Edited by

B. Randell and P.C. Treleaven
University of Newcastle upon Tyrie
Engiand

Contributions by

Speakers at the Advanced Course on VLSI
Architecture held at the University of Bristol, 1982,

*A -
Prentice,/Hall ?ﬁf— # Intemational

Englewood Cliffs, New Jersey London Deihi
Ric de Janeiro Singapore Tokye Toronto Wellington

tibrary of Congress Cataloging in Publication Data
Main entry under titie:

VLSi architecture.
Includes bibliographies and index.
1. Electronic digital computers-Circuits-Addresses
essays, lectures. 2. Integrated circuits-Very large
scale integration-Addresses, gssays lectures,
3 Computer architgcture-Addresses, essays, lectures
|. Randsil, Brian, 1936 Il Treleaven Philip
I1. Title: V L.S.1. architecture.
TK7888.4 57 1983 62138195835 8224040
ISBN 0-13-942672-8

British Library Cataloguing in Publication Data

VLS architecture.
1 Electronic digital computers—Circuits
|. Randeil, Brian |l Treleaven PhiipC
621 3819'58'35 TKY8884

ISBN 0-13-8942672-8
© 1983 by PRENTICE HALL INTERNATIONAL INC

All rights reserved. No part of this publication may be reproduced, storedin a
retrieval systemn, or transmitted, in any form or by any means, electronic,
mechanical photocepying recording or otherwise without the priar permigsion of
Prentice-Hall international Inc. : ;
For permission within the United States contact Prentics-Hall inc - Englewoad |

Cliffs N.J 07832

ISBN 0-13-942k72 &

PRENTICE-HALL INTERNATIONAL ING., London
PRENTICE-HALL OF AUSTRALIA PTY,, LTD Sydney
PRENTICE-HALL CANADA, INC |, Toronio

PRENTICE-HALL OF INDIA PRIVATE LIMITED New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTH EAST ASIA PTE. LTD., Singapore
PRENTICE-HALL INC., Englewood Cliffs, New Jersey
PRENTICE-HALL DO BRASIL LTDA. . Rio de Janeiro
WHITEHALL BOOKS LIMITED Wellington New Zealand

Printed in the United States of America

10987654321

ON THE LUCIFER SYSTEM

The Lucifer langoage

Lucifer is & language for describing circuits at the masks level basec on juxtaposition
of rectangles. A Lucifer expression <cxp> is caracterised by an origin and a bounding

box It can be:

{mask x y w h)

(UN <expl> <exp2> . <lexpn>)
(JX <expl> <lexp2> .. <lexpn>)
Y <expl> <exp2> = <{expn>)
(IB m n <exp>)

(DS < symbol>)

(TR x y <exp>)

{ROT n <exp=>)

{MX <<exp>)

(MY <exp>)

A Lucifer program is 2 sequence of declarations and an expression Declarations

of the form
(DEES <symbol> <<exp>)

permit definition of symbols. The semantics of an expression is better described by
Fig 1 The mask statement is for defining atomic rectangles UN means union, i.e.
overlapping of several expressions by identifying the origins of each expression. X
means juxtaposition along the X coordinates Thus the origin is that of the first
component, and juxtaposition is achieved by putiing aside the bounding boxes of all
cornponents Similatly, JY is juxtapositien along the Y axis Thus juxtaposed expressions
are ensured pot to overlap. TB is a construct for a two dimensional array Symbols
are used to give names to an expression TR, ROT, MX, MY are the standard
transformations for making tanslations, rotations (of a multiple of 90 degrees), and

mirror operations

_ Translators from Cif to Lucifer and from Lucifer into Lucle exist. Two circuits
have already been translated into Lucie which is presently our language for sending to
process: an 8 bitn adder which is 2 small version of a sophisticated one designed by
I Guibas and T Vuillemin [GV 82| and which has been coded in Lucifer by C Heintz,
and a circuit for computing transitive closures coded by B Serlet

157

e
=
Lt
—~d
2]
| 17]
>
o
&)
<
7
=
<[
wl
-

(JX A B)

{UN A B)

Figure 1

158

ON THE LUCIFER SYSTEM

The CEYX symbolic stractured editor

This subsystem has been implemented by I-M Hullot. It contains an extension of
Lisp and a comesponding structured editor Extensions of Lisp contain the deftree
construct for defining trees The CEYX editor wotks on any kind of trees defined by
this construct. Moreover, the editor can work under Emacs Thus, in one Emacs
buffer, in the Ceyx mode, keys are defined for moving in the free structure with
holophrasts [Mentor 80} to hide subtrees. Editing is also achieved by special keys
These tree extensions permit more elegant ways of programming, and this is the way
in which the Lucifer implementation is written This editor is thus strongly inspired by
[Mentor 80] with a video enviropment

