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Abstract

One usually considers two kinds of semantics for programming
languages: the operational semantic¢s, which describes an execution
mechanism, and the denotational semantics, which associates input-output
functions with program pieces. We survey the known results about the
full abstraction problem for Plotkin’s language PCF, i.e. the problem of
finding denotational semanties which agree completely with the
operational ones. After giving basic syntactic results on PCF, we
recall Milner’s results on the existence and uniqueness of a fully
abstract model. Milner s construction of that model is purely syntactic,
and the problem of its semantic characterization is still open. We
survey the known semantic models, obtained from order-enriched cartesian
closed categories: continuous and stable functions, sequential
algorithms.

Résumé

J1 existe deux types principaux de sémantiques des langages de
programmation: les sémantiques opérationnelles, qui déerivent des
mécanismes d‘évaluation, et 1les sémantiques dénotationnelles, dans
lesquelles on associe des fonctions d entrée-sortie aux parties d’un
programme. Nous des sémantiques du langage PCF de Plotkin, i.e. 1le
probléme de la correspondance entre les sémantiques opérationnelles et
dénotationnelles. Nous rappelons d‘abord 1les principaux résultats
syntaxiques sur PCF, issus de la théorie du lambda-calcul. Nous donnons
ensuite les résultats de Milner sur 1°existence et 1‘unicité du modéle
complétement adéquat, qui est obtenu de maniére purement syntaxique. Sa
caractérisation sémantique est un probléme ouvert. Nous é&tudions 1les
modéles sémantiques connus, obtenus A partir de catégories cartésien
fermées: fonctions continues, fonctions stabhles, algorithmes
séquentiels.

This paper will appear in the Acts of the French-American Seminar on
Semantics and should be cited as such.

Ce papier paraitra dans les Actes du Colloque Franco-Américain de
Sémantique, Fontainebleau, 1982, et doit &tre cité comme tel.



1. Introduction.

When writing programs we usually think in terms of rather abstract entities:
numbers, trees, functions... But when running programs we use machines for
which these entities make no sense: they only push symbols. We generally hope
that there is a reasonable correspondence between what we want to "compute”
and the list of symbols output by the machine at the end of the execution(if
any). This resembles the classical relation between axiomatic theories and
models in logie: operational semanties {(what the machine does) corresponds to
axiomatic deduction, while abstract semantics corresponds to models. Hence
the required correspondence should be expressed by adegquation and
completeness results. In computer science, contrarily to what happens in
classical logic, the primary concept is not that of model, but that of machine
(the machine is always right). Hence adequation and completeness will be
defined according to a machine, or in more accurate terms to an operational

semantics.

We shall focus our attention on the problem of operational equivalence and
ordering of program pieces. Following a quite common terminology, we shall
call program any object which is directly executable and produces observable
results, and procedure any (sensible) piece of text which may serve as a part of
a program, without being executable on its own. As in [32,34] we say that two
procedures M and M, are operationally equivalent if they are interchangeable
in any program context, i.e. if the result of any program does not change when
replacing one by the other, and more generally that M, is operationally less
defined than M, if any programs which terminates using M, terminates with the
same result using M,. The operational equivalence and ordering are sensibly
defined as soon as the notion of result of a program is, and are clearly very
natural and essential as far as execution of programs is concerned. But in order
to reason about programs, one always prefer to consider procedures as denoting
Junctions from their inputs to their outputs, and to use any kind of
mathematical techniques to compare such functions. The classical denotational
semantics techniques [40] provide us with an adequate mathematical framework
for studying ordering and equality of such functions. Given M 1 and M, as above,
we say that M is denotationally less defined than M 2 if the function defined by
M, is less than the function defined by M3 in the appropriate function space.
The correspondence problem between operational and denotational semantics

may then be precisely stated: we say that a semantics is adeguate if the



-3-

denotational ordering implies the operational one, complete if the converse
holds. Following Plotkin [34] and Milner [32] we say that a semantics is fully
abstract when it is adequate and complete. In adequate semantics, denotational
proofs of equivalence are operationally valid. But proofs of difference are valid

only in fully abstract semanties.

Of course the stated problem is very general and applies to all kinds*of
programming languages. We shall study it only for sequential languages, without
trying to define precisely that term (for fixing ideas, PASCAL, LISP are
sequential, while languages which admit synchronization primitives are not). See
[1,20] for other kinds of languages, including parallel ones. In the sequential
case, the problem was originally raised and shown difficult by Plotkin [34], and
further studied by Milner [32] and by the authors [6,7,11,12,19]. It is still
unsolved. However many new results have been obtained on the way, both on
syntax and semantics, with side effects useful to other problems. Our purpose
here is to give a survey of the results, with indications about their proofs. Our
presentation of some results may differ from their original one, since we use as
much as possible strong syntactic properties which were not known at the time

the results were originally found.

We shall use a language introduced by Plotkin [34] and called PCF
(Programming Computable Functions). It is a typed lambda-calculus with
arithmetic primitives, and to our opinion has two advantages: it is syntactically
simple, it is general enough to raise almost all the possible problems in the field.
The operational semantics of PCF is not defined in term of a "machine”, but by a
set of rewrife rules. Some of the rules concern parameter passing for
procedures: they are the usual {(a) and (8) rules of the lambda calculus. One rule
concerns recursion done via the fixpoint operator Y. The remaining rules
concern arithmetic and boolean computations, and are purely first order. The
use of rewrite rules for operational semantics has many advantages, in
particular the great advantage of relying on fairly well-known syntactic theories
such as the lambda calculus [3] or the theory of first order rewriting systems
[24]. (Recently Plotkin [35] showed that rewrite rules are an excellent tool for
describing the operational semantics of arbitrarily complex languages.) The
syntax and operational semantics of PCF are given in section 2.

In section 3, we analyze the syntactic properties of PCF. Using inductions

based on a finite termination property, we show the Church-Rosser and

standardization theorems. Then we introduce Boehm trees and show the
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syntactic continuity theorem. We finish with the sequentiality and stability
theorems, which express the sequentiality property of PCF. This set of results is
fairly classical in the lambda calculus area, see for example [3, 14]. However we
try as much as possible to combine similar but independent results on the
lambda calculus and on first order term rewriting systems, in order to obtain
global results for PCF. We indicate how to generalize this process to similar

languages, using in particular the results of [23].

Section 4 discusses models. We first define interpretations of first-order
symbols, then least fixpoint models of interpretations. We show that any least

fixpoint model is adequate.

In section 5 we construct models from syntax. We recall Milner's essential
result [32]: there exists a unique (extensional) fully abstract model of PCF,
which is characterized by the definability of all its (isolated) points. The model is
constructed from a suitable completion of term operational equivalence classes.
We also construct a fully abstract model of the initial {(or free, or Herbrand)
interpretation, where function symbols act just/as term constructors. We show
that the previous uniqueness property of the fully abstract model does not hold

in that case: in fact any model of the free interpretation is fully abstract.

Constructing fully abstract models from syntax is clearly not completely
satisfactory, since it gives no information on how to reason about programs. The
problem is now to construct models in a semantic way, i.e. by using concepts not
directly related to the language itself. The natural framework for semantic
models is that of cpo-enriched cartesian closed categories [7, 10,29, 37]. We show

in section 6 that any such category yields a least fixpoint model.

The simplest such category is of course that of cpo's and continuous
functions. Plotkin [34] showed that the obtained model is not fully abstract,
since it contains non definable objects such as the "parallel or” par, which yields
true as soon as one of its argument is true. We use the sequentiality theorem to
show that por is not definable. We also recall Plotkin's result that adding por (in
fact a similar "parallel conditional") to the syntax of PCF makes the continuous
function model fully abstract. However the language obtained is not anymore
sequential, and this result gives no information about our original problem. We
also study full subcategories of continuous functions, and in particular the

"concrete' category of event structures introduced by Winskel [46].

The continous function model being too big, we must find more restricted

classes of functions, and if possible a good notion of "sequential” function. A
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first interesting approximation is that of stable function introduced in [4, 8, 7].
The stability constraint excludes functions such as por, and stable functions
form a suitable category. An important fact is that stable function may not be
ordered by the classical pointwise ordering of continuous functions. We have to
introduce another ordering for them, the stable ordering S,. Since we know
from Milner's result that tHe fillly abstract model is ordered pointwise, the
stable model is not fully abstract. In a second step, we construct a finer
category by keeping together both orderings in he construction. The model is

then much closer to the fully abstract model, but still contains non definable

elements. We show that the stable ordering is also present in syntax, and that -

the fully abstract model is indeed a biordered model. We conjecture that the

stable ordering is the exact image of the Boehm tree ordering of terms.

