1 2 Computations in Orthogonal Rewriting Systems, I1

Gérard Huet and Jean-Jacques Lévy

Nonambiguous linear term rewriting systems were introduced and studied in the first
part of this paper (chaptet 11) In particular, it was shown that the space of derivations
is a pushout category, and a standardization theorem was shown, leading to the
existence of a correct call by name computation rule. Finally, call by need computations
were defined However, this does not lead in general to an effectively computable

computation rule
We shall in this part attack the problem of effective call-by-nced computation

rules

The first problem we address is the definition of sequential interpreters for our
systems Using a sequentiality criterion derived from the semantic notion of se-
quentiality in concrete data types [11], we characterize an important subclass of our
systems which admit a correct sequential strategy of interpretation. Intuitively, Z is
sequential iff it is possible to compute in call by need without looking ahead. That
is, for any term M not in normal form, there exists a place in M which we need to
compute in order to get to the normal form of M (if any), and furthermore, we can
determine this place without looking at the subparts of M which are not computed
yet Unfortunately, it is undecidable in general whether Z is sequential or not

We finally consider a restriction of sequential systems which allows us to define
an effective sequential strategy. Intuitively, a system I is strongly sequential if the
computation effected to determine the needed positions is independent of the right
hand sides of £ For a strongly sequential system X it is possible to represent the
left-hand sides of T in a trie structure which we call matching dag. The computation
of the needed subpart, together with the actual pattern-matching of the left-hand sides,
is driven by the matching dag We show that this computation is linear in the size of
the term we compute on, extending to trees the technique of the Knuth-Morris-Pratt
string-pattern-matching algorithm. Qur technique uses a new notion of top-down tree
antomaton with a markers stack.

Strong sequentiality is decidable and is easily verified in many important subcases,
under which fall, for instance, combinatory logic, primitive recursive schemes and
recursive programming languages with constructors such as HOPE [5] and ML

4 Sequential and Strongly Sequential Systems

4.1 A Definition of Sequentiality

Obviously, some rewriting systems require parallel evaluation strategies in ordet to
compute normal forms, Take, for instance, the well-known example of the parallel or,
defined by “true or x — true,” “x or true — true,” where we use an infix notation for
the binary operator or. For computing any term 7' = T; or T;, one needs a parallel
evaluation of T, and T3, since it is not generally decidable whether T or T, produces
the value true. Furthermore, in case both T, and T, evaluate to true, one easily shows

416 Huet and Lévy

that needed redexes {in the sense of section 3} could not exist. This is because the above
system is ambiguous Fortunately, the nonambiguity condition prevents us from
considering such systems. And we showed (in section 3} that call-by-need evaluation
strategies exist in our systems. Hence, in order to get a normal form, one has just to
contract neceded redexes.

However, even if we know the existence of these critical needed redexes, there still
remains to find them in any given term. Unfortunately, this can also demand some
parallelism, as illustrated in the following example inspired from Berry [2] and which
is obtained by a slight modification of parallel or. Consider any system X containing
the three 1ules

{F(A,B,x) > C,F{x,A,B)—> C,F(B,x,4) > C}

Note first that these rules are indeed nonambiguous, since none of these three left-hand
sides can be unified with any other one We know from section 3 that in any term
T = F(I;, T;, I}) there is some needed redex. But as for the previous example of the
parallel or, it is impossible to avoid parallel evaluation, since one cannot in general

decide whether T, T;, T, evaluate to A o1 B

Thus, the nonambiguity condition is not sufficient for insuring a sequential evaluator.
It seems necessary to consider the way in which terms are traversed in order to find
some needed redex We shall restrict our attention to top-down searches and develop

some useful notations for prefixes of terms

We represent prefixes by Q-terms, i e, by terms where a new nullary function symbol
Q1 can occur Intuitively, means the part of the term which has not been vet traversed
Let I be the set of these Q-terms. Let us also consider the prefix ordering < on I
obviously defined as
Q<Miorany M e I,
F{MlsM?.s‘“ : aMn) =< -F(le- g an) lfM; S-N; fOI 1 = i = R,

x =< x for any variable x

All the previously defined operations on terms are obviously extended to Q-teims One

just adds a very few new notions,

It M <Pand N < P, then M and N are said to be compatible, written M T N The
greatest lower bound (gib) of two Q-terms M and N, written M M N, and the least
upper bound (lub} of two compatible Q-terms M and N, written M L N, are defined

as follows:

F{M;, .. .M)MFWN,, ,N)=FMMN,.. .,MMN,),
xTlx=x,

MriN = Qin all other cases

QUM=MuQ=M,

Computations in Orthogonal Rewriting Systems, IE 417

F{Mh-‘- sMn)i—lF(Nla " an)zF(Mil—’Nla-‘ ’MnI—INn)s

xlix =X

It will be convenient to write M, for o(M), where & is the substitution such that
a(x} = Q for all variables x. We define a predicate nf on Q-terms by nf(M) iff M has a
normal form, ie, IN € 4% such that M % N Note that we require N to be a term,
ie, without Qs. An Q-term N such that Z(N) = & wiil be called an Q-normal form
Suppose that the set B = {tt,f{} of boolean values is ordered by ffi_tt. Then it is
straightforward to check that nf is & monotonic predicate on the set of Q-terms:

LeMMa 41 If M < N, then nf(M) = nf(N).

Proof First one shows thatif M A N and M < M, there is an N’ such that M’ AN
and N < N’ This is because our systems are linear. Second, if N is in normal form and
N =< N’, then N’ is also in normal form, since then N = N’ [

For the time being, we forget the problem of defining sequential evaluators and show
the relevance for our systems of a notion of stability defined in Berry [2] In [2] it is
claimed in an axiomatic way that this notion is median between sequential and parallel
functions, and a stable model of the lambda-calculus is constructed. (Note that the
problem is still open for sequential models.) We show that the predicate nf is stable,
i e, conditionaily multiplicative, in our systems. Fo1 this purpose, consider temporarily
a new kind of rewriting rules, the w-rules, associated with any system T and defined
as follows: M —_, N iff, for some u € (M) and redex scheme o in Z, one has M/utog
but not o, < M/u and N = M{u <« Q] (ie, M/u is compatible with a redex scheme
but is not a redex)

LEMMA 4.2 (- v —,)* is confluent

Proof We know already that 5 is confluent Now if we temporarily write M 5N
for M — N ot M = N, and similarly for M 5_, N, the nonambiguity condition of our
system enables us to prove the lemma via the two properties summaiized in the two
diagrams of figure 9. =

w o ®
N 7
~ /7 N e
\NE £ s ~ € 7

N Ve wN Ve

e e N ,
\.{;,/ _&’/
Figure 9

Church-Rosser diagrams for co-rues.

418 Huet and Févy

The co-rules will be also useful for the semantics of our systems. (Note that they
correspond exactly to the ones defined by Wadsworth [23] in the A-calculus) Finally,
let A also denote the trivial glb operation in truth values domain B (i.e, the usual and)
We now prove Ber1y's stability property: nf is conditionally multiplicative.

LEMMA 4.3 If M 1 N, then nf(M M N} = nf(M} A nf(N).

Proof By monotonicity, one easily has nf(M M N)Eni(M) A nf(N). Conversely, the
only problem is when nf(M) A nf(N) = tt, ie, when M and N have a normal form.
By monotonicity, we know that nf(M UN}=tt We work by induction on the
length d(M L N) of any outside-in derivation 4 from (M 11 N) to its normal form. Let
A=A,A,, with 4,: (MIUN)> P Then u € &M LIN). We claim that u € #(M M N).

Otherwise we have 3 cases.
Case 1: u = u,u,, with (M MIN)/u, = Q and u € #(M) Then since

M < (MUN)[u< Q]

we know by monotonicity that (M 1.1 N)[u < Q] has a normal form, This contradicts
ue (M LIN)

Case 2; u = uyu,, with (M1 N)/u, = Q and 4 € #(N) Same as in case 1

Case 3: ue OMTIN), but u ¢ #(MN). This means that if « is the redex scheme
such that (Mt N)fu = oo, one has M/u < (M U N)/uTay, and similarly N/utag,
Now since u ¢ Z(MMN), one cannot have og < M/u and ag < N/u. Assume, for
instance, that not ¢, < M/u. Then M —, M[u « €] By the previous confluence
property, M[u« Q] has a normal form Let M, = M[u« Q]. We conclude that
(M, LIN)[u « Q] has a normal form by reasoning as in the first two cases, and by
monotonicity, (M U N)[u «] has a normal form This contradicts u € §(M LI N).