Generally, programs for translating an abstract tree structure into Lucifer or for
naming wires are writter by the user. The Lucifer structure is stored in attributes
fields of each tree node, which permits editing on the original structure without
retranslating the whole expression. The Lucifer stucture can be geperated without
exact dimensions This permits floorplan layouts where bounding boxes are approximated
by possible extra proportions attributes. Note that floorplan pictures can be generated
on the Colorix graphics system from Ceyx at time of edition. Furthermore, an other
rocessor allows outputs of floorplan on an HP722 plotter through the FLIP system

Kahn 81]

158

JEAN-JACQUES LEVY

The graphic editor Luciole

Luciole is inspired both by Icarus [FR 80} and Emacs. It has been implemented
by G Baudet and J-J Levy. Interaction is achieved by a standard alphanumetic
terminal or a Bitpad tablet with the help of a four bution mouse The implementation
language is Lisp except for some basic operations which are ccded in assembly
language. When calling the editor, one is under the lisp environment. This allows
easy writing of editing macros and the calls of different processors for generating
Lucifer structures by programs or for checking expressions when editing them

The basic Tuciole commands are the following ones:

selecr-buffer kill-buffer, ULst-buffers. read-file, find-file, save-file write-file for
manipulating the different editing buffers or files. The user is prompted for a buffer

name or file name

pan-west,east,north south, center-screen arc used for panning the displays memory
The last command promts for two absolute coordinates and dispiay the window

centered on that point

zoom-1 2.4,8,+,- flush the screen at the indicated zoom The screen is centered
on the cursor -+,- mean increasing or decreasing the current zoom by one unit. The
zoom command can be used for quick pans when zoom is greater than 1

flip-grid, redisplay. layer-none,all,metal poly diff,implan: are several commands for
display . flip-grid flushes or erases a grid. Grids steps are functions of the current
zoom. redisplay cleans the screen The layer commands add a new layer on the

already flushed layers.

Movements of the cursor is generally achieved by moving the mouse. However
two commands permit some more directed ways: show-coordinates gives the absolute
coordinates of the cursor, move-cursor prompts for two values for a relative move of

the cursor

reset-mark, set-mark set-mark-father, son righi-brother, lefi-brother,
show-fype-of-mark, set-mark-org, exchange-mark-and-cursor are different commands for
marking a Lucifer expression The set-mark command finds the first expression in tree
preorder c¢ontaining the cursor. Notice that matching takes care of the currently
displayed masks selected by the layer command Other commands move the mark
along the Lucifer structure At any momment, an orange frame appears around the
selected expressions Several expressions can be marked, provided they are brothers in
the Lucifer structure. Moreover, an origin can be associated with the mark

160

ON THE LUCIFER SYSTEM

copy-mark, wipe-mark yank, input-eval, input-metal poly, diff, implant, cut
prev-in-kill-ring next-in-kill-ring are the basic editing commands The wipe command
deletes the marked expression, and puts a copy relative to the mark origin in the
Luciole kill ring This 1ing is a garbage with 10 entries copy-mark does the same
without deleting. The yank command inserts the top of the kifl-ring after the marked
Lucifer expression plugging the origin of the marked expression and the one of the
yanked expression The inputs command inserts a rectangle after the marked expression.
One corner of the rectangle is the origin of the mark, an other one is the current
position of the cursor. The command input-eval is as yank, but a lisp expression is
prompted instead of inserting from the kill ring. This expression must generate a
Lucifer structure. This is a very simple way of mixing interactive inputs and expressions
generated by program. (Nofice that at time of editing, one has the full lisp environment
Luciole can be called under Emacs, and this is a very convenient way for debugging

macro-generation programs)

begin-macro-learn. end-macro-learn, execute-la-macro, show-la-macro, save-macro
are vatious commands for handling simple editor macros When starting recording of a
macro, one hits in the menu the begin-macro-learn command Then all the commands,
inputs and moves of the cursor are recorded until the end-macro-learn command One
can then execute it or save it in the menu Note that the macro is executed when
defining it This feature, borrowed from Emacs, allows better debugging

The EXT node extractor

The task of a nede extractor is very similar to the one of a disassembler in
progremming languages It takes as input the layout description and preoduces - an
electric network formed by a list of triples (giid, drain, source) for each transistor
Fach component of a triple is a wire, ie a merge of several elements in the mask
description Thus, the main work of the extractor is to find equipotential components
in the geometry of a circuit. Naming of wires is achieved by taking care of the
names already given in the Lucifer structure and generates new names for unfabelled

Components

Our extractor, which has been implemented in Lisp by C Heintz, is structured
on the Lucifer language and is parameterised on the MOS technology Structure is