Sequentiality is more complex, and is studied in detail in another paper in
this volume [11]. We recall the main results: a fairly general definition of
sequentiality has been given by Kahn and Plotkin in their study of concrete data
structures [25]. But Kahn-Plotkin sequential functions do not form a cartesian
closed category [12]. However one can sensibly forget about functions, and
construct a model from a new notion of sequential algorithm [12,11,17]. That
model gives deep insights into the nature of sequential computation. and is fully
abstract for another sequential language, the language CDS of [9,11, 19]. But it
is not fully abstract for PCF (although it is indeed fully abstract with respect to
a richer notion of procedure observation that we do not discuss here). We are
currently trying to do with algorithms what we did with stable functions: keep
the pointwise ordering in the model construction. Winskel's results on stable
event structures [46] should be of great interest there, see for example [18].
There are still serious difficulties, and it is not certain that such constructions

will yield the fully abstract model.

2. The language PCF and its operational semantics.
2.1. Syntax of PCF.

The language PCF is a typed lambda calculus with arithmetic operators. We

assume basic knowledge of lambda calculi, as described in [3].

We consider two ground types ¢ (integers) and o (booleans). The set T of

types is the least set containing ¢, 0, and (g-7) for o,7€T. We write

F1X0pX * * + X0y >T = (01(0 (- - 2 (0, 27)...)))
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We define the following PCF typed constants:

n.: ¢ for any integer n

it.fr: o (truth values)

+1,=1: ¢t»¢ (successor and predecessor)

02: ¢»0 (test to zero)

if;: oxixe»¢ (integer conditional) .

if,: oxoxo-0 (boolean conditional)

Let V? be a denumerable set of variables of type o for each o, let V=u, V.
The set PCF=U’PCF° is defined by:

(i) °€PCF? for any ¢
(ii) z%e PCF® for any variable z°
(iii) f°¢PCFY for any PCF constant f of type o
(iv) 1f M@ e PCF(®*7) and N% PCF®, then (M "IN e PCFT
(v) Ifz°eV° and M"e PCFT, then (Az°MT)e PCF{°*7)
(vi) If M@*9e PCF(e9), then YM(=*o)g PCF®
Our version of PCF differs from that of Plotkin [34] since the "syntactic

undefined"” {1 belongs to the language, and since the fixpoint operator Y cannot
be used as a constant. This simplifies many results without loss of generality
(one can define a fixpoint constant YY by YY=Az.Yz). It also differs from

Milner's version [32] which is based on combinatory logic.

As usual we shall omit types whenever possible, and use left association for
application and right association for A’s, so that Azy.zyz stands for
(Az(Ay ({zy)z))). The notions of free and bound occurrences of variables are
standard, and we call M[N /z] the result of the substitution of all free
occurrences of z by N in M (z and N must have the same type). We shall never
care about a-conversion, and identify Az.M and Ay.M[y./z] (y not free in M). A
closed term is a term without free variables. We shall also use contezts, which
are expressions €7 containing occurrences of holes []™. By filling a hole with a
term M of appropriate type, one obtains a new term C[M]. Notice that this
operation may bind free variables of M by binders of C[], as in Az.[z]; such a
capture is not possible by substitution alone. We also consider contexts with
several holes [;; given any vector M of terms we call C[}] the term obtained by
filling []; with M;.
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We define the (3-match ordering £q on terms as the least ordering such that
(°spM? for all M and such that M <N implies C[M]<qC[N] for all M,N,C[].
Clearly M =oN holds if N may be obtained by replacing some occurrences of (1
in M by PCF terms.

We shall also need to manipulate precisely occurrences in terms. The best
way to understand the notion of occurrence is to write terms as trees and to
define occurrences as paths in trees. An occurrence w is a word on {1,2} and it
determines a subterm Mlw of a term M at w. The set OCC (M) of occurrences in

M is defined as follows:
(i) For any M, the empty word ¢ belongs to OCC (M) with M ie=M.
(i) If M is a variable, a constant or an (], then ¢ is the only occurrence in M
(i) OCC(MMp) = {e} U fw1|weO0CC(M,)} U fw2|we 0CC (M)}
with M lw 1=Mlw and M iw2=Mzlw.
(ii) 0CC(Az.M) = 0CC(YM) = {e} U fw1l|we 0CC(XM)}
with Az. M lw 1=YMlwl=Miw.

2.2. Operational semantics of PCF.
Here are the reduction rules of PCF:

(suce) tin »n+l

(pred) =1ntl-n
(zerol) 02 0- it

(zero2) 02 n+1-ff
(condl) ifftzy > =z
(cond?) if fzy >y
(cond3) if itz y ~» =z
(cond4) if, Fxy -y
(beta) (Az.M)N -» M[N /z]
(Y)  YM - M(YM)

(cont) M-N implies C[M]-»C[N] for any context C[]

Notice that the relation - preserves types. We call > its reflexive and
transitive closure. Given any reduction M -N there exists a unique context C[]
and unique terms M;N; such that M=C[M,], N=C[N.], and M;»N,, this

reduction not being of type (cont). Then M is called the redez of the reduction.

If w is the corresponding occurrence of M, in M, we write M 5N. To be perfectly

correct, one should always name the redex occurrences in reductions and
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distinguish the notion of reduction - sequence of labelled reduction steps - from

the reduction relation.

A program P is a closed term of type o. We say that P computes n if P3n

(we shall see in a moment that P computes at most one n). If P3n holds for no
n, then P is said to diverge; the computation of P may then be infinite as for
P=Y(Az.z), or it may reach terms which have no further reductions but are not

integer constants, as for P=—10
Let M, N be two terms of the same type. One says that M is operationally

less defined than N and one writes M, N if P[M]5n implies P[N]3a for all
context P[] such that P[M] and P[N] are both programs (such a context will
often be called a program context for M and N). We say that ¥ and N are
operationally equivalent and write M ZpN f ML ,N and N SpM.

The relations Sop and =, correspond to the intuition given in the
introduction: ¥ SopN holds iff N computes more than M in any program context,
M=,N holds if M and N may be freely interchanged in any program context.

To understand their properties, we must investigate the structure of reductions.

Notice that it is not even obvious that P3n and P'Sz imply P=,, P

3. Syntactic properties of PCF.

We investigate the main syntactic properties needed in the sequel: Church-

Rosser, standardization, continuity, stability, sequentiality.
3.1. A- and d-rules.

It is essential to notice that the reduction rules of PCF are of two quite

different kinds: the rules (beta), (Y) and (cont), which we call A-rules 7. are not

concerned with the particular nature of the PCF constants, and serve for
manipulating higher-order expressions (i.e. procedures); on the contrary the
other rules serve only for computing ground values, and have actually nothing to

do with the lambda-calculus, being purely first-order. We call them &-rules 2

There are many reasons to study A- and é-rules separatedly: the A-rules are very
general and are useful with many other sets of 6-rules, and we shall even pay
much attention to the case where there are no §-rules at all; the techniques
involved for studying both kinds of rules are slightly different (actually one may

hope to develop a very general set of results overcoming this difficulty, as
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suggested by the results of [23], but this is far beyond the scope of this paper);
last but not least, the feollowing simple commutation result shows that the

application of d-rule can be delayed arbitrarily:

3.1.1. Lemma: If M, 2 Mz > M3, there exists N such that M > N 7;» M.
proof: easy case inspection.

3.1.2. Proposition: If 1—'»M 2, there exists N such that M, {» N —;> M.

proof: Easy induction using the previous lemma.

As far as operational semantics is concerned, we can even go a step further.
We are mainly interested in reductions of the form P3z., which may therefore be

written P ;'3 Q —;»n. It is quite clear that the A’s and Y's of @ are of no use in the

reduction @ —;»n. and that all the subterms of § not concerned with the 4-

reduction may be simply replaced by (I's {(consider for example if it n YM,
which behaves exactly as if, if n. Q). The interest‘is that the term @' so obtained
belongs to the first-order algebra of PCF constants, so that the separation
between first-order and higher-orders is made complete. The process of
replacing subterms by {I's being a very general and useful one, we shall define it
for arbitrary terms. It is convenient to use Wadsworth’s notion of head normal
form [43]:

3.1.3. Definition: A term is in head mormal form or hnf if it has the form
AT 1Tg' * * T UM M2+ M,, m,n20, u a variable or a constant. The immediate

syntactic value w(M) of M is defined as follows:
(i) o(M)=0ifM is not in hnf;

(i) w(M)=Az 12"« * Tp.u (M )(M) - - w(My,)
ifM=Az1Z* * Ty UMMz - - M,.

It is often useful to use a tree representation for head normal forms and

syntactic values:

Az Tp" ' T,

The set of syntactic values is included in PCF', and is therefore also ordered

by Sqn. We call it BT (for Boehm Trees, see [3,7,42]) and call its elements ¢,¢",....
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Coming back to programs, their syntactic values are simply the closed
terms in the free ordered algebra generated by the set ' of PCF constants: they
contain only (I's or constants. They form a set A(F) or simply A, with elements
called a,a’,....

3.1.4. Proposition: Let P be a program. if P>n, there exists @ such that P ;:» q

and o(g) én

proof: Easy corollary of 3.1.2. using an induction on the size of w(Q).

Hence we shall use A-rules in PCF and d-rules in A(F). We call the
corresponding calculi PCF> and A%. More generally we shall be able to talk about

languages combining the lambda-calculus and a set of first-order rules.
3.2. Finite Termination Properties.

