the conclusion. For example, if we
want to type a in the environment F, we select an

Page 11

inference rule of S2alg by inspecting the shape of its
conclusion. Then we move on to the assumptions of
this rule, recursively; we solve the typing problems
presented by each of them, and collect the results to
produce a type for the original term a.

Some of the rules involve tests for type equivalence;
two auxiliary “reduction” judgments are used:

E F s~s subst, and E F A~ A':Ty

In these judgments, s’ and A’ are in a sort of weak
head normal form, namely: s’ is never a composition
and if A’ is a closure then it has the form 1[1"].

Definition 5.4 (S2alg) See appendiz 8.

To show that S2alg really defines an algorithm, we
first notice that only one rule can be applied bottom-
up in each situation. For the judgments £ F A:Ty
and £ F A~ A'::'Ty, we test applicability by cases
on A; when A = BJs], by cases on B; and when B = 1
by cases on the reduction of s. For £ + a: A, we
proceed by cases on a; when a = b[s], by cases on b;
and when b = 1 by cases on the reduction of s. For
E F s subst,, we proceed by cases on s, and when
s =tou by cases ont. For £ F s~ s subst,,
we proceed by cases on s; when s = t o u, by cases
on t; and when t = | by cases on the reduction of u.
Finally, ¥ - A — B :: Ty is handled by cases on the
reductions of A and B.

The following invariants can be used to show that
the algorithm considers all the cases that may arise
when the input terms are well typed:

e If £ - s~»s" subst, then s’ has one of the
forms id, 1", a:A -t, and A::Ty - ¢.

e If E + A~+ A" :: Ty then A’ has one of the
forms 1, 1[1"], B — C, and VB.

Finally, the algorithm always terminates, with suc-
cess or failure, because every rule either reduces the
size of terms or moves terms towards a normal form.

The algorithm S2alg is sound with respect to S2.
For example, if £ btga4;y A :: Ty then we can prove
E tso A~ A::Ty. We conjecture that the algo-
rithm is also complete, in the sense that for example

if £ kg9 A~ A’ 2 Ty then E ksaa, A Ty.

6 Conclusion

The usual presentations of the A-calculus discreetly
play down the handling of substitutions. This helps
in developing the metatheory of the A-calculus, at a
suitable level of abstraction. We hope to have demon-
strated the benefits of a more explicit treatment of

substitutions, both for untyped systems and typed
systems. The theory and the manipulation of explicit
substitutions can be delicate, but useful for correct
and efficient implementations.

Acknowledgements We have benefited from dis-
cussions on untyped systems with P. Crégut, T. Har-
din, E. Muller, and A. Suarez, and from C. Hibbard’s
editorial help.

7 Appendix: Theory S2

7.1 Type equivalence
EF A~B:Ty
EF B~A:Ty
EFEF A~B:Ty EF B~C:Ty
EF A~C Ty
F E env
Ty,E F 1~1:Ty
E+ A~A Ty AEF B~B Ty
E+ A—-B~A —-B Ty
Ty,E + B~ B :: Ty
E F VYB~VB Ty
F E env
EF 1fid~1:Ty
EFF 1Ty EF ATy
AT F A~ 1] Ty
EF 1Ty
Ty, E b 4[] ~1[1] = Ty
E F 1[1"] = Ty EF ATy
AE F AT ~ 11"] s Ty
E F 1[1"] = Ty
Ty, B+ 11" ~ 117" = Ty
EF AxTy-s subst,
EF 1[A:Ty -s]~ ATy
E F s~s subst, E F 1[s'] : Ty
E F 1[s] ~ 1[s'] = Ty
E + Als] — B[1:A.(so1)] = Ty
E + (A— B)[s]~ Al[s] = B[1:A-(so1)] :: Ty
EFVY(B[1:Ty - (so1)]) =Ty
E + (YB)[s] ~¥Y(B[1:Ty -(so1)]) = Ty
E F A[sot] :: Ty
E + Als][t] ~ A[sot] = Ty
E+ A~B:Ty F E~E env
E'F A~B:Ty

Page 12

7.2 Term equivalence 7.3 Substitution equivalence

Lha~b: 4 E F s~t subst,
ErFb~a: A E F t~s subst,
Era~b:A ErF b~c: A
Etra~c: A EF s~t subst, E F t~u subst,
EF ATy E - s~wu subst,
AEF 1~1:A[]
EF A~A =Ty AEF b~V :B F B env
— E Fid ~id substg,
EF XMb~ XAV :A—B

