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Gérard Huet and Jean-Jacques Lévy

We present in this chapter a study of derivations which formalize the computations of

expressions in programming languages. Our formalism extends recursive programs
with simplifications in [16, 20, 6,27, 23,25, 8,2]. It permits to provide an operational
semantics to programming languages such as LISP [19], LUCID [1], HOPE [5],
and ML [9] The derivations we study may also be considered as proofs in certain
equational theories which are of use to study abstract data types [11,22,6]. Finally,
our work may be used for the design of efficient simplifications in formula manipulation
systems such as LCF [10].

-The results of this paper may be sketched as follows: We consider finite systems of
pairs of first-order terms: £ = {o, — f5|i < n}. Computations consist of rewriting an
occutrence of some instance of an ¢, into the corresponding instance of ;. We restrict
every rule a; — f; so that all variables of f; occur in o; and so that every variable of «;
has a unique occurrence in «;. Furthermore, no two rules of £ are nontrivially
superposable We believe that most computations in programming languages without
parallelism can be formalized in this setting,

Section 1 contains the preliminary definitions. In section 2 we show how the parallel
moves lemma induces a congruence (“permutation”) on derivations issued from a given
term. The usual notion of residuals of a 1edex is extended to derivations, yielding a
sup-semilattice structure to the permutation classes of derivations. This generalizes
Chuich-Rosser results from [26, 13, 24]

In section 3 we prove what is usually called the standardization theorem The
problem is to simulate any derivation by a “standard” derivation, ie, one which
computes in an outside-in way For this we define the notion of a redex occurrence
being external for a given derivation. Intuitively, an external redex is such that none
of its residuals will be below any redex contracted in any permutation of the given
derivation This notion is thus invariant by permutation, and every nonempty deriva-
tion possesses at least one external redex occurrence. This allows us to define the notion
of a standard derivation, and we show that every derivation class contains a unique
standard derivation. We finally define the notion of a redex occurrence being external
in a given term, which yields the notion of the normal derivation issued from a given
term. When the term possesses a normal form, the normal derivation terminates in
this normal form This may be considered as an extension to our systems of the
call by name computation rule for recursive program schemas, and of the normal
derivations in A-calculus However, our formalism differs in essential ways from these
two, because of the possibility of upward creation of redexes, and our call by name
rule does not correspond to a simple lefmost-outermost strategy of computation The
results imply that all the nonambiguous linear term rewriting systems are d-outer in
the sense of O’Donnell [24] The existence of normal derivations entails the possibility
of doing only needed computations in a top-down manner. However, it does not
correspond to an effective computation rule, and at this stage the only correct effective
interpreters use parallel strategies such as paralle]l outermost
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Part 1I of this paper (chapter 12) will deal with the problem of finding effective
interpreters which compute in a sequential fashion.

Most of out concepts are adaptations to syntactic domains of denotational semantics
notions. This algebraic approach permits us to state and prove our theorems in an
abstract fashion, suggesting that our results can be extended to a more general theory
of operational semantics

1 Preliminary Definitions

We follow here the notations of Huet {13] and Berry-Lévy [2] Let %, be a set of
function symbols of arity n, # = | ) {#,/n = 0}, and 7" a denumerable set of variable
symbols Our expression language is the set .#(#,¥") of first-order terms formed from
Fand 7, ie,

Vs HMFT),
Fe# &YVi<nMe M(F,V)=>FM,M,, ,M)e HF7)

When & and ¥ are fixed from the context, we shall usually denote .#(%, ¥') by 7
For any term M we define its set of occurrences O(M) as = finite subset of the set
N¥ of finite sequences of positive integers as follows:

A e (M) (the empty occurrence)
ue OM,)=iue O(F(M,M,, M) forl<i<n

Intuitively, an occurrence of M names a subterm of M by its access path. If u & O(M),
we define the subterm of M at u as the term M/u, defined inductively by

M/A = M,
-F(MI:MZ: " sMn)/iu = Ml/u

Finally, if u € ©(M), we define for every term N the replacement in M at u by N as the
term M [u « N, defined by

M[A« N]=M,
-F(MDMZ:" :Mn)[lu(_N] = F(MlsMZ:"' :M;'{u « N]:' . 5Mn)"
We shall also use the notation O(M) = {u e O(M)|Mju ¢ ¥}

Example Let M = F(G(x), A) We have O(M) = {A,1,11,2} and 6(M) = {A, 1,2},
M/1 = G(x), and M[1 — H(B)] = F(H(B), A)

The set of occurzences O(M) is partially ordered by the prefix ordering u < iff Iw
uw = v. In this case we shall define v/u as w If u £ v and v £ y, we say that w and v
are disjoint, and write u|p Finally, u <viff u <vandu #v.
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A substitution is any function ¢ from ¥ to . satisfying
O-(F(MDMZ: : 9Mn)) = F(G(Ml)s G'(Mz)s' N }G(Mn))‘

In other words, o is a morphism in the algebra of terms and is therefore uniquely
determined from its value on variables.