In the study of term rewriting systems, it is well known that the Finite
Termination Property or FTP is extremely useful, since it makes it possible to
use a single induction mechanism for proving all sorts of syntactic properties (a
rewriting system is said to satisfy the FTP if it does not contain infinite
reductions). It is also well known that the typed lambda calculus satisfies the
FTP [3]. However PCF does not satisfy it, since terms such as Y(Az.z) have
infinite reductions. As in [27,28], we introduce a labelled PCF calculus PCF;. It
is constructed in the same way as PCF, except that Y combinations receive an
integer label, which acts as a limit to the number of possible Y reductions. The

formation rules of PCF; are those of PCF, except the rule for Y which is now

(vii) If M is a PCF; term of type (g+0) and if m is an integer, then Y™ M is a
PCF, term.

The (Y) rule becomes

(Y,) Y™ s> Y M

3.2.1. Theorem: PCF has the Finite Termination Property.

proof: Extension of the classical proof for the typed A-calculus, see [7].
We shall refer to this property as the FTPL property of PCF,

Moreover the calculus PCF} "simulates” PCF*. Given any PCF* reduction
starting from a term M, it is always possible to label the occurrences of ¥ in M
by integers in such a way that the original reduction can also be performed in
PCF (choose for example the length of the original reduction as the value of all

labels). Now given a property we want to prove for PCF reductions of a given
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term, say for example the Church Rosser property, we choose labels big enough
for all reductions which interest our problem to be simulated in PCFQ, and we
prove the property in PCF} by induction on the length of the longest labeled
reduction. See [7] for details. This induction technique will be called FTPL
induction in the sequel.

The calculus A% evidently satisfies the FTP: the size of a term is decrea;ed
by a reduction. Generally speaking there exist good proof techniques for showing
the FTP for first-order systems, see [24], It is also not hard to see that the full
PCF) calculus satisfies FTP. We say simply that PCF satisfies FTPL.

3.3. The Church Rosser theorem.

The well-known Church Rosser or confluence property expresses as follows
for PCF>:

3.3.1. Theorem: If & —}M, and M —;»Mg. then there exists N such that M, -;’N
and M, —;» N.

It follows by a simple FTPL induction from the following "permutation

lemma':

3.3.2. Lemma: If M 3 M, and M 3 M, then there exists N such that M, 3 N and

M5 N.
proof: very tedious case inspection.

The Churh Rosser property also holds for the full PCF calculus: it is easy to
show it for the §-rules as in [24] and to combine the results for A- and d-rules.
Remark: One may also give much stronger forms of the Church-Rosser property
by considering the permutation equivalence of reductions [13, 14, 28], also called
strong equivalence in [3], which is defined exactly as for the pure lambda-
calculus. One then shows that reductions form an upper-semilattice, the
upperbound of two reductions being obtained as in the usual Church-Rosser
construction. Again this may be done both in PCF* and in 4%, and extended to
the full PCF.

Of course the Church-Rosser property establishes the soundness of our
operational semantics:

3.3.3. Proposition: For any program P there exists at most one n such that

Pin.



-12 -

3.4. The standardization theorem.

The standardization theorem is probably the most important technical tool
for proving syntactic properties of languages such as PCF'. It expresses that the
rewritings may always be performed from left to right. Formally, let w, w' be
two occurrences in M. One says that w is on the left of w' if either w is prefix of

w' or there exists u,w,;w'y such that w=ulw; and w'=u2w';. A reduction

w w wu
M—:Ml B n is standard if w; is on the left of w;,,; for any 7 such that

1fi<n.

3.4.1. Theorem: If M—'»M‘, then there exists a standard reduction from M to M.
proof: by FTPL induction and induction on the size of M.

One can actually say more: given any reduction from M to M', there exists a
unique strongly equivalent standard reduction [3,14]. Hence standard

reduction may serve as canonical elements of strong equivalence classes.

An analoguous resolt exists in A9, although the notion of "left to right
reduction"” works there by accident, for § rules such as the rules for if also have
a left to right character. This need not be true in general. See [23] for a general

definition of standard reductions in first-order term rewriting systems.

The result extends to the full PCF calculus, but we shall use it only for
PCF>,
3.5. Infinite Boehm trees and the continuity theorem.

The notion of Boehm tree introduced in 3.1. allows us to extend the notion
of normal form (term having no further reduction) to infinite objects. The
(classical) idea is to notice that the immediate syntactic values of terms
increase along reductions, and to associate with any term the upperbound of the
immediate syntactic values of its derivatives, which is nothing but an infinite
Boehm tree. Infinite Boehm trees are a fundamental tool in the study of the
operational semantics and also of the denotational one.

3.5.1. Definition: The set BT of infinite Boehm trees is the order completion of
the set BT ordered by Sq (see 3.1.). Intuitively, elements of BT may be seen as
infinite trees of the form given in 3.1. The set A is the order completion of 4. It

is then the set of infinite trees written with constants and ground (I's.

3.5.2. Lemma: If ¥3N then o{M)=qu(N).
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3.5.3. Definition: we set BT(M)=lub{w(N)|M3N]. We set M=pyN if
BT(M)<BT(N).

- 3.5.4. Lemma: If M3 N then BT(M)=BT(N).

proof: By 3.5.2 and the Church-Rosser property.

The syntactic continuity theoremn expresses that the context operation is

continous w.r.t. Boehm trees:

8.5.5. Theorem: For any context C[] and term vector M, one has
BT(C[M]) = tub {BT(C[t]) | tSqBT (M)3.

proof: Several different proofs exist, see [3, 7,27, 43,45]. Once FTPL induction is
known, the simplest proof is that of [27, 28].

As a corollary, one sees that the rules of formation of terms are monotonic

w.r.t. Boehm trees:
3.5.6. Corollary: If M <prN then for any context C[] one has C[M]sprC[N].

Remembering that PCF itself is ordered by the 1-match ordering, we see
that the function BT iself is monotonic from PCF to BT™:

3.5.7. Corollary: If MSgN, then M <grN
proof: Consider any term as the context of its (I's.

Because of the continuity theorem, Boehm trees may be considered as
first-class citizens. It is perfectly possible to put them into contexts, hence to

apply and abstract them:

3.5.8. Definition: Given a context C[] and a Boehm tree vector T in BT", we set
C[T]=wbiC[t] | t finite, tSoT]. In particular we set T,T,=[T;];[T2]; and
Az.T=Az.[T].

Of course the Boehm trees of programs contain only constants and ground

I's, i.e. belong to A”. The following monotonicity property of i» is obvious:

3.5.9. Lemma: Let a,a’'in 4 such that a=<pa’. If ai»n then o' —;»n.

From all these results we deduce an important property of program

contexts:

3.5.10. Theorem: If P[M]>n and MSoN then P[N ]5a.
proof: by 3.5.5, 3.5.7 and 3.5.8.



-14 -

3.6. Stability and sequentiality of PCF.

Intuitively PCF has a "sequential" behaviour, its interpreter may be a
"sequential" program (of course this does not mean that no parallel evaluation
of PCF is possible; it just means that a natural sequential one exists). However
the notion of sequentiality is not so easy to define correctly, and we shall
actually not do it. We shall simply exhibit some syntactic properties which
express in some way sequentiality. These properties will be essential to show
later on that "non sequential" models are not fully abstract. As usual we shall
combine two analoguous properties, one for A-rules and one for é-rules. The
properties of A-rules will be expressed in terms of the context operation, while

the properties of §-rules will concern reductions of first-order terms to integer

constants. They will imply together properties of reductions P[M ]—;n using
3.1.4, i.e. properties useful for studying the relation S,p- The properties will not
be given in their full generality, i.e. with infinite Boehm trees placed in contexts
as in [5,7].

The sequentiality theorem expresses that the function BT is,sequential in
the sense of Kahn-Plotkin [12,25]. It establishes a relation between the
occurrences of (1in BT (M) and in M.

3.6.1. Notation: We define occurrences for finite and infinite Boehm trees exactly
as for ordinary terms.

3.6.2. Theorem: Let M be a term, let =BT (M), let © be an occurrence of (1 in
T. Then either BT(NNu=0 for all N such that MsyN, or there exists an
occurrence w of 1 in M such that M £gN and BT(N )iu#Q imply N lw =().

proof: Consequence of the standardisation theorem, see [3, 5, 7].

Thus in order to increase BT(M) at occurrence u, it is necessary to
increase M at occurrence w. The analoguous first-order property expresses as

follows:

3.6.3. Proposition: Let ¢ in A be such that £3z holds for no n. Then either ¢'Sn

holds for no ¢' such that 54’ and no n, or there exists an occurrence w of Q1 in
t such that £<qpt' and ¢t'>n imply ¢'luzQl

proof: by induction on the size of £.
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Combining both results and using 3.1.4, we obtain:

3.6.4. Theorem: Let P be a program such that P53z holds for no n. Then either
P'5n holds for no P’ such that P<£4P' and no n, or there exists an occurrence w
of 1 in P such that P'Sn implies P'lw #(] for all P’ such that P<pP".

