Programming of Future Generation Computers 11
K Fuchi, L. Kott {Editors}
©® Elsevier Science Publishers B.V. {North-Holland}, 1888 183

Sharing in the Evaluation of lambda Expressions

Jean-Jacques Lévy !
INRIA-Rocquencourt

Abstract

This short note is to refresh an old problem that several researchers have
tzried to tackle unsuccessfuliy. This problem originated by Wadsworth’s
PhD dissertation [9] can be fortunately easily stated: “how to evaluate
efficiently lambda expressions?”. By efficient, we mean optimal which is
maybe not the same And opiimal means without duplication of contrac-
tion of redexes,

1 Duplication of redexes in beta-reduction

We assume here that the reader is familiar with the notations of the lambda calculus
H not, it is strongly recommended to read the definitions in Barendregt’s book [1].
Now, let M = (Az.zz){{Ayy)a) or, in shott, M = Alla) where A = Az .2z and
I = Ay.y Then several beta reductions are possible from M

M — (Ia){Ia) — a(la) — aa
M — Aa —as

The last reduction is shorter. This is because the a redex has not been duplicated,
Thereiore, it seems better to have an innermost strategy However, this is not so good
for two reasons. First, there are K-terms which do not need their azguments. Take for
instance Ka(Ib) where K = Az.Ay.z. These terms are to be evaluated in a outside-in
strategy in order to avoid the unnecessary evaluation of the Jb redex. K-terms are not
easy to be discovered because they can appear after some computaiion, and it can be
shown that it is undecidable to find them. Secondiy, even in the absence of K-terms,
the lambda calculus has strange terms. Take N = (Af.fI){Ay A(ya)). Then

N = (1D 0 (va)(va)) — O (va)(ya))T (Ta)(Ja) > alla) - aa
N — (yA(ya))l — A(le) > Aa— aa

The first iInnermost reduction is not the shortest. This is because of duplications of
subexpressions which will become redexes in a subsequent environment. It is a specific
problem of the strong beta reduction, and does not appear with weak reduction (i.e.
not evaluating inside lambda abstractions) or in first order term rewriting systems. To

1Present address is Digital Paris Research Laboratory, 85 av. Victor Hugo, 92563 — Rueil Malmaison
Cedex

184 J-J. Lewy

summarize, the reduction of lambda expressions is to be done in an outermost way to
avoid K-terms anpd with sharing of subexpressions to avoid duplication of arguments
For instance, the outermost reduction of M with sharing will be:

M=A(Id) — (Ia)(Ta) — aa

The last step of this reduction is the contraction of the shared redex fa. This
operation will cost a single unit, as it is straightforward to imagine a data structure
with directed acyclic graphs (dags) which will implement the previous reduction. See
figure 1 This shared outermost strategy is the ome considered in [8,7] for recursive
programs scheme and for the combinatory logic. It is interesting to noter that combi-
natory logic is an easy case, but not the lambda calculus. Omne explaination could be
the presence of bound variables in the lambda calculus.

2 Sharing subexpressions with reference counters

This section explains the method desciibed in {9]. Take the straightforward sharing.
There are problems because of bound variables Take P = (Af.(fI)(f.1))(Az.A(za))
where A = Az zz, [= Az.z, 7 = Az.b. The shared outermost reduction is:

P — {(Ax A(za)) D) ((Az Aza)) T) =77

This last step is not so easy fo work with, since the leftmost outermost redex is
(Az A(za))] and it is impoessible to substitute I for 7 in the shared subexpression
A(za) We will encounter this problem whenever the function on the left part of a
redex is a shared subexpression. In such a case, in [9}, i§ is suggested that the function
part is to be copled. Thus, the last example will be evaluated as:

P — ((Az.A(za))){(Az.A{ze))) = (A(Ia})((Az.A(za)) T)
 (a)(fa){(Ae A(za))) — (aa) (e A(za))])
— (aa)(A(Ja)) — (aa)((Ta)(Ta}) — (aa)(bb)

The corresponding dag implementation is explained in figure 2. The rule for du-
plicating expzessions can be easily phrased with reference countezs on subexpressions
{In fact 1eference counters on lambda abstractions are enough). Each time that the
expression on the left part of a redex has a reference counier greater than 1, it is
duplicated. Note that in the previous example, the left part of the (Az A(za))] has
been duplicated and thus the contraction of the A redex has been done twice, but the
beta conversion of redexes Ja and fa has been shared This example shows that this
method can duplicate redexes and thus is not optimal.