Thusu € Z(M I N) Now,let M 5> M’ and N 5 N'. Since nf(M) = nf(N) = tt, one has
also that nf(M’) = nf(N") = tt. Furthermore, M Lt N = M’ LN’ Finally, by induction
we know that M’ 1N’ has a normal form, and thus nf(M M N) = tt. |

COROLLARY For any Q-termt M having a normal form there is a (unique) minimum
prefix N of M having a normal form

This is not true in general in ambiguous systems. Consider again the paraliel or
example Let M = true o1 frue. Then, both “true or Q7 and “Q or {rue” have a normal
form, but not “Q or .” Now we can also consider the already mentioned example of
Berry [2], which is linear and nonambiguous. Let T = F(T;, T;, T;). We know by the
previous result that there is a minimum prefix of I having a normal form if nf(T) = tt
But nothing ensures us that for all 7% of this form, we need to compute always a fixed
argument of F. Here this is false, since nf(F(Q, Q,Q)) =1, but nf(F(A, B,Q)) = tt,
nf(F(Q, 4, B)) = tt, and nf{F (B, Q, 4)} = 1. (Note that this does not contradict our last
result, since these last three terms arec not compatible with respect to the prefix
ordering) Using our new notations for prefixes of terms, we can state what is going
wrong in the previous example. In M = F{Q,€), Q) it is possible to get normal forms

Computations in Orthogonal Rewriting Systems, 11 419

by increasing some Qs. But there is not a uniform one to consider. One can always
increase the two other Qs in order to get a normal form

For short, let a sequential system be a term rewriting system which has a sequential
evaluator. (Thus the two previously considered systems are not sequential) In a
sequential system it seems required that in any Q-term in Q-normal form (having at
least one Q occurrence) there is an occurrence of {2 which it is necessary to increase in
order to make the nf predicate frue. This means, when we forget Q-terms, that for all
terms not in normal form there is a redex occurrence u such that if we consider redexes
as black boxes which might produce any term, it is impossible to get a normal form
without computing the redex of occurrence u In other words, there is always one
needed redex occurrence which can be found without any look-ahead computation

Technically, we want the predicate M has a normal form to be sequential in the sense
of Kahn-Plotkin [17] So let us fitst recall what a sequential predicate is in their sense.

DEFINITION 44 Let P be a monotonic predicate on Ty, (with the truth values domain
_ Bordered as before) An occurrence 1 of M is said to be an index of Pin M iff M/u = Q
 and YN such that N > M, P(N) = tt impilics N/u # Q. Then P is sequential at M iff
whenever P(M) = if and 3N > M such that P(N) = tt, it follows that thete exists an
index of P in M. Finally, P is said to be sequential iff it is sequential at every Min T,

Thus, if P is a sequential predicate and if there is an Q in M and P(M) = fi, there is
a critical Q in M, namely an index, to increase in order to make the predicate true

DEFINITION 45 X is a sequential system iff nf is a sequential predicate.

Note that this definition is independent of the linearity and nonambiguity assumptions
However, when these assumptions are true, it is possible to show that sequentiality is
only requited at Q-normal forms So let w'(M) be M, where all (outermost) redexes are
replaced by the constant

LEMMA 46 X is a sequential system iff the predicate nf(M)} is sequential at any
Q-normal form M (ie, such that M = o' (M})

Proof By induction on n = Min{d(N)|M < N,nf(N) = tt}. Let n = 0. Then there is
N in normal form such that M < N. Thus M = /(M) and this case is trivial Letn > 0
and u be an index of nf in ' (M). We have two possibilities First M/u = Q@ = ' (M)/u.
As w'(M) =< M, the occurrence u is also an index in M. Second, M /u # Q, which means
M/u is a 1edex Then nf(N[u« Q])= ff for all N such that M < N, and nf(N) = tt.
Thusue #(N) LetM —13,‘ M’ and N 5, N’. Then d(N’) < d(N), by lemma 3 34 There-
fore, by induction there is an index ' of nf in M'. Now let v be the occurrence of M
defined by v = v’ if wand v” are disjoint, v = uwu'if s' = ww's’, where o, /'w = B, /w' e ¥
One then easily checks that o is an index of nf in M [|

This last lemma is not true for ambiguous systems Take

T = {F(4,B,x)—> K,F(B,x,A)> K,C > 4,C -» B}

420 Huet and Lévy

and consider M = F(C,Q,Q). Then there is no index in M, but ¥ is sequential at any

Q-normal form.

Going back to the evaluation strategy problem, an easy terminating strategy can be
designed: for any term M, contract a redex at occurrence x which is an index of nf in
@'(M) (Then u ¢ 4 (M) if M has a normal form) But, in general, these indexes are not
computable For instance, take ¥ containing the following four rules;

F(G(4,%),B) > K
F(G(x,4),C) > K
FD,x)-K
G(E,E)—

Then if M = F(G(Q, Q),Q), the occurrence u = 2 € O(M}is an index iff G(E, E) cannot
derive to D, which is not decidable, since X can have many other 1ufes Therefore,
neither indexes, nor sequentiality are decidable. In order to make these two questions
effective, we consider more restricted systems. The idea is to forget right hand sides of
rules and to make sequentiality be determined only from the left hand sides.

42 Strongly Sequential Systems

In order to forget right hand sides of tules, we intraduce a new derivation 1elation; the
intuition behind it is to permit any redex to produce any term.

NOTATION Let M and N be two Q-terms. We say that M possibly reduces to N, and
write M —' N, iff N = M [y « P] for some redex occurrence u e (M) and Q-term P,
Furthermore, let nf’(M) = tt iff M 5 N for some term N in normal form

DEFINIION4 7 Zisa strongly sequential system iff the predicate nf” is sequential at any
M in Q-normal form We denote by .# (M) the set of indexes of nf’ in M.

The restriction to Q-notmal forms is necessaty here because lemma 46 is no longer
true for strong sequentiality. (Take % = {F(4,B,x) > K,F(B,x,4) > K} and consider
M = F(R,Q,Q), where R is a redex. Then w'(M) = F(,Q,) has an index for nf’, but
M has not.) However, since nf'(M) = ff iff M is in Q-normal form and nf(M) implies
nf'(M) for any M, a strongly sequential system is sequential by lemma 4.6

DEFINITION 48 A redex occurience u & #(M) is strongly needed iff u & .#(w'(M))

Clearly, if u € %(M) is strongly needed, then u is needed, ie, u e A (M) We want to
show that strongly needed redex occurrences in M can be found effectively and that
the strong sequentiality of any system X can be decided A priori, this is not too
straightforward Consider for instance I having the following redex schemes:

F(G(A4,x),F(B,y)) > -
F(G(x, A), F(C,y)} > -

Computations in Orthogonal Rewriting Systerns, I1 421

G(D,D) -

Then the smallest Q-term without indexes for nf” is

M = F(G(Q,Q), F(G(£,Q),£2))

{(Notice that M is not a prefix of any 1edex scheme.)
4.3 Decision Procedures for Strongly Needed Redexes