Hence it is necessary to increase P at occurrence w in order to prodt;;ce
some integer result. The occurrence w of (1 will be called a sequentialitly index.
The same results holds of course for boolean programs, and as a typical
application, let us show that no "parallel or" combinator (i.e. closed term) can

be defined in PCF. Such a combinator M would satisfy
Miuasu
MQuSit

MEFESE

Then by the continuity theorem M Q1 01 cannot reduce to i or ff, since one
has M t£0Q > £ and M Fidgia 3 Jf. But the term M (1 (] has then no index, which is
impossible.

The second property is called the stability property. It is a consequence of
the sequentiality property, but expresses quite differently and will be very useful
for models. It says that the function BT is stable, see section 8. Think again of
the continuity theorem: given a term M and an approximation T of BT (M), what
can we say about the set of approximations M' of M such that T'<aBT(M')? The

stability theorem asserts that it has a least element.

3.6.5. Theorem: Let M be a term, let T<aBT(M). There exists a least M'SpM such
that TSoBT(M').

proof: Easy from the sequentiality theorem 3.6.2.
The analoguous property of §-rules expresses as follows:
3.6.6. Proposition: Let ¢ be a finite term of A such that t>z. Then there exists a

least 'St such that t'Sao.
proof: easy from 3.6.3.

By combining the results we obtain:
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3.6.7. Theorem: Assume P-z. Then there exists a least P'spP such that P'Sn.
We could also use the stability theorem for showing that no "parallel or" is

definable: with the same notation as above, we see that there is no least

approximation P' of M ft it such that P' 5 ££. But the stability theorem is weaker
than the sequentiality theorem. We cannot use it for showing that no combinator

M having the following properties can exist:
Mgt
MQugst
MgQttSit

One needs to apply the sequentiality theorem and to see that the term ¥ Q1 Q

has no index. This example will be reused later on when studying stable models.

Together with the results about strong equivalence, the sequentiality and
stability theorems are also fundamental in the study of optimal computations,
see [7, 14, 13, 28].

4. Continuous interpretations and models.

We define least fixpoint models, show their approximation continuity and
define fully abstract models. Again we establish a strong distinction between the
A-calculus and the first-order calculus: models concern the first one, while first

order interpretations are defined for the second one.
4.1. Interpretations.

We assume a basic knowledge of complete partial orders or cpo’s, i.e.
partial orders having a least element L and such that any directed set has a lub.

With the two ground types of PCF we associate the following flat cpo's:
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012...n... tt fl
h\Vd \/
i o+

I()=N, l(o)=7.‘L

And we interpret any PCF constant f by the associated continuous function
I(f), so that one has for example J(+1){(L )=1 and I'(+1)(n)=n+1. We then
obtain the standard interpretation S of PCF.

Formally, an interpretation is a many-sorted continuous algebra where
there is one cpo per ground type and one continuous function per basic function
symbol, with the appropriate type. The notion of interpretation is of course
definable for any set of ground types and any set of function symbols. Given an
interpretation / and a term ¢t of 4, one defines as usual the value I(¢) of ¢ in ]
by induction on the size of £, and for any infinite T in A™ one sets

I(T)=lub §I ()]t <qT}.

One obtains a particular interpretation from A® itself, considering each
function symbol as a tree constructor. This interpretation is nothing but the

free continuous algebra generated by the constants. It will always be called I7.

The standard interpretation S of PCF relates to d-rules as follows:
4.1.2. Proposition: Let t€4 in PCF. One has ¢t 3 o iff S(¢)=n.

proof: easy induction on the size of ¢.

Using interpretations is therefore a way of forgetting about d-rules in our
class of languages (indeed Milner [32] considers only interpretations and does
not introduce é-rules). In the same way as 6-rules, interpretations may then be
used for defining orderings on arbitrary terms. The ordering <; associated with

I will be called the operational ordering determined by /.

4.1.3. Definition: Let / be an interpretation. We set M£;M' if for any program
context P[] one has I{BT(P[M])) S I(BT(P[M'])).

For PCF, it is not obvious that the orderings =5 and £,, coincide. That fact
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will follow from the next result, which shows an essential extensionality property
of £;. For arbitrary terms, the operational semantics is defined in terms of
behaviour in program contexts P[]. Putting a term M in such a context is a
rather complex operation: the context may bind free variables of M, pass
arguments to A's of M ete. The result shows that the full generality of the

context operation is already obtained by simple argument passing.

4.1.4. Notation: Let M be a term with free variables in z,z3, ' ' ,z,,. We call a

closure M of M the (closed) term Az zz - * - z,.M.

4.1.5. The Context Lemma: Let M,M' be terms of the same type having their free
variables among z,z3 ° ‘- ,z,. Let M.,M' be the terms Azyzp: 'z, .M and
Az, zp -+ z,.M'. Then M<;M" holds iff MN <;M'N and iff I (BT (MN))SI(BT (M'N))
for any vector N such that MN and M'N are programs.

proof: The original proof by Milner [32] is valid only for combinatory logic, and
does not extend to A-calculus. A complete proof, may be found in [7, 10]. The
difficulty lies in the "if" direction; one shows that I (¢)=n implies I (P[M'])=n for
any tSqBT(P[M]). This is done by a rather complex lexicographic induction on
the number of free variables of MM, the size of £, the length of the leftmost
reduction of P[M] to hnf, and the number of holes in P[].

4.1.6. Corollary: If P and P' are programs, then P £;P' holds iff
I(BT(P))SI(BT(P")).
This is enough for showing that the natural interpretation of PCF captures

its operational semantics:

4.1.7. Corollary: The relations £,, and £g coincide in PCF.
proof: By 4.1.2 and 4.1.6.

4.2. Least fixpoint models.

We use the model definition introduced in [7,8, 10}, which departs slightly
from the classical ones, found for example in [3,21, 30]. In usual definitions, one
introduces a value domain D? at each type o, and one interprets any term as a
function from environments (functions from variables to values) to value
domains. We shall be a little more abstract, and introduce another set E? in
which terms will be directly interpreted, together with a mapping eval from
ExENV to D which will allow to compute values of terms in environments
(defined as usual on D’s). It may happen that E is still a set of functions from
ENV to D, eval being then just function application, but this is not necessary.

Even in that case the explicit introduction of £ has advantages, especially for
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manipulating orderings between functions which make sense only on a
particular function class (say stable functions); then E will be just that class. In
other models such as the sequential algorithm models, objects are not functions
anymore, and the introduction of E'’s is somewhat necessary. See [8,30, 28] for
an extensive discussion of that point (including the relation between our models

and classical lambda algebras). .
4.2.1. Definition. A (continuous) premodel is given by
- A cpo <E?,2£,17> at each type o, called the semantic domain of type o.

- A cpo <Dfs5%1°> at each type o, called the value domain of type 0. The
infinite product of the D? indexed by the variables z? is called the
environment domain ENV, and its elements are written p,p', etc. We call
p(z) the z-component of p, and p[z«v] the environment p' such that
p'(z)=v and p'(y)=p(y) for y ==z.

- A continuous evaluation mapping eval: E°<ENV - D°® at each type o. We

abbreviate eval(e,p) into ep.

- A continuous application mapping app: D**"™xD°-»D7 for each o and 7. We

write dd' instead of app (d,d’).

A premodel is environment order extensional if epSe'p for all p always implies
espe', is environment extensional if ep=e'p for all p always implies e=e', is
value order extensional if dd"sd'd" for all d" always implies d £d', and is value
extensional if dd"=d'd" for all d" always implies d=d'. A premodel which is both
environment and value {(order) extensional is said to be (order) eztensional.
Usually only environment order extensional premodels are considered in the

literature, but we shall see that this is far from being sufficient.

4.2.2. Definition: Given an interpretation I, a least fizpoint model or simply
mmodel M of (PCF.,I) is the pair of a premodel also called M and of a set of
semnantic functions M[[]: PCF°-»E7 such that:

(i) M[fJpdidz: - - d, =I(f )dy.da -+ .dy,) for all constant f of arity n and
allp,di,dz. - ,dn

(i) M[QJpo =1 atall types forallp
(iii) M[z]p = p(z) for all p,z
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(iv)  M[MN Jp = (M[N Jp)(M[N Jp) for all M, N p

(v) M[Az.M]pd = MM Jp[z«d] for all z,M ,p.d

(vi) M[YM]p = fiz(M[M]p) for all M ,p, where fiz(f) = lub{f™(1)}
(vii) M[¥]sp MIN] => Y C[). MIC[M]] 5 MICN]]

(viii) If for all XCPCF, if the set {M[M] | M € X} is directed and has lub M[N],
then for any context C[] the set {M[C[M]] | M€ X} has lub M[C[N]]

(ix) If p(z)=p'(x) for all = free in M, then M[M Jo=M[M Jpo'

(x) 1f MSN then M[M]=M[N]

A model is a (n)-model if it satisfies one of the equivalent conditions:
(n1) M[Az.Mz] = M[M] if z is not free in M.

(n2) M[Mz] sg M[Nz]. z not free in MN, implies M[M] sz M[N].
(n2) M[Mz] = M[Nz], z not free in MN, implies M[M ] = M[M].