However, this method can be zefined to generate less duplications as also explained
in [9] The remark is that duplication of expression is only necessary when a bound
variable in this expression has to be bound to two different values Therefore, it is
unnecessary to duplicate subexpressions of a lambda abstraction which do net contain
an occurence of the bound variable. Take for instance P in the last example and
change the definition of A to be A = Ay.J(yy). As A does not coniain an occurence

186 1.4 Levy

of z, it is not necessary to dupiicate A and the I{yy) redex will be contracted once.
This second Wadsworth’s method is the best implementation of beta reduction known
today.

A note should be done at this point to recall that we are only concerned with the
contraction of redexes and not with substitution of subexpressions. This can seems
unfair since it is as long to substitute a value for a variable as it takes for a single
redex contraction. However, it is the measure we consider here. The reader who is
interested by the calculus of substitution can find an axiomatic treatment of it in [3].
But it is very likely that the full treatment of substitution is as much difficult as the
one of beta conversion

3 A theory of sharing

In [8], a naming of redexes in recursive programs schemes has been designed, and it is
shown that the names correspond exactly to the dag implementation. In [5,4], a similaz
calculus with names is defined. But in the lambda calculus case, instead of having
a strong intuition because of their implementation, an axiomatic approach is taken
The remark is as follows. Consider for example the expression @ = A((Xz.za)I) which
reduces in the following two interesting ways:

Q —+ A(IG.) — Aa — aa
Q@ — ((Azza))((’zza)I} — (Ja}(Ja) — aa

Suppose we give a name {o redexes, it seems that the name of the Ta redex is inde-
pendent of A and should commute with the contraction of the A redex Therefore,
a naming method with the Church Rosser property should be searched. This is what
is done in [5] where the most general naming closed under substitution and with the
Church Rosser property is defined. Here is the definition of the calculus with names,
also called the labeled lambda calculus

All subexpressions of a labeled lambda expression have names or labels (initially
just different letters). The beta conversion and the substitution are defined by:

((Az M)PN)* — o B M[z\B.N]
where a (MN)Y = (MN)*f
a (AxMY¥ = (hz M)
a-t? =
and (MN)?[Z\P] = {M][z\P]N[z\P))?
Az MYP[Z\P] = (Az.M)?
(Ay M)P[\P] = (Ay M[z\P])?
f\P] = B P
yl\P] = ¢

Labels, which initially are just single letters on an alphabet, become after several
steps of reductions cormpound sirings built on the already mentioned alphabet, but

Evaluation of the Lambda Expressions 187

also containing overlined and unde:zlined stzings. For instance, consider a labeled

version of @ say @' = (A'{{Az . (z'a/)*)?I}1)%, A" = (Az. (%)), I' = (Az.2)r.

"(Az.o')ea?)P)° s (Ala®)® — [ad-b-“aeg"‘)“Ec where o= fﬁhig—kligk:j'
(w'a?)))Y (Ax (afad) ") T)

- (&
((Ae)
(((Ap.2)igha?) RITR(() oT)iLk g7) /ThYabe
(dber sba)ubc

Ql

ol

a

These laws may seem complicated, but they are the minimum to ensure the Chuzch
Rosser porperty. This example is shown in figute 3 in a t1ee representation which is
easier to understand. Also, it is necessary to see that the underlines and overlines are
just a way of writing any unary function on the labels There is in fact a parenthesis
system between overlines and cortresponding underlines.