We show that stzongly needed redexes can be computed with the help of some direct
approximation function (An alternative characterization will be also given in the next
section). This function will represent for any term the maximum prefix which is
guaranteed to remain after any derivation. Before introducing this function, we need

to introduce some notation
If E is any set of Q-terms, we write M < E iff 3N € E such that M < N. Similarly

for M > E and M 1 E Finally, with red, = {og|o € Red}, we write M T for M Tredg

DEFINITION 49 For any Q-term M, we define its direct approximation w(M) and
internal direct approximation &(M) by
wix} = B(x) = x,
Q) = () = Q,
aj(I;(-ﬂ'f[l!-l\JZ: :an)) = F(C-!)(Ml),CO(Mg), [,CO(M")),
ofF(M,M,,. .., M) = Qif &(F (M, M,, ;M) T,
= o(F(M{,M,, .., M,)) otherwise.
Remark We can see w(M) as the — -normal form of w'(M). It follows that
oM)=[]{NIM AN 1. Intuitively, (M) is the maximum prefix of M guaranteed to

exist in every N which can be derived from M, whatever could be the right-hand sides
of the rules in £ Qur terminology is consistent with [23] for A-calculus and [18,20]

for recursive program schemes.
We note that in our TRSs, subparts of redex schemes are their own direct
approximation:

LEMMA 410 Let ¢ e red. For every nonempty u in @(c), we have o(xg/u) = oo/u

Proof Induction on the size of ag/u. If oo /u = €, it is trivial Otherwise, by induction
hypothesis we get @(an/u) = ao/u. By nonambiguity, we cannot have op/u T, and thas

fog /1) = og/u. []

It follows easily from its definition that ¢ is monotonic increasing, ie, M <N
implies w(M) < o(N), idempotent, i.e, w(M) = w*(M),and a projection, ie, (M) <M.
More important, if M % N, then o(M) < o(N). Namely, approximation is increasing
with derivation (In fact, this is true also with i’)‘ Finally, an {-term M is said to be
co-maximum iff for every N such that N > M we have w(N) = o(M).

422 Huet and Lévy

Now we connect stzongly sequential systems and the direct approxzimation function
by showing that nf' (M) = ttif M is w-maximum.

NOIATION Letx e ¥ Forany M e 9 we define M, as M in which all Qs aze replaced
by xs,ie, M, = M[u« x|M/u=£]

LeMma 411 M 2 N iff w(M,) < N, for some x ¢ ¥ (M) U ¥ (N).

Proof By induction on the size of M The substitution of variables for the Qs is a

technical trick u

1EMMA4.12 Letx e ¥ and u € @O(M)such that M/u = Q. Then w(M) = o(M[u « x])
iff (M) = w{M[u« N])for all Q-terms N.

Proof Obvious, once one remarks that M[u « x] Timplies M{u + N] Tfor every N.
|

LEMMA 413 We have nf’'{(M) = tt iff M is o-maximum iff (M) = o(M,), where x is
any variable '

Proof Letnf'{M)=1tt Then M 2/ N for some normal form N Thus w(M,) < N, by
lemma 4.11if y ¢ 7 (M) ¥ (N). But N, = N as N is a normal form (without Q's) Thus
y ¢ ¥ (w(M,)) and w(M,) < M By monotonicity one gets w(w(M,)) < o(M) Hence
o(M,) < w(M), since o is idempotent Finally, o(M) = w(M,) because M <M, By
lemma 4.12, the Q-term M is w-maximum Conversely, let M be o-maximum. Then
(M) = w(M,) fot some y ¢ ¥ (M). Thus o(M,) < M < M, for some z 5 y. Therefore,
M5 M, since y ¢ ¥ (M)u ¥(M,) by lemma 4.11, and nf (M) = tt Now M is o-
maximum iff (M) = w(M,), by lemma 4.12 |

Therefore, one can easily decide if nf’(M) = tt by testing w(M,) = o(M). Similarly,
an index of the nf’ predicate can also be effectively found with the heip of the following
lemma,

reMMa 414 Let xe ¥ and ue (M) such that M/u~= Q. Then ue #(M) iff
(M) # o{M)[u « x]) iff u € O{w(M[u « x])}.

Proof Let u ¢ #(M) That is, there is some N > M such that o(N) = w(N,} and
N/u =Q Then M[u « x] < N,, and o(M[u« x] < o(N,) = o(N} Without loss of
generality, by lemma 412 we may assume x ¢ ¥(N). Thus u ¢ Ow(M[u « x])),
and o(M[u« x])<M, which implies that @(M[u<« x]} < o(M) Therefore,
o(M)} = o(M[u < x]) For the converse, assume w(M) = (M [u « x]). This implies
that X is not empty. Let o be any redex scheme, and consider

N=M[veaM/v=0andv # ul

We have N> M and o(N,) = o(Mu + x]) = o(M} < w{N) Thus o(N,) = o(N),
and since N/u=9, we have u¢ #(M) Finally, o(M)=w(M[u«<x]) implies
u & O (M [u « x])), which concludes the proof |

Computations in Orthogonal Rewriting Systems, 11 423

In order to find a strongly needed redex occurrence u in any given term M, one has
just to test u € O(cw(M [u + x])) for some redex occurrence # and any given variable x.
Thus a strongly needed redex is a redex which may increase, after its reduction, the

direct approximation
Let us now give a few properties of indexes needed in the following
LEMMA 415 H uv e (M) and o(M/u) = Q, then 4 € F(M[u « Q).

Proof Since o(M[uv « x])Zo(M)=wn(M[u « Q]), o(M[u « x]) # o(M{u « Q]),
by lemma 4.12 with N = M/u[v < x] |

LEMMA 416 If uv € #{M), then v € F(M/u)

FProof Let uve #(M) and v ¢ #(M/u) Then w(M/u) = o(M/u[v« x]), by lemma
4.14, and therefore

o{M) = oMy « o(M/u)] = o(M[u < o(M/ulv < x])]) = o(M[uv < x]),

which contradicts ur e #F(M).]

LEMMA 417 If w(M/u) = Q, then for every v such that ¢|u, we have v € #(M) equiv-
alent to v € (M [u « Q]).

Proof Obvious, since w(M/u) = Q implies

o(M) = o(M[u < Q])

o(M[v+ x]) = o(M[u « Q][v < x]). -
We are now left with the problem of deciding whether a TRS X is strongly sequential

or not. Since this property is closely related to the organization of matching of redexes,
we shall first consider this problem

5 Deterministic Automata for Strongly Sequential Systems

In this section we show how the previous definitions permit to derive algorithms for
computing strongly needed redexes. First we consider matching of redexes and see that
this operation is sequential in case of strongly sequential systems.

5.1 Sequential Sets, Directions

DEFINITION 51 Let E be any set of Q-terms. The predicate match is defined by
match(M, E} = tt iff M > E. We say that E is sequential iff match(M, E) is sequential
at every M. The set Dir(M, E) of the indexes of this predicate in M is called the set
of directions from M to E As a particular case we shall consider the predicate
istedex(M) = match(M,1ed;,) and will abbreviate its set of indexes Dir{M, redg,) as
Dir(M).

We have, of course, #F(M) = Dir(M), and we shall show below that if X is strongly
sequential, isredex is also sequential. Furthermore, the decidability of sequentiality of

isredex is straightforward.

424 Huet and Lévy

NOTAIION We write M # N iff M and N are incompatible, ie, not M T N, and also
M#Eiffnot MTN,ie, M # Nforal Nin E, and M # iff M # red,,

IEMMA 5.2 Let M be an Q-term and E be a set of Q-terms. Then the following are
equivalent:

u e Dir(M, E)
M/u =, and for all N € E such that N T M, one hasu e O(N) and N/u # Q
Mju = Q and M[u « x] # E, where x is not a variable of any Q-term in E

Proof Obvious. [|

LEMMA 53 If NeE and NTM, then Dir(M,E)=Diu(MMN,E), where
E={PecE|PtM}.

Proof Suppose u e Dir(M, E). Then M/u = Q But, since N E and NT M, lemma
5.2 says that u e i(N). Thus ue G(MMIN) and (MMN)/u=Q Now if Pe E and
PT(MMN), then Pt M and u € O(P), with Pfu # Q Thus u e Dir{M N, E") Con-
versely, since (MM N)/u =€ and N e E', with N1(MriN), one has u € 6(N) and
Nfu# Q. Thus M/u =) because N | M Now take any P € E such that Pt M Then
PeE and PT(MMN) Thus u e O(P) and P/u # Q. That is, u € Dir(M, E).]

IEMMA 54 For any finite E, one can decide if E is sequential

Proof One just checks that match(M, E) is sequential at every M such that M < E.
|

LEMMA 5.5 If X is a strongly sequential system, then isredex is a sequential predicate.