The condition (i) expresses that the semanti.cs of constants should agree
with their interpretation; (ii)-(v) are classical; (vi) expresses that Y acts as a
least fixpoint operator; (vii)-(viii) require the context operation (i.e. the
formation laws of PCF') to be continuous, (ix) forbids some "crazy" models, and
(x) requires semantics to be preserved by reductions. In environment
extensional models (vii), (viii) and (x) follows from the other axioms, but this is
not true in general. Clearly all extensional models are (7)-models, but the
converse is false: a model which is neither environment nor value extensional
may still be an (n)-model. This is for example the case for the sequential
algorithm model [12].

Given a model M, we set M Sy M' if M[M] <p M[M'], which implies (but is
not necessarily equivalent to) M[M ]p < M[M']p for all p.

Additional properties such as w-algebraicity will be said to hold for a model
iff they hold for each domain. (recall that a point z of a cpo D is isolated if for
any directed XcD, x<lub D implies ByeD. z <y, and that a cpo is w-algebraic
if it has denumerably many isolated points and if for any z the set of isolated
points below z is directed and has lub z). We shall use also Plotkin's notion of
SFP cpo. Call projection any continuous f:D-D such that fof =f and f(z)=z
for all z, and say that a projection is finite if its range is. Then a cpo is SFP if its
identity function is the pointwise lub of an increasing sequence of finite

projections (equivalently, the SFP cpo's are obtained as w-colimits of chains of
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finite posets in the category of cpo’s and embeddings).
4.3. Approximation continuity, operational adequation and full absg'action.

The next result expresses that every least fixpoint model is continuous
w.r.t. approximations:
4.3.1. Theorem: Let M be a least fixpoint model. Then for any M one has
MM = tub Mt ]| tSaBT ()] )

proof: The difficulty is to show that the first member is not greater than the
second one. Extend the semantic function to PCF! by setting

H[Y"M] = M][(M(M(...(MQ)-"))]
— - .

n

Using (viii), show M[YM ] = lub {M[Y"M ]|n €N}. Then given n>0 and M, let M™
be the term where all Y's receive label n. Let N be the normal form of N in
PCF', which exists by the FTPL property, let t=w(N). Check M[M™"] <y M[t].
Complete proof in [7].

4.3.2. Corollary: Let | be an interpretation, let M be a model of /. Then for any

program P and any p one has
M[P o = lub {M[t]p|tSaBT(P)} = I(BT(P))

Hence the value of any program in any model of / depends only on / and is
the same for every model. As a consequence, any model is adequate w.r.t.

operational semantics:

4.3.3. Theorem: Let I be an interpretation, let M be a model of . Then M Sy M'
implies M $;M".

proof: Let P be a program. Then M[PJp=/(BT(P)) for any p by 4.3.1 and the

definition of interpretation and models. Now MI[M] <; M[M'] implies
M[P[M]]p < M[P[M']]p for any p by the definition of models, and the results

follows.

The converse property need not be true, as we shall see in the sequel. We

set the following definition:

4.3.4. Definition: A model M of I is said to be fully abstract w.r.t. I if the

orderings £y and £; coincide.
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5. Construction and characterization of fully abstract models.

As we said in the introduction, we do not know how to construct a fully
abstract model of (PCF,S) by "semantic" ways. In this section, we recall Milner's
syntactic construction of such a model, and his uniqueness result. We also study

the case of the free interpretation.
5.1. Construction of a fully abstract model of (PCF,S).

A key to full abstraction is definability of isolated points of an w-algebraic

model:

5.1.1. Notation: Given a model M and a point d of D, we say that d is definable if
there exists a closed M such that d=M[M].L.

5.1.2. Lemma: Let M be an w-algebraic extensional model of (PCF,S) such that
any isolated point of any D is definable. Then M is fully abstract w.r.t. S.

proof: Assume MSgM' for M ,M' closed. One has MIVé,gM’ﬁ for all closed N such
that MN is ground, hence, using 4.1.5, 4.1.7 and the definability hypothesis,
M[M]pd = M[M']pd for all p and all isolated d, hence finally M{M JszM[M'] by

extensionality.

Now the idea is to use the terms themselves to construct a model. For each
type o, consider the set of equivalence classes of closed terms modulo =g (or
equivalently =), calling |M | the class of M. This set is clearly a partial order,
with the class of (] as least element; it is not a cpo, although some directed sets
may have lubs. To turn it into a cpo, one needs to use a completion process
other than the classical ideal completions which would add new lubs to any
directed sets. There exist standard "conservative completions"” which do the job,
see [32,16,7]. This determines a cpo D? at each type. Define application by
setting |M||N| = |MN |, with extension by continuity to the whole domains. By
the Context Lemma, |M||N]| Sg|M'||N | for all N implies |M |<5|M'|. so that
application is order-extensional. Construct then an environment order
extensional model S by taking for E'? the set of all continuous functions from
ENV to D7 ordered pointwise, the semantic function S[] being defined in the

only possible way.
5.1.3. Theorem: The model & is fully abstract w.r.t. S.

proof: The ground domains are clearly SFP, and moreover one may easily for
them define an increasing chain ®,, of terms denoting finite projections having
the identity as lub, by projecting N, to the finite cpo containing only the

integers from 0 to n. Then one can define such a chain of projections at any type
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by a simple induction on types, so that each D? is SFP. The isolated points of D°
are then the classes of the form |$,M |. Hence they are all definable. The result
follows by the previous lemma.

The construction may be generalized to general SFP interpretations where

ground finite projections are definable, see [32, 7].
5.2. Uniqueness of the fully abstract model of (PCF,S ).
Milner [32] also shows that the fully abstract model just obtained is unique
among extensional models.
5.2.1. Lemma: All extensional models of (PCF,S) are SFP and hence w-algebraic.

proof: The finite projections of 5.1.3 exist in any model, and may furthermore be

defined by an increasing chain of terms w.r.t. £5. Hence all domains are SFP.

5.2.2. Theorem: An extensional model of (PCF,S) is fully abstract if and only if it

is order extensional and such that all the isolated points of the D? are definable.

proof: The "if" direction has already been shown in 5.1.3. For the "only if"
direction, one chooses a non-definable finite point dg of a D° with ¢ of minimal
size, and one constructs two closed terms M; and Mz such that
MM ]1d = M[M]Ld for all definable d, so that M ;=gM3 by the context lemma,
and such that M[MJido = M[M:]Ldo ie. My#yMa See [32,7] for the exact
construction. -

5.2.3. Corollary: The value domains of any = two extensional fully abstract
models of {(PCF,S') are isomorphic at any type.

proof: Given two fully abstract models M; and Mp, the isomorphism h at type o
simply associates h(z )=Mp[M ] with any isolated z=M,[M].

The results are valid for the class of articulate interpretations, see [32, 7].
Later on we shall freely refer to Milner’s model as the fully abstract model of
PCF, forgetting that there may still exist non-extensional fully abstract models.
5.3. The initial model.

In the same way as we have constructed a free (initial) interpretation, we
can construct initial models. Define a morphism of models as a collection of

continuous maps @z:F-E"' and 8;:D-D' such that for all d,d3,e,0,M:
8p(didz) = 8p(d,)8p(dz)
®p(ep) = 8z (e)8p(p)

e(M[M]) = M[M]
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Define now the initial model I by taking for F the set of all Boehm trees, for
D the set of all closed Boehm tree, for eval the subsitution operation extended
to Boehm trees, for app the application operation defined by the context [],[]2
as in 3.5.8.

5.3.1. Theorem: I is the initial model of the free interpretation /7: for any model

M of I7 there exists a unique morphism from I to M.

One may also construct an initial 7-model I,: noticing that the n-expansion
rule M -»Az.Mz, x not free in M, always terminates in a typed calculus such as
PCF, one can take the E’s (D's) as the sets of {closed) Boehm trees in maximal
7-expansion. One has then to check that substitution and application preserve

the property of being in maximal 7-expansion, see [22].

9.3.2. Theorem: The model I, is order extensional and is initial among (n)-
models, extensional models #nd order extensional models of I7. It is fully

abstract w.r.t. I17.

proof: The proof is rather technical, purely syntactic, and very different from
Milner's proof for S. The main difficulty is to show that I, is order extensional.
See [7, 10].

The same results holds for any language with enough constants; it may be

wrong if the set of constants is too small, see [7, 10].
Here fully abstract models are definitely not unique:
5.3.4. Proposition: Any (7)- or extensional model of I/ is fully abstract.

proof: full abstraction is clearly preserved by morphisms.

6. Categorical construction of models.

So far we have seen syntactic model constructions, where the objects of the
models are obtained from the terms themselves. But of course the most
interesting model constructions are the semantic ones, in which the objects are
interesting on their own and do not depend on the language; usually they are
functions, but as we shall see later on other objects than functions may be
interesting. The natural framework in which to study semantic models is that of
cartesian closed categories [7,10,29,37]. Intuitively a category is cartesian
closed if the set of arrows from D to F can always be represented by an object
(D-FE).
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6.1. A-categories.