The theory of this labeling system is extensively developed in [4,5,6,2] The main
property is that, if one considers only reductions where all redexes with a same label
(on the function part) are simultaneously contracted, then all these redexes aze copies
(in fact res:duals) of a single redex. This means that it is fair to suppose that such
reductions steps are single operations. Another property is that leftmost outermost
strategies are optimal among these reductions, and therefore better that any plzain
reduction. To illustratie the residual property, take figure 3 There are three types of
redexes involved with names b, g, 1gk. In the reductions of the figure 3, there are all
copies of single redexes. The most interesting is the 2gk redex, which did not exist in
the starting expression. When iollowing the path b-g, redex igk is a residual of the
one created by the contraction of the ¢ redex in the starting expression

To summarize, there is a straightforward cziterium for redexes whose contraction
needs to be shared. It is to have the same label on the function part.

4 Shared contexts

Sharing subexpressions is not enough, because of bound variables. And we know at
each stage of a reduction what are the redexes to share. It is therefore natural to infer
from the labeling system what needs to be shared in order to get a data structure
which emulates the labels, This problem is not yet solved There is maybe not an
easy solution '

On the positive side, if ore trusts the labels, the shared objects can be inspected by
only taking care of objects with same labels. This leads to consider sub-contexts, ie
subexpressions with some holes in them. Sub-contexts with same labels on all theix
subexpressions have the same 1esidual property seen in the previous section. A redex
is characterized by the context ((Az] |)[]) Several researchers tried unsuccessfully
to imagine a data structure for the shared sub-contexts. The idea is not to deal with
subtrees as for subexpiessions, but with boxes representing subcontexts with several
input and output edges. There could be tags on these edges, analogous to the labels
of the previous section, which will give the correct output arc for a given incoming
arc. However, there is still not a solution to this.

188 J-J. Levy

ebfghigkligk]

-
M

Figure 3

Evaluation of the Lambda Expressions 189

On the negative side, there could be an argument on the complexity of the labels.
In order to find the correct output edge, it is maybe necessary to test the equality
of the labels which invelve a complex algorithm, which could of a complexitly similaz
to the history of a reduction. For instance, to have the Church Rosser property, it
is mandatory to have an associativity property inside the labels and thus to really
work with character strings This is a different situation from the recursive program
schemes But this is not different from the situation in first order term rewriting
systerns It would be nice if anybody tries to get the corresponding correct theory of
term rewriting systems.

References

{1] Barendregt HP., “The Lambda Calculus, lis Syntax and Semantics”, North
Holland, 1981

2| Berry G. , Lévy 1-J, “Minimal and optimal computations of recursive pro-
P
grams”, Journal of the Assoc. Comp Mach , vol 26{1). 1979,

[3] Curien P -L., “Categorical Combinators, Sequential Algorithms and Functional
Programming”, Research Notes in Theoritical Computer Science, Pitman, Lon-
don, 1986.

[4] Lévy J-1., “An algebraic interpretation of the Afx-calculus; an apnlication of
a labeled A-caleulus”, Rome, 1975. Theorical Computer Science. Vol 2(1), pp.
97-114, 1976

[6] Lévy F-1, “Réductions Correctes et Optimales dans le lambda calcui®, Thése
d’Etat, Université de Paris 7. Janvier 1978.

[6] Lévy J-T, “Optimal Reductions in the Lambda calculus”, To H B.Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, Edited by T P Seldin
and J R Hindley, Academic Press, 1980,

[7] Staples J., “Optimai Reudctions in Combinatory Logic”, 1978, Tech Report,
Univ. of Brisbane, Australia

[8] Vuillemin I, “Proof techniques for recursive programs”, PhD Thesis, Stanford,
1973.

[9] Wadsworth C P., “Semantics and pragmatics of the A-caleulus”, PhD Thesis,
Oxford, 1971