Proof H Eis sequential, then match(M, E) is sequential at every M and in particular
at every Q-term piefix of some element of E. Conversely, E is sequential iff
Dit{M, E) # & for all M not in normal form such that match(M,E) = ff Now if
M # E, then
Dit(M,E) = {ue OM)|M/ju = Q} # &,
since M is not in normal form Assume that M 1N for some NeE. Then
Dir(M, E} =2 Dit(M M N, E), by lemma 5.3. But M N < N and match(M N, E) =fi,
since match(M, E) = ff. Thus Dit(M N, E) # 7, which implies Dit(M, E) # &
Now let ¥ be strongly sequential. Then nf’ is sequential at every M in Q-normal
formf{ie., o' (M} = M), by definition Thusistedex is sequential at every Q-normal form
M. But since X is not ambiguous, every N such that N < red,, is in Q-normal form
Thus isredex(M) == match(M, redg) is sequential at every M according to the first part
of the proof. |
Intuitively, a set E of Q-terms is sequential iff we can factor the matching of any
term against E. As in Curien [6], for the general case of sequential functions, this
factorization can be achieved here by a tree gathering all possible patterns Fot
instance, take

Computations in Orthogonal Rewriting Systems, IT 425

F
1
A G
2
E/ y
® @
E E
® 6
Figure 10

E = [F(A,Q), FIG(E,£), B), F(G(Q,E), C)},

which is sequential The corresponding maiching tree is shown in figure 10, where a
node u corresponds te a query of the function symbol at occurrence in the term M,
branches from u are the different successful alternatives for this function symbol query,
and leaves are conventionally written as success nodes S; These matching trees
generalize the trie structures used to store dictionaries of strings.

This tree can easily be built up from Q-terms M such that M < E by considering
the Dit(M, E) sets. We shall sce in the next section how, in the case of strongly
sequential systems, we may construct matching dags which permit to factorize local
and global matches, yiclding an efficient (linear) match algorithm.

52 Matching Dags

For the time being, we forget strong sequentiality. We only define matching dags and
shall show in the next section that these dags exist for a rewriting system iff it is strongly
sequential

NOFATION We shall write M < red,, for M < 1ed,, and M ¢ redy, and M1, for M1
and M £

HYPOTHESIS We assume the existence of a function Q mapping every Q-term M such
that M < 1edy, into a non-empty set of its directions, & # Q(M) = Dir(M), and such
that Yu € Q(M), YN < redy, if M [u « N] < red,, then

426 Huet and Lévy

v uv € Q(M{u « N7) Q1)
Vo uv € Q(M{u « N])implies v € Q(N). (Q.)

As previously stated, the existence of such a mapping will be shown in the case of
strong sequentiality. Intuitively, an occurrence in Q(M) is a direction for matching
redexes and is also a direction for internal matches (by condition Q,). Furthermore, it
is possible to find some (st1 ongly needed) redex without any dangling partial matches
{condition Q,)

CONSTRUCTION To construct a matching dag associated with Q and verifying Q,
and @, let red = {0, %, ..,0,}. We consider Occ = (J{O(e)li <n} and a set
Suce = {S,,8,,...,85,} of success tokens disjoint from Occ. We construct a graph
whose nodes are all

a pairs (M, v} such that M < red,, v e O(M) and Yu Mfut, = u <,
b pairs (o, 85>, withl <i<n (the success nodes)

Let (M, v> be a node, F a function symbol in %, and M’ = M[v— F ﬁ] (M, *> is
anode, where = denotes any element of Occ U Succ, we draw an arc: (M, 0> 5 (M, %>
It is clear that our graphs are directed acyclic. We shall therefore call them matching

dags.

DIFINITION 5.6 The node (M, +> is said to be accessible iff either it is the origin
node {Q,A) or there is some accessible node {Mj,v;> and F e # such that
(My,0,0 5 (M, %)

LEMMA 57 If (M,v) is accessible, then for every u such that M/ut, the pair
{M[u < Q],u) is an accessible node and there exists in the matching dag a path
MEu Q) = (MTu e Ny L, >— (M u o Ny uwy

2 B M e N uw = (M, o).

Furthermore, for every such path there exists in the maiching dag an identically
labeled path

(QAY = (Nwi > =5 (N w22 - B2y (N S = (MY, o

Progf Induction on the definition of accessible. If M = (€, A), the proof is trivial
Otherwise, assume (M, v) is an accessible node satisfying the condition above such
that (M, »)> 5 {M',v"». Now let u be such that M'fuT .. Since <M’,v") is a node, we
have u < v’ Similarly, as (M, vy Is a node, the case ujv is impossible, and therefore

U0 M'[u Q] = M[u<Q], and M'/u = Mjulv/u « Fﬁ], and thus M/ut.

Case 1: u=v Then {M'[u«Q], up ={M,v} is accessible by hypothesis. Also
M'fu = FQ and M'fuf implies M'/u < red,,.

Case 2. Otherwise, we get M/ut,, and by the induction hypothesis we get
(M'Tu« QL uy = {M[u«Q], u) accessible, and {(M/u,v/u) is a node. In particular
M/u < redg, and v/u € Q(M/u) < Dir (M/u). Therefore in this case too Mju<redg

Computations in Orthogonal Rewriting Systems, 11 427

In both cases we have shown that {(M'[u« Q],u) is an accessible node, and the
existence of the first path for {M’, v’ follows, since ¥j < k M[u « N1=MT[u<N],
assuming the existence of the path for {M,»>, as in the statement of the lemmma Let
us now show that the corresponding path for {M/u, »/u> can be extended. We have
shown above that M'/u < redg, But since (M, v} is 2 node, M’ < red,. We easily get
M'/u < redg, because either u = Q or else we use the nonambiguity condition Also,
forallu’, M'fun'?, impliesu’ < v'/u. Finally, usingu € Q(M[u+ Q]) = QM [u«Q]),

we get by condition @, that v'/u ¢ Q(M’,u), and therefore (M/u, v/u) 5 M fu, v fuy.
[

LEMMA 5.8 Suppose (M, v) is an accessible node, and N = M[v « Fﬁ]. If N T red,
then N < redq
Proof Supposethat N Tag M < N Tag and v ¢ Dit(M), 50 (v} = F. It O(N) = @(a),

then clearly N < a,. So assume Ju e O(N) with u ¢ O(x) Let u' € O(N) such that
ap/u’ = £ Suppose N(x') = H. Since (M, v) is accessible, we thus have a path in the

matching dag (notice that 4’ € G(M)):
QA =(N,wip = = (N, W)
= (N u'> A Nears Werr) = = (N W)
= (M,v).
Hence Ny < M < N 1ag and u’ € Dir{N,} So ag/u’ # Q. A contradiction []

COROLLARY When we remove inaccessible nodes from the matching dag, the terminal
nodes are exactly all the success nodes.

This ailows us to get rid of inaccessible nodes, which we shall assume from now on.
We use our matching dags to store the redex schemes of X. The search for a str ongly
needed redex is driven by the matching dag, in which are factored local and global
matches We need some extra information to know how to continue the search when
the global match has failed but some local ones may be still successful The idea is
similar to the one used in the extension to multiple patterns of the Knuth-Morris-Pratt

string-pattern-matching algorithm {13]
DEFINITION 59 Let {M, v) be a nonsuccess accessible node different form (Q, A>, and
u be the minimum non-null prefix of v such that M/st We define F aill({M,v>) as
{M/u,vfuy, which is an accessible node by lemma 57.

We shall indicate in our matching dags w' = Fail(w} by a dotted are going from w
to w’. Also, we shall drop the first component of the nodes, which is redundant since

it is uniquely determined from a path accessing it. This first component is only
convenient during the construction and in proofs concerning out dags

Example Let
Z = {F(F(x, A),B)—> F(D,x), F(C,F (D, x)) - F(x, A}
The matching dag associated with reds is given in figure 11.

428 Huet and Lévy

Figure 11

We shall defer for the moment the computation of sets Q verifying our hypothesis
Howevet, the next lemma shows us that they must be chosen among indexes.