6.1.1. Definition: In a category €, we call €(D,E) the hom-set {set of arrows)
from D to E. A category € is cartesian closed or is a ccc if it has the following
properties:

(i) It is product-closed, i.e. contains all finite products. Hence it contains a
terminal object T (the product of no objects). The pair of f:D-E and
g:D-F is written <f ,g>:D-»E xF, and the product of f:D~+D'and g:EF-E"is
written f xg:DxD'-»ExE"'. The i-th projection is called n;.

(ii) For any objects D,E, there exists an object (D-FE) and an arrow
app:(D-E)xD-E such that for any f: FxD-E there exists a unique arrcw
curry (f ): F»(D-E) satisfying

appo(curry (f )x1p) = f

curry (f )x1p

K’\
(D-E)xD FxD

app f

E

In a cartesian closed category €, we set D =C(T ,D). The sets C(T .(D~E))
and €(D,E) are always isomorphic.

Given two arrows f:D-(E-F) and g:D-E, we set Sfg = appo<f.g> (in
categories of sets and functions, one has Sabc=ac (bc).
6.1.2. Definition: A cpo-enriched category [39,44] is a category such that each
C(D.E) is turned into a cpo <C(D.E).<,L> in such a way that composition is

continuous.

6.1.3. Definition: A A-category is a cpo enriched cartesian closed category such
that

(i) The composition is left-strict, i.e. satisfies Lof =L forall f.

(ii) The pairing operation <-,-> (or equivalently the product functor x) is

order-continuous and strict (i.e. <L,L>=4)
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(iii) The curry function is an order-isomorphism from C(DxE.F) to

@(D.(E-F)). The S operator is left-strict, i.e. such that Sif=f forall f.
6.2. Model construction from A-categories.

Although it is not necessary, we shall add an hypothesis which makes life
simpler: we shall consider only A-categories which are closed by denumerable
products. It will allow us lfo turn the set of environments into an obje‘ct
(otherwise one has to count variables and to introduce finite environments
relative to a finite set of variables, see [26]).

6.2.1. Definition: Let / be an interpretation, let € be a A-category. We construct

a model € of I in the following way:

- For each ground type &, choose an object C* such that the cpo’s C* and Df are

isomorphic;
- For each constant f V%" *n”* ¢choose an arrow F:C¥xC x - - - xC* -C* such
that S(...(S(Sfd,)d2)...)dpn=d iff I (f )d.da . . ., dy)=d.

- For each type o7, set C?"=(C’>C7); set D°=C?, and for J inD°°7, d in DY set
app(f.d)=Sfd;
- Define the object Fnv as the infinite product of the C®s indexed by the
variables. Then ENV=FEnuv is the environment over the Ds. Given a variable z°,
let m, be the z-th projection, let S, be the unique arrow from Env xD® to Env
such that meS; =m2 and mpES; = mpem; for y#z. Then muep =p(z) and
Syp<p,d> = p[z+d] for all p,d.
- Set E°=C(Env,C?%); for e in E° and p in ENV, set eval (e,0)=eop.
- Define the semantic function €[] by:
(i) CLf1 =7 for all constant f
(i) €[a] =1 atall types
(iii) €[z ] = n, for all variable z
(iv) C[MN] =S C[M] CI[N] for all M,N
(v) C[rz.M] = curry(C[M }S,) for all M,z
(vi) CIYM] = lub §S(...(S(SCIM]D)0)...)0} for all M of type o0

The above definitions are nothing but the "abstract” version of the

equations of the model definition: environment and value variables have been

removed in an usual categorical style.
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6.2.2. Theorem: € is a least fixpoint n-model of /.

proof: see [7,10]. The main difficulty is to show the validity of B-conversion,
since we cannot use extensionality as in function models. Extensionality has to

be replaced by uniqueness of curry (f) for all f.

6.2.3. Remark: An important fact is that (n) is not equivalent to extensionality
(concreteness) of €, but is always valid, even if the arrows of € are not
functions. This is due to the introduction of £ in our model definition, see [8, 10].
That fact is absolutely essential in the study of sequential algorithms, see [12]
and section 9. One can also construct models which do not satisfy (n) by taking
C°7 as being a retract of (C?>C7), see [37].

7. Continuous function models.
7.1. The continuous function model.

The simplest A-category is of course that of cpo's and continuous functions.
The exponentiation of two cpo’s D and F is the set [D-E] of all continuous
functions from D to E ordered by the ezfensional of pointwise ordering <,,
defined by f S,9 iff f(z)Sg(z) for all z. The hom-sets are ordered by the same
ordering. The model obtained is clearly order extensional. The continuous
function models was originally introduced in [31]. Plotkin [34] showed the

following result:
7.1.1. Proposition: The continuous function model is not fully abstract.

proof: Let por be the continuous function from boolean pairs to booleans defined
by por ttL =pord tt =4t and por ffff =ff. By the stability theorem, the
function por is not PCF -definable, and the result follows by 5.2.2.

However Plotkin obtained a very nice full abstraction result by extending
the language, adding not exactly the "parallel or" but a similar "parallel if"
construct:

7.1.2. Notation: Let PCFP be the PCF language augmented with two constants
oif, and pif, having the following rules:

pmf ilzy >z
pffzy -y
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pif M c ¢ - ¢ for any constantc. aomd lerm M.

In the standard interpretation of PCFP, the pif's are interpreted as in the

rules.

7.1.3. Theorem: The continuous function model is fully abstract w.r.t. the
standard interpretation of PCFP.

proof: show that all finite points of the model are definable, see [34], and use
5.1.2.

However many important properties of PCF are lost, such as stability and
sequentiality (consider the term pif 0 0 0, which has no sequentiality index).
Indeed the computations in PCFP have to be "parallel”. For assume we want to
compute a term por My M, (por is easy to define from pif); we then have to
compute the values of M; and M, in parallel: if we start computing M; alone, it
may happen that we never end, while computing M, would have given the value
tt, and symmetrically. This makes PCFP not very interesting as a language,
since it requires a parallel evaluator but has really no parallel programming
primitives.

7.2. Full subcategories of continuous functions.

The continuous model construction for a language such as PCF starts from
two very simple "flat" partial orders, and proceeds by taking exponentiations.
Then one is far from generating arbitrarily general cpo’s, and it is interesting to
look for additional properties of the actually generated stuctures. The right way
to do it is of course to look for conditions such that the cpo’s which satisfy them
form cartesian closed full subcategories of the catébry of cpo’s, in other words
to look for conditions which are preserved by products and exponentiation. If
satisfied by the ground domains, they will be satisfied by all domains. Let us

enumerate some classical properties:

- A cpo is consistently complete if any upperbounded subset has a lub, or
equivalently if any nonempty subset has a glb. Consistent completeness is

preserved by product and exponentiation.

- Say that a subset is pairwise consistent if any two points in the set have an
upperbound. Then a partial order is coherent if any pairwise consistent set
as a lub. Any coherent partial order is of course a consistently complete

cpo. Coherence is preserved by product and exponentiation.
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- The w-algebraicity property is preserved by product, but mnot by
exponentiation; Smyth [38] has shown that the largest cartesian closed

subcategory of w-algebraic is the category of SFP cpo’s.

- The w-algebraicity and consistent completeness (or coherence) properties

are preserved together. The category obtained is a full subcategory of SFP.

Since the ground domains are coherent and w-algebraic, all the domains of the

continuous model of PCF have the same properties.
7.3. Event structures.

The category of w-algebraic consistently complete cpo’s is probably the
most often considered in the literature. However there are many more
interesting categories, where representation theorem exist which link
"abstract" objects such as cpo's and "concrete" objects such as the concrete
data structures of [25] or the event structures of [33,46]. The theories of such
"concrete" objects turns out to be crucial in the study of full abstraction, as we
shall see later on. Here we shall concentrate on the simple theory of continuous
event structures as studied by Winskel [46]. The idea, inherited from [25], is to
introduce a notion of "information quantum" in Scott’s theory of cpo’s, any point
of a cpo being nothing but the set of its quanta. A quantum is actually called an
"event"”, as in the Petri Net Theory [33].

7.3.1. Definition: An event structure is a triple E=(F,<,#) where E is a set of
events, £ is a partial order on E called the causality order, and # is a conflict

relation on F. A state of K is a subset £ of £ such that:

(i) =z is left closed, i.e. e€zr and e'Se imply e'ez. Intuitively, events may

occur only after their causes.

(i) z is conflict-free, i.e. such that e,e'€ z implies not efe’. Hence two events

in conflict may not occur together.

The states are ordered by inclusion, and are easily seen to form an w-
algebraic coherent cpo. But the obtained cpo’s are more that just w-algebraic.

They are characterized in the following way:

7.3.2. Definition: A prime in a consistently complete poset is a point z such that
for all XD upperbounded, zSvX implies JyeX. z<y. A consistently complete
cpo is prime algebraic if every point is the lub of the set of primes it dominates.
(Notice that any prime is isolated, and that any prime algebraic cpo is w-

algebraic.)
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7.3.3. Theorem: The cpo of states generated by an event structure is prime
algebraic and coherent. Conversely any prime algebraic coherent cpo is

generated by some event structure.

proof: The primes are just the ideals generated by the events, i.e. the sets
{e'Se] for fixed e’s. Conversely, the primes of a prime algebraic cpo’s may be
considered as events; the causality relation is obtained from the ordering, 4nd

the conflict relation from the order incompatibility relation. See [48].