161

JEAN-JACQUES LEVY

easily achieved on juxtaposition nodes by keeping information on the perimeter of
bounding .boxes. The technology is table driven in order to define contacts or transistors
The implementation depends heavily on 2 rectangles intersection program in order to
find pieces which are connected, The program manages a sweeping line across the
layout with a data structure desctibed in [BW 80] for describing the section of the
citcuit Transistors are recognised in the usual way by looking at intersections of poly,
diffusion and poly Furthermore, a second pass looks for pullup nodes. The algorithm
is linear in the number of elements in the geometry if the circuit is well structured. It
takes on Multics 1 second of cpu time for 50 unstructured rectangles

The MOSSIM simulator

MOSSIM is a very simple simulator which is due to {BIyant 80] It has been
implemented on Multics by G Huet amd J-M. Hutlot, Its main characteristics are to
be a non directed simulator at the transistor level and to be very efficient Time is
not taken into account. Imput of the simulator is the output of the node exiractor
Simulation is performed by giving ordered forces 1o each wire For instance an inpot
wire is stronger than a VDD or ground line, which dominates puilup wires, which is
greater than a mormal wire At any moment, when values are given to grids, the
stronger element in a connected class gives its value to three class Also, there could
be undefined wires and an easy law giving the maximum of two values in some
straightforward fattice structure produces the value

The problem with MOSSIM is to make it structured in the Lucifer language. This
is not so easy, mainly because of its non-otiented behaviour. However, experiments
have shown that often, for Lucifer nodes, input and output lines can be pointed out
by the extractor For instance, input lines are the one connected to some grid. Thus,
an hybrid simulator mixing RTL and MOSSIM simulation is under development [WW

78]

162

ONTHE LUCIFER SYSTEM

The VRD design rules checker

Design rule checking works presently on the layout geometry It is very similar
to a pattern matching problem. About twenty 4 x 4 lambdas window patterns are
checked. Moreover the VRD checker is structured with respect to the Lucifer language
by keeping a 3 lambdas width boundary for each Lucifer node. This is clearly enongh
for checking juxtaposition nodes The checker has been implemented in Pascal and
recoded in Lisp by L Gallot Furthermore, a new implementation of it taking care of
the output of the extractor is under design.

Conclusion

The Lucifer system is nowadays a system still working at a pure geometrical
level. Tt is strongly embedded in the Lisp environment, which permits easy interactions
between circuits generated by programs and manual design Further developments will
naturally lead to more symbolic methods Presently, there is already work in this
direction For instance, B Seelet is implementing some elementary channel routing
algotithms, which allows the user to define routing boxes implicitely when juxtaposing
two Lucifer nodes Another example is to define some sticks formalism with the use
of a simple but manageable compactor (as in [W'este 81} for example) Notice that lot
of the programs developpped for Lucifer will then still be of use with small variations
Furthermore, the Ceyx editor will be of great use for implementation. Also, higher
level languages for describing circuits like Plastick [Cardelii 82}, which can be compiled
in a sticks framework, are of interest Finally, feasible electric simulation seems to be
a rather hard but valnable problem.

163

JEAN-JACQUES LEVY

References

[Kahn BIJ G Kahn, »FLIP User s Manual» | Tech Report 2, INRIA, Yun 1981

[Weste 8]} N H E. Weste, MULGA-An Interactive Symbolic Layout System for the
Design of Integrated Circuirs» | Bell Journal, Vol 60, No 6, Jul-Aug 1981

[MC SDJ C. Mead, L Conway, »Imtroduction to VLSI systems», Addison Wesley,
1980, pp 115-127

[!ucieJA. Guyot, A Jerraya, 7 Raymond »1UCIE Langage Universitaire de Conception
de circuirs Integres pour I’ Enseignement» | Tech Report, IMAG, Grenobie, 1979

[GV 82] L Guibas,] Vuillemin »>On fast binary addition in MOS techriologies»
1982, in preparation

[FR 80] D.G Fairbain .+ J. A Rowson, sICARUS, An Imteractive Integrated Circuir
Layour Program», 15th DAC Conf , IEEE, Fne 1978, Pp 188-192 Also in Mead and

Conway, pp 109-115

[BW 80] I L. Bewley. D Wood, »An Optimal Worst Case Algorithm for Reporting
Intersection of Rectangles», IEEE Iransactions on Computers, Vol C-29, Juty 1980,
pp 571-576

fBryant 80] R. E Bryant, »An Algorithm for MOS Logic Simulation LAMBDA, Vol
1, No 3, Fourth Quarter 1980,

[WW 78] 7 M. McWilliams, I C. Widdoes, +The SCALD Physical Design Subsystem» ,
Tech Report 153, Dept of EE and Comp Sc, Stanford University, March 1978

[Memor 80] V Donzeau-Gouge, G Huet. G Kahn. B. Lang, »Programming envfronmems
based on siructured editors - the Mentor experiences , INRTA Report No 26, Taly 1980,

[Cardelh' SZJ L. Cardelt, »Plasticks » PhD thesis, Univ of Edinburgh, Feb 1982

164