LEMMA 510 Let M, u and v be such that {(M/u,v)> is an accessible node, and
Yw M/wl, = w>u Then uv € #(M).

Progf First of all we remark that for any we G(M) such that w|uv, we have
o(M/w) = M/w, by lemma 410 Now for any w such that w=<up, let
M,, = M{[uv < x]/w. We show that w(M,,) = M, by induction on |uv/w| For w = up,
this is obvious Otherwise, we get @(M,,} = M,,, from above and the induction hypo-
thesis Let us show that M, #

Case 1: M/w#. Then obviously M, # _
Case 2: Otherwise, M/wT,. By hypothesis, w > u Bylemma 5.7, w/u € Q(M[w « Q]/u)
and M/w < 1ed,. Using property @,, we get uv/w € Dir(M/w), and thus M, #.

In ail cases we get w(M,,) = M,, When w = A this shows that
o(M[uv « x]) = M[uv < x] # o(M) < M[u < Q],
and therefore ur . #(M). [

COROLLARY If (M, v} is accessible, we have v € #(M).

Assuming the existence of a matching dag, we shall now give an algorithm that
computes, for any term M not in normal form, a strongly needed redex occurrence of
M. We assume, without loss of generality, that M has no variables (Otherwise, treat
them as constants). We present algorithm A annotated with assertions, {.. }.

1

Computations in Orthogonal Rewriting Systems, I1 429

ALGORITHM A
begin {M & 7, ¥ (M) # &5}
ue A PeQoe Aiwe {Q A
getsymbol: {w = (P/u,v), waccessible,uv € #(P),P < M,
Plu« Q] < o' (M),Vu' P/u'T, =u' = u}.
Let F be the head symbol of M at uv; P~ «- P; P« Pluv « Fﬁ];
search: {w = (P~ /u,v), waccessible,uv e #(P), P < M,
Plu« Q] < o' (M),Vu' P/u't, =u' >=u}
By cases on the matching dag at node w:
case L: w 5 w' = Loy, S;v: {ue F(Plu« Q) Plu = aq}
exit with answer “redex of type i at u”
case 2w w' = {Pv"y: {uv' € #(P),Plu=P'}
v+ v'; we w; go to getsymbol;
otherwise {Pfu#}
case 3: w # (Q, A}
Let w' = Failiw) = {v', P');
Let 4’ such that v = #'v';
{u’ min such that A # v’ <vand P~ /uu't, P = P~ juu'}
e un'; v v’ we w, go to search;
case 4: otherwise: {w = QAP fu=Qv=A,2u'P/uw't,}
choose u such that P/u = ;
if no such u then {P = M, ' (M) = M}
exit with answer “normal form”
else go to getsymbol;
end.
IHEOREM 5.11: MATCHING DAG IHEOREM Let M be a term without variables. If M is
in normal form, algorithm A applied to M terminates with answer “normal form ™
Otherwise, it terminates with answer “redex of type i at ¥” with u ¢ #(w'(M)) and
Miu = oy

Progf - Weuse Floyd’s method to prove the weak correctness of algorithm A, annotated
with its assertions. We leave it to the reader-to show the invariance of these assertions,
using lemmas 4.15, 5.7, 58 and 5.10. The termination of the algorithm is easily
established, since at getsymbol, |[M| — | P| decreases, and at search, |v| decreases, with
|M| — | P|constant When A terminates at exit “normal form,” we get o'(M) = M, ie,
M e #%. When it terminates at exit “redex of type i at w,” we get M/u > P/u = oy
Therefore, @'{M)/u = . Furthermore, Plu« Q] < «'(M), and ue #(Plu— Q])
Therefore, by definition of index we get u € #(e'(M)).]

Now that we have proved the correctness of our algorithm, we give a more readable
version of it We remove the redundant first component of the node in the matching
dag and implement P by marking the occurrences explored in M. Also, variable u' now
stands for uv of algorithm A, and we use the notation ¥’ -+ v to denote u such that
u = uv.

430 Huet and Lévy

In the following algorithm u is the place in M where we are trying to match the root
of a redex, 4’ is the descendant of u where we are pursuing the match, w is pointing to
the node of the matching dag which represents the current state of matching

ALGORITHM B
begin Input: term M, with ¥ (M) = &

u— A we A;
it 4« u;
getsymbol: let F be the head symbol of M at u';

mark occurrence ¥’ in M;
search: By cases on the matching dag at node w:
case 1: w - S;: exit “redex of type i at u”
case L wow = v’ u « wr'; w— w’; go to getsymbol;
otherwise
case 3: w # A:let w' = Fail(w) = v';
u+t + v, we w'; go to search;
case 4; otherwise
if all occurrences in M marked then exit “normal form”
else choose 1 unmarked zand go to init;
end

Algorithm B is nondeterministic for two reasons. The first one comes from the choice
of uin case 4 It is natural to implement this choice by taking for u the first unmarked
occurrence in M, say in preorder. By keeping a pointer (Free) to the last chosen
occurrence, one pass in M will suffice for all the necessary choices We assume
below the existence of the function Searchfree(Free), which returns the first unmarked
occurtence of M following Free in preorder and the special value Done if there is none

The second cause of nondeterminism is that there may be several nodes w' in the
matching dag satisfying case 2. This can be easily eliminated by making owr matching
dags deterministic, keeping only one arc labeled F from any node w. This does not
mean that we can restrict Q(M) to be a singleton, since the extremity of a deleted arc
may be reacheable through a failure arc. For instance, in figure 11, we may delete one
of the two arcs issued from the origin node, but we must keep all the nodes.

When the matching dag is made deterministic, it is natural to store it in a double
artay Next(w, F), indexed firstly by the nodes of the dag, and secondly by the function
symbols in % This way the computation of which case to choose at search is constant,
ie., independent of the size of red.

For a given X algorithm B is linear in the size of M, since an occurrence of M is
marked at cvery passage at getsymbol, and Searchfree makes one pass in M. However,
the computations done at search depend on the length of v/, i.e., on red, and algorithm
B has a running time O(h x |M|), where k is the maximum height of a redex scheme.
We shall now describe one more refinement, in which we get 1id of this / factor

We need pointer u’ only to read the occurrence in M at gctsymbol‘. The new value
of 4" updated at case 2 may be at some distance from the old value, but in any case it

Computations in Orthogonal Rewriting Systems, 11 431

OO0 >0 O

| n [
1

Figare 12

is the son of some node in M that has been already explored. If we keep in a stack all
accesses of M at getsymbol, we shall be able to get directly at this father in a way that
depends only on the path chosen in the matching dag We can precompute the
corresponding displacement in the matching dag as follows

Let - k be the label of node w, and let w, be the node with label © on some access
path leading to w. See figure 12. We shall keep as information for node w the virtual
address {—n, k), indicating that a query corresponding to node w is effected by
accessing the kth son of the node of M accessed at time —n. If we keep these accesses
in a stack Display with current index Top, we have direct access to this node through
Display(Top — n)

‘We must now make sure that our virtizal addressing mechanism is correct, indepen-
dently of the path chosen fo access w. The only difficulty comes from the sharing in
the dag More precisely, we may have two paths of different lengths leading from a
nodelabeled with v to node w Whenever this is the case, we shall duplicate the common
nodes of these two paths so as to associate a unique virtual address with every node

After this unsharing has been effected, we compute the fail arcs More precisely, let
w = {M, v} and let 4 be the minimum nonempty prefix of v such that M/ut. Let wy,
Fi,w,, F,, .., w, be the sequence whose existence is given by lemma 57 Lemma 58
tells us that by following this sequence from the origin, we arrive at some node w' We
must precisely take Fail(w) = w', and we shall be sure in this way that our virtual
addressing will be correct, even when backtracking through the fail arcs In particular,
note that w and Fail(w) have the same virtual address

Exagmple Let us consider the system X

GF(4,x))—

E(F(x,HA), B}~

GFFxHWLC) -~

with corresponding matching dag shown in figure 13 Fhe node marked X has two
distinct virtual addresses, and there is no way to get rid of the conflicting paths by
making the dag deterministic Figure 14 shows the corresponding virtual matching dag,
after duplication of node X, computation of virtual addresses, computation of fail arcs
and suppiession of nondeterminism

432

Huet and Lévy

Figure 13

Figure 14

Computations in Orthogonal Rewriting Systems, T1 433

We are now ready to present the next refinement of our algorithm We assume that
the nonsuccess nodes of the dag are coded with successive integers, with the origin
coded 0. For wa dag address and F a function symbol, Next(w, F) contains the address
ofits F-successor, if it exists, o1 §;, or 0 to indicate failure For w # 0, Node(w) contains
a virtual address { —n, k). Finally, for every success node S, we keep in Size(i) the size
of redg (i ¢, the length of any path leading from the origin in the dag to S;); this is used
as virtual address of the redex in case of success. We use pointer P {(represented in
algorithm B by occurrence u') to access term M, and M(P) denotes the top function

symbol of M at P.