Prime algebraicity and coherence imply many other properties, such as

distributivity

(D) zA(yvz) = (zay)v{zaz) for all z and all upperbounded y,z
or Kahn-Plotkin axioms C and R, see [46].
The most interesting fact is of course the following one:

7.3.4. Theorem: The category of prime algebraic coherent cpo’s and continuous

functions is cartesian closed.

proof: The primes of [D-D'] are the functions (z=>p') defined by
(z=>p'y)=p'if z€y and (z=>p')(y)=L1 otherwise, for z isolated and p' prime.

Hence all the domains of the continuous model of (PCF,S) are coherent and
prime algebraic. In the study of event structures, one often uses the following

additional property:
(F) Any isolated point dominates finitely many points.
Then property (F) is satisfied if any event is caused by only finitely many

other events. Property (F) is not preserved by exponentiation: it is easy to see
that the constant T function from N; to {1L,T} is isolated and dominates
infinitely many isolated functions, namely all those functions which have value T
on a finite number of integers and L elsewhere. The property (F) expresses that
isolated elements are really "finite" as far as information is concerned. This is
certainly a desirable property of "concrete” objects. That function spaces do not
satisfy (F) shows that they are not "concrete". This may seem natural at first
glance, but is in fact due to the nature of 5,. In the next sections we shall see
that in other categories function spaces can be really made concrete by using

other orderings for functions.
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8. Stable function models.

Our problem is now to construct A-categories "smaller” than that of
continuous functions, where non-definable objects such as por or pif do not
exist. To see what additional properties we need, we have to remember the
syntactic properties of PCF. Precisely we used the stability and sequentiality
properties for showing non-definability results. Hence these properties should be
reflected in the semantics, and should also serve as links between the syntax
and the semantics. With respect to stability, we should for example require the
following property:

(ST) For all e SM[M ] there exists a least M 'SgM such that eSMM'].

The property is not satisfied by the continuous functions model, as easily
seen by taking M =z ft {f and e(p)=tt iff p(z)=por. Since sequentiality was
stonger than stability, we should also require a stronger sequentiality property.
But there is a difficulty: sequentiality was expressed in terms of occurrences,
and we have for the moment no simple notion of "occurrence" in cpo's. We
postpone the discussion of sequentiality to the next section, and discuss
stability first.

8.1. Stable functions and the stable ordering.
The stability property is definable for arbitrary functions:

8.1.1. Definition: Let D,D' be cpo’s. A continuous function f:D-D' is stable if it
satisfies
For all z and z'Sf (z), there exists M(f .,x.z')eD such that for all zsz,
z'Sf(z) holds iff M(f ,z,z')<z.
The set of stable functions from D to D' is called [D-;D 1.

Clearly M(f,z.z') is the least zSz such that z'Sf(z). Of course the
function por is not stable. The constant function, the identity function and the
product projections are stable. All PCF constants are stable. The BT function is
stable. The theory of stable functions is presented in [6,7,15] and we just

indicate the main results.
8.1.2. Lemma: The composition of two stable functions is stable with
M(fof z.z") = M(f z.M(f".f (z).z")).

Hence the stable functions form a product-closed category. The next
problem is to order stable functions. A first remark is that the extensional

ordering £, is mot the right ordering, since the application function
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app:[D;»D’]XD -»D' is not stable in general. To see that fact, let D={L,T}. Then
[D2D] contains three functions: the constants L and T and the identity 1. The
point M(app.(T,T).T) does not exist, since one has T(L)=T, 1(T)=T, but
1(L)=L. Therefore the stable exponentiation of two cpo’s cannot be ordered by

£,. The right ordering compares not only the values of the functions but also the

way they are computed, i.e. their minimal points M(f,z,z').
fSs9 iff fS.g and Vze D, Vz'sf(z), M(f.z.2)=M(g.z.z").

Coming back to the previous example, we see that 15, T does not hold,
since M(1,T,T)=T while M(T,T.T)=L. The functions 1 and T do not use the

same information in their argument for outputting their results.
We need some additional properties of domains:

B.1.4. Definition: A stable cpo is a consistently complete distributive cpo such

that the glb function is continuous.
8.1.5. Theorem: Let D, D', be stable cpo's. Then <[D~;D‘].§s.l> is a stable cpo
and the application function app: [D2D']xD~D" is stable. The function curry is

an order isomorphism from [D xD 2D "] to [D—;[D '+D"]].

proof: The lub of any directed set of [D?D '], the lub of two upperbounded point

are always taken pointwise. The glb of two points is not pointwise unless they are

compatible w.r.t. £;. In general it is defined by
Iag(z) = tubiz'sf(zhag(z) | Vy'sz. M(f ,z.y")=M(g.z.y")}

Distributivity is crucial for showing these properties. For application, one

checks

M(app.(f.z).x') = (g.¥) with y=M(f.z.z') and g(z )=z f (yaz).
B8.1.6. Corollary: The category of stable cpo's and stable functions order-
enriched by £, is a A-category.

Hence we have obtained a new model of PCF, which is extensional but not
order extensional. It is not fully abstract.
8.1.7. Proposition: The stable model satisfies property (ST).

proof: easy induction on the size of terms.
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To finish, let us mention that Property (F) is preserved with stable
functions. In some sense that we shall make precise in a moment the ordering
S is more concrete than <,.

8.1.8. Definition: A SF-domain is an w-algebraic stable cpo satisfying property
(F). (SF-domains were called dl-domains in [7n.

8.1.9. Proposition: The stable exponentiation of SF-domains is a SF-domain. The
category of SF-domains and stable functions is cartesian closed.

8.2. Conditionally multiplicative functions.

Stability is a fairly natural condition. But it is technically often difficult to
use, and we shall study here a slightly weaker condition of the same spirit, which
turns out to be equivalent for SF-domains.

8.2.1. Definition: In a cpo D, write zty if z and y are upperbounded. Let D, D'
be two stable cpo’s. Then f: D-D' is said to be conditionally multiplicative or

cm if it satisfies
Vz,y, 2ty => f(zay)=Ff (z)af ()

8.2.2. Lemma: Any stable function is cm. If D is a SF-domain, then a function is

stable iff it is em.

Again the ordering S, is not adequate for cm functions: with the same
example as before, one has (1,T)#(T,L) but app (1.1 )Zapp (1.7 Jaapp (T .L). The
right ordering is defined as follows:

8.2.3. Definition: Let f,9: D-»D"' be cm. We set fE2mg if fS,g and
Vay, 2ty => f(z)rg(y) = £ (y)ng (z)

The definition is a bit surprising, but it obviously makes apphcatmn cm. A

composition of cm functlons is easﬂy seen to be cm. Finally one obtains:
8.2.4. Theorem: The category of stable domains and em functions order enriched

by £.m is a A-category. The associated model satisfies (ST).

proof: see [7, 15].

On SF-domains we have:

8.2.5. Proposition: Let D,D' be SF-dorhains. let f.g: D-D’ be stable (i.e. cm).
Then one has fS,9 iff f<m

Therefore stable and cm functions are really identical on SF-domains.
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8.3. Biordered stable models.

So far we have restricted the set of functions but we have lost order
extensionality. Hence we have some strange functions in our model, such as
functions which return ¢ for the identity and ff for the T constant on {1,T}!
Such functions cannot be defined in PCF (but they can indeed be defined in
CDS, see section 9 and [12, 11]). The next step is to "intersect” the continuous
and stable or cm models by manipulating fogether the orderings £, and £,. The

simplest construction uses cm functions.

8.3.1. Definition: a bicpo is a structure <D,<,,,S,, , > where:

(i) <D,Sgn,L> is a cpo

(ii) <D.s,,L>isacpo

(iii) The identity function 1: <D,%,,,L > - <D,S,.L > is continuous

(iv) The function A:DXxD-D is the glb function on <D,<,,L> and is both <,-

and £, -continuous

(v) For any X,X'cD directed, if for all z6X and z'€ X' there exist ye X,
y'€ X' such that z5,y, z'<,¥' and y<.,,y"', then lub X<, lub X'

Since 4 is S, -continuous, the £,-glb of two £,,-upperbounded points r and y
is simply zA¥. A function f:D D' between two bidomains is said to be cm iff it is

£,-continuous and £, -cm.

We said nothing about £,,,-lubs, which may not exist. We say that a bicpo is
distributive if the cpo <D,s,,,,L> is distributive and if moreover the <., -lub of

any two £.,-upperbounded points is also their £,-lub.

8.3.2. Theorem: The category of bicpo’s (resp. distributive bicpo’'s) and cm

functions is cartesian closed.