Ty,E F b~b :B
EF Ab~ AV VB

EFb~bV:A—B EFEFa~d:A

EF ATy
AE F 1 ~1 substpg

E F b(a) ~b(d") : Bla:A - id] FE eny
EFb~b:¥YB EF A~A': Ty, E F 1 ~1 substp
! I
B F b(A) ~ (A7) = BlATy - Zd] E F s~t subst, E + Als]~ BJt] : Ty
Eri1:A E F a~b:Als]
EF 1fid~1:4 EtF aA-s~b:B-t substpyq
EF1:A EF B:Ty
B,E F 1[1] ~ 1[1] : A[1] EFEF A~B:Ty E F s~t subst,
FE1:4 EF AuTly-s~ BuTy -t substpys
Ty, E F 1[1] ~ 1[1] : A1
. il 1] Alll E F s~s subst,
E 1" A E+F B:Ty E b idos~s" subst,
B, E + 11"t ~ 1[1"] A1)
EF 1" A E F 1 subst,
Ty, E b 1[1"] ~ 1[1" 1] : A[1] E b toid~1 subst,
E F a:A-s subst, , .
EF 1[aA 5] ~a: A} E F s~ subst, E F a: Als]

EF 1o(a:A-s)~s" subst,
E F s~s' subst, EF 1] A

EF 1[s]~1[s]: A

E b s~s subst, EF ATy

E b XAls].b[1:A-(so1)]: B E + 1o(AuTy-s)~s" subst,
E F (AAD)[s] ~ AA[s].b[1:A - (so1)] : B . / .
E F A(B[1:Ty-(so1)): B 5~ 5 su/ Stp+1
E F (A)s] ~ AG[1=Ty - (so1)]) : B EFTos~ios subst
E + (b[s])(a[s]) : A E F aft]:A-(sot) subst,
E + b(a)[s] ~ (b[s])(als]) : A EF (a:A-s)ot~a[t]:A-(sot) subst,
B E ()AL B
E F b(A)[s] ~ (b[s])(A[s]) : B E F A[t]:Ty-(sot) subst,
EF afsot]: A E F (A:Ty -s)ot ~ Aft]:Ty-(sot) subst,

E F a[s][t] ~a[sot]: A

E b so(tou) subst,
EFa~b:A EF A~B:Ty

E F (sot)our~so(tou) subst,

EFtFa~b:B
ErFa~b:A F E~E env E F s~t subst, F E~E env
E'Fa~b:A E' F s~t subst,

Page 13

7.4 Environment equivalence

FE~E env
F B ~F env

F E~E' env FE ~E" env
F E~E" env

F nil ~nil env

F E~E' env E+ A~B:Ty
A E~B,E env

F E~E' env
F Ty, E~Ty,E' env

8 Appendix: Algorithm S2alg

8.1 Inference for types

F E env
Ty,E F 1:: Ty

EF ATy AE+F B:Ty
F+ A—B:Ty

Ty,E v B: Ty
EFVB:Ty

Ty, E F s~id subst,
Ty, E F 1[s] :: Ty

EF 1:Ty E+ ATy
AE F 1] = Ty

EF 1:Ty
Ty, E F 1] : Ty

E F 1[1"] = Ty EF ATy
A E F A" o Ty

E F 1[1"] = Ty
Ty, E + 11"+ = Ty

E F s~ AuTy -t subst,
E F 1[s] = Ty

E F s~ 1" subst, E F 1[1"] = Ty

E F 1[s] = Ty

E F Als] Ty
Alsl,)E F B[1: A-(so1)] = Ty
E + (A— B)[s] = Ty

Ty, E + B[1:Ty-(so1)] :: Ty
E + (VB)[s] = Ty

E F Alsot] :: Ty
E + A[s][t] :: Ty

8.2 Inference for terms

EF ATy
AE F 1:A[1
EF ATy AEFb:B

ErFXAb:A—B

Ty,E - b:B
EF F Ab:VB
EFErFb:A—B EFFa:A

E + b(a): Bla:A - id]

EFbL:VYB EF ATy
E + b(A): B[A:Ty - id]

A E F s~id subst,
A E F 1]s]: A[T]

EFEF1:A E + BTy
B,E F 1] All

EFEF1: A
Ty, £ F 1] : Al1]

EF 1" :A E + B:Ty
B, E F 1[1"H]: Af1]

E "] A
Ty, £+ 1[1" 1] A1

EF s~aA-t subst,
E F 1[s]: Aft]

EF s~ 1"

subst,

EF A7 A

EF 1s]: A

Alsl,E F b[1:A-(so1)]: B
E + (AADb)[s]: A[s] — B

Ty, E F b[1:Ty - (so1)]: B
E + (Ab)[s] : VB

LEF bs]:A—B E b afs]: A
EF A=A Ty

E F (b(a))[s] : Bla[s] : A -id]

E + b[s]:VB E + Als] = Ty

E + (b(A))[s] : B[A[s]:: Ty - id]