ALGORITHM C
begin Free « origin of M;
init: Top « 0; w+ 0; P « Free;
getsymbol: F « M(P), Mark P;
Display(Top) « P; Top < Top + 1;
search: w' « Next(w, F); by cases on w';
§;: exit “redex of type i at Display(Top — Size(i))”
0:if w # 0 then w « Fail(w); go to search;
clse Free « Searchiree(Free);
if I'ree = Done then exit “normal form”
else go to init;
otherwise: { —n, k> « Node(w’);
P « kth son at Display(Top — n);
w— w'; g0 to getsymbol;
end.

Algorithm C is a generalization to trees of the extension of the Knuth-Morris-Pratt
fast string-matching algorithm to several patterns. It is straightforward to show that
C has a running time of O(| M|), independently of red.

Our final refinement consists of getting rid of the inner loop at search by iterating
sequences of global failures at compile time. The array Next is now computed as
follows Let us consider the chain of Fail arcs issued from node w in the dag:w, = w,
wiyy = Fail(w) for 1 <i<p,w, =0 Let F ¢ #. There are two cases:

* For some i, 1 <i < p, there is an arc w, A w) We set Next(w, F) «w/, for m the
minimum such £,

* Otherwise, Next(w, F) « 0, indicating failure of all local and global searches

We can now get rid of Fail(w) altogether, and the final version of our algorithm is given
below. This cortesponds to the technique of [13] for elimination of failure transitions
ALGORITHM FINDREDEX

begin Free « origin of M;

init: Top « 0; w « 0; P « Frce;
getsymbol: F «— M(P); Mark P;

434 Huet and Lévy

Display(Top) < P; Top« Iop + 1;
w' « Next(w, F);
By cases on w':
S;: exit “redex of type i at Display(Iop — Size(i))”
! 0: Free « Searchfree(Free)

if Fres = Done then exit “normal form”™

else go to init;

otherwise:

{—n, k) « Node(w");

P « kth son at Display(Top — #);

w « w'; go to getsymbol;
end
Note that more nodes may now be garbage-collected as inaccessible. The resulting
structure Next is no longer a dag but rather a finite automaton transition graph. It is
not clear whether this graph should be implemented as lists rather than arrays. This
space-time trade-off depends on the structure of the particular ¥

Example With Z as above, we construct from figure 14 the information given in table
1. With input term
M = G(F(F(F(F(A, H(A)), B), H(B)), B)),

algorithm findredex will explore M in the order shown by the numbers in (1) and will
stop with answer “redex of type 2 at x,” with x the address of the node labeled 7.

(1) Gy

All
The only nonconstant space used by findredex (apart from the mark bits in M) is
the stack Display. This stack is popped at init, i¢, every time all current searches
fail Actually, we could do much better, since Display is accessed only at a maximum
distance of h from its top, where h the maximum size of a redex scheme We could

Computations in Orthogonal Rewriting Systems, 11 435

Table1
Next

w Node(w) G H A B C
0 2 1 0 0 0 1]
1 {(-L1> 3 1 0 0 0 0
2 {(-1,2> 2 1 0 4] 4 0
3 {—1,1> 5 1 0 5 0 ¢
4 {—=2,1> 6 1 0 0 0 0
§ {—=1,2> 2 i 7 0 4 0
6 (—1,2> 2 1 9 0 4 0
7 {(=3,2> 2 1 0 0 8 R
8 {(=2,1> 2 1 0 S, 0 0
9 (=115 2 1 0 S, 0 0]

Notes: Size(I} = 3. Size(2) = Size(3) =35

therefore implement Display as a circular ring of length h The instruction
Top« Top + 1 would become Top « (Top + 1)modh, and our algorithm would
work in constant space (plus one bit for each node in M for the marks) However, this
might not be desirable in practice, since if we want to implement a lazy interpreter using
algozithm findredex, we should be able to dynamically restart it after effecting one step
of reduction, and in that case we would need to keep the whole Display.

Note that in order to effect a reduction step, we must have unambiguous addresses
for the variable occurrences in the redex scheme. For instance, in the example above
we would distinguish between the two possible successes s,, since variable x has virtual
address —3, 1 in one case and —2, 1 in the other. This unsharing problem could be
simplified by compictely developing our dags as trces. Actually, a slightly more general
construction would be to directly construct matching trees with nodes w = {M,v)
such that » € 2(w), 1e, have Q depend on the access path to w and not only on M.

We summarize this section with the following theorem:

THEOREM 3. 12: FAST TREE PATIERN MATCHING THEOREM Let be such that there exists
amatching dag for redy. For any term M not in normal form, the algorithm findredex
will find a strongly needed redex occurrence of M in time O(M)

5.3 Deciding Strong Sequentiality

We shall now show that strong sequentiality is equivalent to the conditions @, and
0, of section 52

DEFINITION 5.13 Let M be an Q-term. We define its set (M) of increasing indexes as
TM) ={uc F(M)YN o(N)=Q& &'(N)=N=Fw>uve F(M[u< N])}

Intuitively, an increasing index can be increased into an index whenever we replace it
by a term which may become a redex after some reductions

436 Huet and Lévy

Example With
I = {F(G(A,x)B) > ,F(G(x, A, C)» ,GEE) -},
the first occurrence of Q in F{{, Q) is a nonincreasing index

LEMMA 5.14 Let ¥ be strongly sequential Then for any M in Q-normal form we have
F (M) # &

Proof Assume I strongly sequential and M = '(M) Let #(M) = {u;,u;, . ,u,}.
Assume that 7 (M) = (&, ie, for every i <n there exists N; such that w(N;) =Q,
w'(N;) = N, and Av > u;, v € F(M[u; — N;]) Now consider

P=M[u« NJl <i<n]

We fizst show @'(P) = P. Since M and the N;s are in Q-normal form, the oniy possible
case of a redex in P is when there is some « in red and u in G() such that ago/u < N,
for some k < n. But then w(og/u) < o(N,) = Q, ie, o(ug/u) = Q, which is impossible
by lemma 4 10. Thus @'{P) = P.

T being strongly sequential, there exists v in #(P). There are two cases:

Case 1: 3k <n, u,<v Then by repeated application of lemma 417 we get
v e FS(M[u, « N1}, contrary to the hypothesis on N,.

Case 2: Vk < n, u,|v. Then by repeated application of lemma 4.17 we get v € #(M),
which is impossible.

This completes the proof that (M) # & m
Let us now extend lemma 4.16 to 7.

LEMMA 515 we T (M)=ve T (M/u)

Proof Assume that uve 7 (M) and v ¢ 7 (M/u). That is, there exists N such that
@' (NY=N, o(N)=Q, and ' > v, v' € #F(M/u[v <+ N]) Now let P =M[uv< N}
Since uve (M), there exists wi=up such that we #(P) By lemma 416,
w/u € #{M/u[v « N1), a contradiction. .