Now we obtain fwo models with the same carrier, according to the ordering
used for enriching the category. Both satisfy (ST). The model ordered by £, is
the most interesting one; it is "closer” to the fully abstract model than the
continuous one, since it contains less objects. But it is still not fully abstract,
since it contains some non definable objects, such as the three argument
boolean function defined by f(tt,ff.L)=tt, f(L.tt.ff)=tt, £ (ff.L.tt)=tt which
was shown non-definable in 3.8. The model ordered by <, is less interesting at
first glance since it is extensional but not order-extensional. However remember
that any model is approximation continuous: then we have M[M ] <., M[N] if
BT (M) $q BT(N), which is stronger than simply having M[M] s, M[N]. Hence
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Son acts as an "image" of the approximation ordering defined by Boehm trees,

in the same way as S, acts as an image of the operational ordering £,,.

For stable functions the construction is more complex, and one uses the
fact that stable functions and cm functions are the same on SF-domains. Hence
one looks for a subcategory of bicpo’s and stable functions with more restricted
objects. The technique used is the same as for SFP: construct the limit of finite

structures.

8.3.3. Definition: A finite projection on a bicpo D is a cm function h: DD such
that hoh=h and h{z)S..z for all z. A distributive bicpo is a bidomain if it

admits an S, -increasing sequence of finite projections with limit the identity.

8.3.4. Proposition: If <D.,5,,,,5,,L > is a bidomain, then <D,<.,,L> is a SF-

domain.
proof: see [7].
As a corollary, a function between bidomains is cm iff if is £,-continuous

and <., stable. Then we prefer to call it stable. -

8.3.5. Theorem: the category of bidomains and stable function$ is cartesian

closed.

The definition of bidomains is not very elegant. A véry nice characterization
of bidomains has been obtained by Winskel [48], who showed that bidomains may
be represented concretely by stable event structures. The key idea is to
introduce both orderings at the level of events, decomposing the extensional
ordering £, into two parts: the ordering £; and its "complement". The
construction is a bit complex, but it gives some deep insight into the nature of
the orderings. We believe that any further attempt towards constructing the

fully abstract model should start from it.
8.4. Stability of the fully abstract model.

For the moment, the orderings £, and £, seem to be only technical tools
necessary for carrying out the constructions. It is time to give them a natural
statusby exhibiting their syntactic properties. A first result shows that Milner’s
fully abstract model & is indeed a model of bicpo’s, the ordering s, being

"hidden"” in the structure.

8.4.1. Definition Let & be the fully abstract model of PCF. Define an ordering

£Z. at each type o by induction on the size of o:
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(i) =&n = S if o is ground;

(i) |M]| s&GTIN|iff |M| Sp |N| and |[MP|A|NQ|=|MQ |A|NP] if |P| and |Q]|
are <., -upperbounded (the glb function is easily defined by induction on
types).

8.4.2. Theorem: The structures <Dg,£,,.5,.4 > of the fully abstract model S are

bicpo’s. Moreover each DT is included (up to isomorphism) in the set of cm

functions from D§ to D§, the ordering <., defined on term classes being the

restriction of the ordering £, on functions.
proof: By induction on types, see [7],

One can also construct a model from the Dg's ordered by the ordering <,,,

and both orderings yield models satisfying (ST).

Unfortunately we are not able to show that the domains of the fully abstract
model are bidomains, although we definitely believe it; the problem is to show

that the £,,,-lubs are taken pointwise.
For explaining the role of <,,, we emit the following conjecture:

8.4.3. Conjecture: Let d,d' isolated in D§. Then d £, d’ holds iff there exist two
closed terms M ,M' such that S[M L =d, S[M']L =d' and BT (M )BT (M").

The conjectured fact is easily seen to hold at first order, and we have many
indications that it holds everywhere. Then =, would be the exact semantic
image of the syntactic ordering induced by Boehm trees in the same way as £,
is exact image of £,,. Hence we could have in a single model the results
obtained in the type free case by Wadsworth for D [42,43] and by Barendregt
and Longo for T [2] in the type free lambda calculus. (We suspect that one can
also obtain both results together in the type free case by solving D=(D-D) in

bidomains).

9. Sequential models.
9.1. Sequential functions.

The next step is to construct sequential models. As we already said, a
problem is to define a suitable notion of occurrence or place in cpo’s, and to
define a sequential function as a function for which there is a relation between
increase of information in output and input places, as for BT in the syntactic
sequentiality theorem 3.6.2. Several definitions [32,36,41] use the rank of a

function argument in the argument list as the place notion. They lead to
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interesting results: optimality properties [41, 13] or Sazonov's characterization
of sequentially computable functionals in Scott’'s D® model when the
construction starts from a flat domain [36]. However counting arguments is not
the right way of thinking in product closed categories, where a function should
be viewed indifferently as a two argument function or as a one argument
function from a product. Hence the definition is not general enough for qur

purpose.

The best known definition was introduced by Kahn and Plotkin in their study
of concrete data structures [25]. Since all details are given in another paper in
this volume [11], we give only some indication here, in terms of event
structures. The idea is to introduce places for events and to derive the conflict
relation from the constraint that in any state a place can only hold one event. A
well-known example is a record with variant, where the places are just the fields.
The discriminant field can contain only one value, and according to which value
it contains it gives access to other fields (and this defines the causality relation,
also called the enabling or accessibility relation in that framework). Trees give
another example: places are occurrences, and filling a place gives access to its

sons. Sequential functions may then be defined as follows:
A function f is sequential if for any input z, for any place p' accessible
from f{z), either p' is not filled in f (y) for all y2z or there exists a place
p accessible from z such that p' filled in f (y) implies p filled in ¥ for all
Yy2z.
The BT function of section 3 is sequential in that sense. All sequential functions
are stable (this was not true with the other q:ie_ﬁr{ivt.iqgswmentioned).
A disappointing result was obtained in {12]: *.

9.1.1. Theorem: The category of concrete domains and sequential functions is
not cartesian closed.
proof: Show that the only possible ordering for exponentiation is the stable
ordering, and that sequential functions ordered that way do not form concrete
data structures.

It is certainly possible to define sequential functions in more general
structures than concrete data structures, but we suspect that the same

negative result will always hold.
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9.2. Sequential algorithms.

For building sequential models we have therefore to abandon functions. A
solution is to introduce sequential algorithms as arrows [11,12,17], where the
computation strategy is part of the object as well as the input-output relation.
These objects are studied elsewhere in this volume [11]. They can be viewed
"concretely” as program texts ordered by the (-match ordering <g, -or
"abstractly” as function - computation strategy pairs ordered using the stable
ordering. In some sense their operational and denotational semantics are

unified.

Sequential algorithms form a A category. The model obtained has the
property that the function M[] itself is sequential and may be turned into an
algorithm. The model is not extensional (although it satisfies (7)) and not fully

abstract.

But another programming language was developped from sequential
algorithms (and implemented): the language CDS, for which the algorithm
semantics is fully abstract. The point is that the operational semantics changes:
in PCF only programs have observable values, so that the operational semantics
of terms can be defined only by placing them in program contexts. On the
contrary, in CDS eny term has an observable semantics, since higher order
objects are no less concrete than ground types ones. Full abstraction comes
from the fact that any finite algorithm at any type is definable. See [11, 19] for -

details.
9.3. Towards the fully abstract model.

We are currently trying to do with sequential algorithms what we have
already done with stable functions: keep the extensional ordering £, in the
construction. A clue is to use Winskel's ideas of multi-ordered event structures,
see 8.4 and [468]. The events should be ordered by both the "algorithm" and the
extensional ordering, the stable ordering being obtained for free as the quotient
of the algorithm ordefing by the extensional equality. See [18] for such an
attempt. It might be the case that we indeed get the fully abstract model that
way. Of course definability of isolated elements has to be shown. This has no
chance of being trivial, as shown by an example: assume we want to define a
functional F' of type ({(0oXo0-0)-0) such that F(f)=tt iff fLL =1 and either
JtlL =ttor f Lit=1tt. Let g=Az. cond z L Q; then F is easily defined using

the parallel or por as the semantics of the following term:
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Af. g(par(f it Q)(f Q1t))

At first glance it seems that F' is not sequential and not definable without por.
However F' is indeed sequential and PCF-definable, as the semantics of the

following term:

Af.g(f (g(f L£9) (g(f Q1))

The imbrication of f's is crucial. One may construct examples where an
arbitrary number of internal calls of the same function is necessary, and we do

not know how to treat this phenomenon in general.

10. Conclusion.

We left the story unfinished, since the original problem is still unsolved. We
keep working on it, but we also believe that the side effects we mentioned are as
interesting as the problem itself. In particular the experience of CDS has shown
that other notion of operational observation make sense, not limited to
observation of ground type terms [11]. Other extensions of the present work are
interesting:

- Extension to languages with richer type structure, in particular with
recursively defined types. Most of the techniques used here should apply
directly. The syntactic results are the same, and for semantic model
construction one has just to require domain equations to be solvable in the
category, which raises usually no problem [11, 39, 37].

- Extension to languages which richer ground types and abstract data types.
The work of [23] is very encouraging.

- Extension of the notion of sequentiality, which should not be bound to
concrete data structures. Some axiomatic definition should work in a much
more general framework. One should indeed define what is a sequential

language.
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