E F a[sot]: A
E F a[s]t] - A

Page 14

8.3 Inference for substitutions

F E env
E & id substg

EF ATy
AE F 1 substig

F E env
Ty, E = 1 substg

Etra:B E F s subst,
E F Als] < BTy
EF a:A-s substpyy

E+ ATy E s subst,
EF A:Ty-s substpiq

E s subst,
E + idos subst,

E s substpyq
E F 1os subst,

EF aft]: A-(sot) subst,
EF (a:A-s)ot subst,

E F A[t]:Ty-(sot) subst,
E F (A:Ty-s)ot subst,

E F so(tou) subst,
E F (sot)ou subst,

8.4 Substitution reduction

F E env
E & id~id subst|g

EF ATy
A E F 1~ 1 substg

F E env
Ty, E' b 1~1 substg

E F Als]:: Ty EtF a:B
E + B« Als]:: Ty E F s subst,

Era:A-s~a:A-s substpy

E - ATy E s subst,

EF ATy s~ AuTy-s substpyy

E F s~ subst,
E + idos~ s subst,

E F s~ad substpiq
EF Tos~1 subst,

E F s~ 1" subst,yq
E F Jos~s ?F! subst,

EF s~a:A-s substyiq
E F s~ " subst,

E F tos~s" subst,

E t s~ AuTy-s" substpyq
E F s~ " subst,
E F tos~s" subst,

E F alt]: A-(sot) subst,
EF(a:A-s)ot~at]: A-(sot) subst,

E F A[t]:Ty-(sot) subst,

E F (A:Ty-s)ot~ Aft]:Ty-(sot) subst,

E F so(tou)~ v subst,
E F (sot)ou~sv subst,

8.5 Type reductions

F E env
Ty,E F 1~ 1:Ty

EF ATy AE +F B:Ty
F+FA—-B~A—B:Ty

Ty,E +F B:: Ty
E FVB~VB Ty

Ty, E b s~sid subst,
Ty, E F 1[s]~1: Ty

E F s~ 1" subst, E F 11"] = Ty
E F 1[s] ~ 1[1"] :: Ty

EF s~ AuTy s subst,
E + A[¢']~ B :: Ty
E F 1[s]~ B : Ty

E + Als] :: Ty
Alsl,E F B[1:A-(so1)] :: Ty

Et+ (A= B)[s]~ A[s] = B[1:A-(so1)] :: Ty

Ty,E + B[1:Ty-(so1)] :: Ty
E + (VB)[s] ~ V(B[1:Ty-(so1)]) = Ty

E F Alsot]~ B :: Ty
E + A[s][t]~ B :: Ty

Page 15

8.6 Type equivalence

E+ A~1:Ty E+ A~ 1Ty
E+ A A Ty

EFA~B—=C:Ty
Er A~ B —C Ty
EFEF B« B Ty B,EF CC Ty

E+ A=A Ty

EF A~VB Ty E F A~ VB Ty
Ty,E + B~ B':: Ty

EF A~ 1[1"] = Ty

E+F A ATy

E F A~ 1[1"] = Ty

EF Ao ATy

8.7 Inference for environments

F nil env
F E env EF ATy
F A E env
F E env
F Ty, E env
References

(1]

2]

[5]

[6]

H.P. Barendregt, The Lambda Calculus: Its Syn-
tax and Semantics, North Holland, 1985.

N. De Bruijn, Lambda-calculus Notation with
Nameless Dummies, a Tool for Automatic For-
mula Manipulation, Indag. Mat. 34, pp. 381-392,
1972.

L. Cardelli, Typeful Programming, SRC Report
No. 45, Digital Equipment Corporation, 1989.

H.P. Curry and R. Feys, Combinatory Logic,
Vol. 1, North Holland, 1958.

P.-L. Curien, The Ap-calculi: An Abstract
Framework for Closures, unpublished (prelimi-
nary version printed as LIENS report, 1988).

P.-L. Curien, Categorical Combinators, Sequen-
tial Algorithms and Functional Programming,
Pitman, 1986.

T. Hardin, Confluence Results for the Pure
Strong Categorical Combinatory Logic, to ap-
pear in Theoretical Computer Science, 1988.

(8]

T. Hardin, A. Laville, Proof of Termination of
the Rewriting System SUBST on CCL, Theoret-
ical Computer Science 46, pp. 305-312, 1986.

G. Huet, D.C. Oppen, Equations and Rewrite
Rules: A Survey, in Formal Languages Theory:
Perspectives and Open Problems (R. Book, edi-
tor), pp. 349-393, Academic Press, 1980.

J.W. Klop, Combinatory Reduction Systems,
Math. Center Tracts 129, Amsterdam, 1980.

J.-L. Krivine, unpublished.

P. Martin-Lof, Intuitionistic Type Theory, notes
by G. Sambin of a series of lectures given in

Padova in 1980, Bibliopolis, 1984.

C.P. Wadsworth, Semantics and Pragmatics of
the Lambda Calculus, Dissertation, Oxford Uni-
versity, 1971.

Page 16