COROLLARY If T is strongly sequential, 7 (M) satisfies Q.
Proof M < red,, implies o' (M) = M and 7 (M) = #(M) < Dir(M) [

An increasing index may, by definition, be increased into an index. Actually, it may
even be increased into an increasing index:

1EMMA 5.16 Let N be such that o(N) = Q and «'(N) = N. Forevery u € 9 (M), there
exists v > u such that v € (M [u « NJ)

Proof Assume ue (M), o(N) =Q, o' (N)= N, and fv>uve F(Mu< N]) Let
{y, . ,uy} = {u;€ F(Mu < N])|u; = u}. For every i<n, u ¢ 7 (M[u<« N]), by
hypothesis; that is, there exists N; such that w(N;}=Q, &'(N) = N; and Aw = u,
we $(M[u <« N[v, « N.1]), with p; = u;/u. Consider now P = N[v; « N[l <i<n].

Computations in Orthogonal Rewriting Systems, 437

We get o(P) = Q and &'(P) = P, like in the proof of lemma 5 14, and from u € (M)
we know that there exists w > usuch that w € #(M[u < P]). From above and repeated
application of lemma 4.17 we must have w|u; for all i < n. Using lemma 4.17 again we
get w e £(M[u« NJ), which is impossible by definition of the u;s |

COROLLARY If T is strongly sequential, 7 (M) satisfies Q.

THEOREM 5.17: DECIDABILITY OF STRONG SEQUENTIALITY X is strongly sequential iff
there exists a matching dag for reds.

Proof If T is strongly sequential, we have just seen that .7 (M) satisfies @, and @,

For the convetse, consider a matching dag as constructed in 5.2. Let M be any Q-term
such that ' (M) = M and w(M,) # w(M). We shall show that there exists an index in
M by processing M with algorithm A slightly modified as follows There are two more
cases at getsymbol for the symbol read. If it is a variable, do as in “otherwise” (ie,
failure of global match) If it is an Q, stop. We know from the assertions given {or
algorithm A, which are all still valid except that P < M at getsymbol should become
P < M, that in this last case we have uv € #(P). Since M/uv = £, it follows that
up € (M), by definition of index Note that this is the only way we may stop, since an
exit at “normal form™ is impossible by condition w(M,) # w(M), which implies 3w € M,
M/w = §,and an exit at “redex at 4™ is impossible by condition '{M) = M. Therefore,
F(M) # ¢, which concludes the proof that T is strongly sequential]

Note that the statement of the theorem gives effectively a decision procedure: to test
whether X is strongly sequential, try constructing a matching dag as defined in 5.2. We
may restrict conditions @, and 0, to accessible nodes, and in that case, 7 is actually
the maximum solution for ¢ This is the solution we obtain if we start with
Q(M) = Dir{M), suppressing progressively elements with ¢, and checking @; In
practice we might want to generate a smaller solution, starting with Q(M) = ¢ and
adding an element with Q,, checking Q,. In either case, several passes may be needed,
and we do not know of an efficient algorithm (ie, linear in the size of red) to build a
matching dag for a strongly sequential . Once a dag is found verifying ¢, and @,
we effect the necessary unsharing and compute the fail arcs (This process could
be simplified by completely developing our dags as trees) We then make the dag
deterministic, complete the graph by iterating failures, garbage-collect inaccessible
nodes, and finally get an automaton table such as the one given in table 1 Some
ingenuity may be needed in this process if we want to minimize the size of the
automaton Of course, this is done once and for all for a given %, and therefore we do
‘not care very much about the cost of these operations: In practical terms, this is the
cost of building a compiler for the programming language defined by £ However, as
pointed out by one of the referces, the size of the tables can blow up exponentially.
Fortunately, this problem disappears in the practically relevant cases of the next two

sections

438 Huet and Lévy

6 Applications

6.1 Recursive Functions with Consiractors

We now consider a special case of our rewriting systems, corresponding to HOPE
programs [5]. We assume that the set # of function symbols is partitioned into
two set % and F. Fy is the set of recursive functions symbols and % the set of
constructors Then any redex scheme x e red is of the form F(a,a,, .,a,), where
F € %, and, for every i, the term «; € #(%, ¥') contains only constructor function
symbols and variables These particular systems will be called systems with constructors.

LEMMA 6.1 A system T with constructors is strongly sequential iff the set red, is
sequential

Proof Itis casy to check that for every M < redg the set Dir(M) of directions of M
satisfies Q; and O, n

6.2 Simple Systems

In the general case of strongly sequential systems, it is not easy to find a cor responding
matching dag We consider now a 1estricted case (which often meets in TRS) when it
is possible to factor the matching for all subexpressions of redexes. We cali these

systems simple systems.

DEFINITION 62 Let 1ed = {og/ula e red,u e @)} Then I is a sequential simple
system iff all subsets of red$ are sequential sets.

The set red is a simple forest in the sense of Hoffman and O'Donnell [7], since if «
and § are two compatible Q-terms of red, they must be comparable in order to make
the subset {«, B} sequential But the algorithm defined in [7, appendix C] does not
work if non-sequential simple systems are considered. In the terminology of {7], the
subsumption graph (ie, the covering relation of < in red) is a tree where at each
node there is an occurrence of Q in the corresponding Q-term where the different
branches are differenciated

Let us define Dir*(M) = Dir(M, red%), #*(Q) = {A}, and

FHM) = {uv|lu e Dir{(@(M)),v & F¥M/u)}
when M # Q
LEMMA 63 Let w(M) = Q. Then #5M) < F(M)

Proof Let ue #*%(M), and let x be any variable. We prove first by induction that
oM[u—x])#redi I M=Q, then u=A and oM[u«x])=x# redk, since
Q ¢ red%. Now suppose M # Q and (M) = Q. Then u = vw with v € Dir*(®@(M)) and
w e F¥(M/v) Let M, = o((M/v)[w < x]). By induction hypothesis M, # red$. Thus
M, # 1ed,, and G(M[u < x]) = @(M)[v « M,] Now suppose that there is o e red§
such that af@(M[u« x]) Since @(M)=<d(M[u+«x]), we get ol @(M) But

Computations in Orthogonal Rewriting Systems, I1 439

v e Dir*(@(M)} Thus v € &«) and «ofv # Q. Therefore o/v € red} and a/vt M, A con-
tradiction. Hence w(M[u — x7]) # redd. In particular, @(M[u « x]) # red,, which
implies o(M[u « x]) = (M [u « x])and o(M [u « x]) # red}. Now since (M} = Q
and w({M[u « x]} # Q, the occurrence u is in #(M), by lemma 4 14 n

LEMMA 64 Any sequential simple system is strongly sequentiai.

Proof Assume that ¥ is a sequential simple system. We show first by induction that
FHM) # & for evary M such that o(M)=0 and o' (M)=M I M =Q, then
FHM) = {A} # & Suppose now that M # Q, o(M)=Q, and o/(M)=M Then
@(M)T .. Thus because of the nonambiguity condition and since «'(M) = M, one
cannot have & < @(M)for some o € red} Therefore Dit*(@(M)) # & and by induction
FEHM) # & Now if M <redg, then w(M) =0 and w'(M)= M (again by non-
ambiguity). Thus . #*(M) # &, and .F*(M) obviously satisfies Q; and Q,. |

The matching dag of a sequential simple system can be built up easily from . #*(M)
by induction on the size of M as follows Suppose (N, v} is a node of the matching
dag, M=N[v« F ﬁ] and M < red, Then search, along the chain of failure arcs
starting at {N, v, the first node (N', v’} with an outgoing arc labelled by F. If there
is no such node, then choose any u € Dit*(M), create node {M, u) with an F-aic from
{N,v> to {M,u) and a failure arc from {M,u) to {Q,A>. Otherwise, let v = wo’ and
{M',u") be the extiemity of the F-arc outgoing from (N’,»'>. Then, taking u = wu',
create node (M, u} with an F-arc from {N, 1) to {M,u) and a failure arc from (M, x>
to {M’,u'). Thus the matching dag (which is then a tree) can be efficiently built up in
one top-down pass starting from the origin {not bottom-up as in [7])

Example Let Z be such that
red = {F (4, G(x, y,C)), F(B, G(D, x, C)), G(E, x, D)}.

Then the two possible matching dags associated to the sequential simple system X are
given in figure 15

Finally, O'Donnell [19] gave a sufficient condition for insuring the termination of
the leftmost outermost derivation sequence This condition is as follows Remember
that when u, v e @(M), then u is said to be before v in preorder, written u <, v, iff either
u =< v o1 u|v with u to the left of v. Let T be a left system iff

Voereds, Vi,ve Olo), tfuc ¥ &u<,v=>a/ve¥.

Thus left systems are characterised by redex schemes in which after a variable there
could be only variables in preorder. One can easily prove that left systems are particular
sequential simple systems and that they correspond exactly to systems where the
leftmost outermost redex of any term is strongly needed One nice example of left
systems, given in [197, is the case of combinatory logic i.e., when

2 = {A(I,x) - x, A(A(K, x),) - %, A(A(A(S, %),), 2} = A(A(%, 2), A(y, 2))}.

440 Huet and Lévy

-
|-
P _]e /J,/ E
/// //}
T e ®
c //
/
c

© © (»

Figure 15

6.3 An Example

The left-linear non-overlapping term rewriting systems define a rather general family
of applicative programming languages. The restriction to strongly sequential prograrms
permits to define efficient interpreters for these languages Important subcases are
recursive equations with if-then-else expressions [16,3], HOPE [51, and combinatory
logic, as shown above. Several examples of such “programming with equations” are
given in [8], including the definitions for a LISP and a LUCID interpreters.

We shall illustrate our methods on a small example of call-by-need computations
in a highly functional programming language This exar_nple' defines the set of prime
numbers, Primes, implemented as an infinite stream and computed along the lines
suggested by [10] First, we generalize the above coding of combinatory terms to
arbitrary curried operators, using the following abbreviation:

fM, M, My stands for App(. . App(ApD(f, My). Ma), .. My}

Second, we assume given a minimum set of predefined arithmetic operations, thatisa
constant n for every integer », and the standard oper ations + and X

631 General combinators We use an infix “” for list constr uction, and an infix “o”
for function composition.

hd(x-y) =x

thix y) =y

(f e ghx = f(g(x))

map f (x y) = (f x) (map f y)

Computations in Orthogonal Rewriting Systems, 11 441

Note that all our function symbols are (zero-ary) constants, with the sole exception
of the binary App implicit from our notation

6.3.2 Arithmetic operators

Ny =2 map (+1) N,

mult x = map (xx} N,

filter(n x)(m y)=n filter x m-y) n#m
filter(n x)(n-y) =filter x y

These equations should present no problem: N, is the stream of integers starting
from 2, mult x is the stream of all multiples of x, and filter x y removes elements of y
from x, assuming x is a sorted stream, and y a sub-stream of x The following function
removes from a stream all multiples of its first element:

remuit(x y) = filter y (mult x)
633 Computing primes It is now easy to compute the various stages of
Erathostenes’ sieve in a sticam of streams:
Sieve = N,.((map o map) remult Sieve).
At every stage, one new prime number is produced, ie.

Primes = map hd Sieve.

We leave it to the reader to check that it is possible to use the program rules to
evaluate, say, hd(tl Primes) to 3. In doing so, he should convince himself that the correct
computation strategy is not quite obvious, since non-terminating computations Iurk

everywhere
Actually, it is not hard to show that this example is strongly sequential (it falls under

the conditions of simple systems). A part of the matching dag, showing all non-trivial
fail arcs, can be seen in figure 16.

App App App

/\/_\

@ 0w o
SN /

Xlg

——
remult
®

Figure 16

442 Huet and Lévy

7 Conclusion

In our paper we established some mathematical foundations for computing with the
call-by-need technique in TRS. As usual, optimal evaluation strategies aie expected
by adding some shating mechanism Duplications of subterms can be avoided by
implementing terms in dags. However, the dags formalism need to be neatly defined
Another issue is to generalize propositions of our paper to more complicated rewriting
systems. For instance, does one really need the nonambiguity condition? Can we treat
systems with bound variables, such as the lambda calculus? Or with imperative
features? Moreover, for the semantics of our systems, is it possible to get some full
abstraction result? For which class of functions? Finally, it seems possible to consider
the general problem of tree pattern matching along the lines of this paper and thus to
define sets of patterns where a linear top-down matching algorithm could exist
However, this problem differs from finding strongly needed redexes, since then one has
not to consider replacement of matching subterms

Addendum

The results of this paper wete obtained in 1979 Since then, extensions appeared in [4]
for a non-deterministic TRS and in [17] for parallelism A sophisticated implementation
has been done by Laville [14] for ML. Efficient compilation of a TRS are also in Strandh
[22] Corrections and improvements in some of the proofs are reported in [12] We
especially thank Aart Middeldorp for giving us a correct proof of lemma 5.8,

References

[1] G Berry Séquentialité de 'évaluation formelle des lambda-expressions. In Proc 3rd International
Colloguium on Programming. Paris, March 1978, Dunod

[2] G Berry Stable models of typed lambda-calculi In Proc. 5th ICAL P Conf. Udine, Italy, 1978,

[3]G. Berry, J.-I. Lévy. Minimal and optimal computations of recursive programs. In Proc. 3rd POPL Conf.
Santa Monica, Jan 1977 Also JACM 26, no. 1, 1979

[4} G. Boudol. Computational semantics of terms rewriting systems. Rapport de recherche INRIA, Feb.
1983

[5] R M. Burstall, D. B Macqueen, and D 1. Sannella HOPE: An experimental applicative language.
Report CSR-62-80, Computer Science Dept., University of Edinburgh, Feb. 1981.

[6]P L. Curien Algorithmes séquentiels sur structures de données concrétes. Third cycle thesis, Université
de Paris March 1979.

[7] C Hoffmann, M O’Donnell Interpreter generation using tree pattern matching In Proceedings 6th
POPL. San Antonio, Jan 1979

[8] C Hoffmann, M O’Donnell Programming with equations. ACM Iransactions on Programming
Languoges and Systems 4, no 1:83-112, Jan 1982

[9]1 G. Huet, J.-J. Lévy. Computations in orthogonal rewriting systems, I Chapter 11, this volume

[10] G. Kahn and D. Macqueen Coroutines and networks of parallel processes In Proc IFIP Congress 77,
North-Holland, pp 993998

[11] G Kahn, G Plotkin Domaines concrets, IRIA-Laboria report no 336, Dec 1978

Computations in Orthogonal Rewriting Systems, I1 443

[12] I. W Kiop, A. Middeldorp. Strongly sequential term rewriting systems. Rep. IR-128, Free Univ
Amsterdam, Jun 1987

[13]1D E Knuth, J. Morris, and V Pratt Fast pattern matching in strings. SLAM Journal on Computing 6,
no 2:323-350, 1977

[14] A Laville. Evaluation paresseuse des filtrages avec priorité: Application au fangage ML, Thesis, Univ.
of Paris 7, Feb 1988

[15171-3 Lévy Réductions correctes et optimales dans le lambda-calcul Thesis, Paris 7, Jan 1978

[16]T McCarthy A basis for a mathematical theory of computation In Computer Programming and Formal
Systems, ed P. Braffort and I Hirschbert North-Holfland, 1963, pp 33-70.

[17] F. Muiler Entwurf und Implementierung eines Interpreter-Generators unter Verwendung von
Baumtransformatoren und schoellen Verfahren zur Einbettung von Baumen Diplomarbeit, Abteilung

Informatik, Universitat Dortmund, June 19%0.

[18] M. Nivat. On the interpretation of recursive polyadic program schemes In Symposia Mathematica,
vol 15. Tstituto Nazionale di Alta Mathematics, Italy, 1975, pp. 225-281

[191 M O'Donnell Computing in Systems Described by Equations. LNCS no 58 Springer-Verlag, 1977
[20] L. C Raoult, J Vuillemin. Operational and semantic equivalence between recursive programs 10th
SIGACT Conf, San Diego, 1978.

[217 1 Staples. Computation on graph-like expressions. Report no. 2/77, Math & Comp. Science, Queensland
Institute of Technology, Brisbane, Australia, 1977

[22] R L Strandh Compiling equational programs into efficient machine code Ph.D thesis, Johns Hopkins
Univ, 1988

[23] C P Wadsworth Semantics and pragmatics of the A-calculus Ph D thesis, Oxford, 1971