We call term rewriting system (abbreviated TRS) any set X of pairs of terms &; — §;
such that ¥ (£,) S ¥ (a;), where ¥"(M)is the set of variables appearing in M. We denote
by iedy the set of left-hand sides o, of X, which we call redex schemes. For any

substitution ¢ and « € redy,, o(x) is called 4 redex of = We denote by #y(M) the set of

redex occurrences in the term M. A term M such that 24(M) = &F is called a Z-normal
form. We denote by 4% the set of terms in Z-normal form. From now on, we shall
assume that TRS X is fixed and therefore drop the subscript T except when needed.

We say that the term M reduces to N at occurrence u using rule o, — f, iff there exists
a substitution ¢ such that M/u = a(o) and N = M[u «+ o(f,)]. The pair A = {M,u)
is called an elementary derivation, and we shall write A: M =, N. In this notation, k, u
or A may be omitted. Note that M, « and k determine unambiguously a(x) for every
xin ¥ (o), and therefore (B} and N.

A derivatioriis asequence A = A A, .. A,of elementary derivations 4;; M; = M.
We use AB for the concatenation of A and B, 0 for the empty derivation, and |A| for
the length of derivation 4 We shall use the notation A: M % N to indicate that
derivation A starts in M and ends in N.

Let U = {u;,u,,.. ,u,} be a set of mutually disjoint redex occurrences in term M,
and let M /u, = a,(x;). We call elementar y multiderivation the pair A = (M, U and write
AMEN , Whete

N =My« a(f)ll £i<n]=M[u < o)) [u,<a,(B)]

(Of course, the order of the s is irrelevant) We say that 4 contracts the set U.

We define multiderivations in the same way and use the same notation as for
derivations Furtermore, if we want to emphasize the system £ we use, we can write
M 5, N We denote @(M) the set of multiderivations issued from M, and #(A) the
final térm reached by the (multi)derivation A We say that A and B are coinitial if A,
B € 9(M), cofinal if #(4) = #(B) The notation AB, fot the concatenation of 4 and
B, assumes that B e @(#(4)) Concatenation being associative, we write ABC for
(AB)C ot A(BC) Bvery set 2{M) contains an empty multiderivation which we shall
denote 0, the term M being usually understood from the context. Thus we freely write
Ab=04=4

When considering a derivation 4: My 3 M, 3 M, 3~ 53 M,, it is convenient to
denote by A[#] the i first steps of A, with 0 < i < n. The rest of 4 is denoted A[i,n]
Thus A = A[i]A[i,n], with M, as the final term of A[i]. Similarly for multiderivations

We shall study in this paper the propertics of derivations in TRSs which have two

¢onstraints:



9y Nonambiguity: if o, «; € red, for every u in @(x;) there are no o,
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ﬁ) Left linearity: for every o in red, every variable of « occurs only once:

alu=ofve ¥ =>u=0v
¢ such that

! ¢(ay/u) = &' (), except in the trivial case i = jandu=A

We also rule out the trivial TRSs which only consist of rules ¢ — § with a e ¥
Therefore, we have ted N ¥ = & by condition (2)

perINITION 1.1 We call orthogonal any non-trivial TRS verifying conditions 1 and 2
above

Our TRSs are similar to the schematic tree replacement systems of Rosen [26] and
O'Donnell [24]. Condition 2 is called the nonoverlapping condition in these papers.
Note that 1 and 2 imply together that our systems are outer, in the terminology of
[241. In the terminology of Kauth-Bendix [17], there is no critical pait. The derivation
relation — is confluent (has the Church-Rosser property) [13,26] We shall study in
this paper some stronger properties of derivation spaces, generalizing results in Berry-

Lévy [2] obtained for recursive equations.

2 The Derivations Space

In this section we prove an important property of derivations in TRSs, the parallel
moves lemma (see Curry & Feys [7]). This allows us to define a partial ordering on
derivations, inducing a semi-lattice property on derivation spaces This useful tool
generalizes the one defined in Berty-Lévy [2], which can also be defined in the
A-calculus (Lévy [18])

pEFINITION 21 Given an elementary derivation A4: M %, N and v e #(M), we define
the set v\ 4 of residuals of v by A as a subset of O{N) as follows:

%) ifo=u,
N4 =< {v} ifoluor v<u,

{uwy o | Bifws = x} if v =wwp, and g /w=x€ 7

A pictorial explanation of residuals is given in figure 1. Note that all the relative

positions of # and v have been considered because of nonambiguity. Furthermorte,
nonambiguity and left linearity imply that v\ A4 = #(N). Finally, fot every w in Z(N),
there is at most one v such that w € v\ A When there is none, we say that w is created
by A. Note that such ws may be above u, as well as in the substituted right-hand side ;.

Example Let = = {F(G{x}) > H(x, K(x)), F(H(x, y)) = %, K(A) - B,C — A}

We consider
A: My = FF(H(G(0), O —Ls My = FGIO)—Ho M, = H(C,K(C)

2ty ar (A, K(A)—2s H(4, B)
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v\A = {Ul},vz\A = {vz},va\A =r5s\A =u\Ad = 9, 94\14 = {wz ‘,wg}.‘
Figure
The redex occurrence I 1.1.1 of M, has one residual in M,, namely 1.1, and two

residuals in M,, nameiy 1 and 2.1. It has no further 1esiduals after the second step of
A, which reduces these two redexes The redex occurrence 1.1 2 of M,, has no residual

in M,. The redex occurrence 2 of M, is created (upward) by redex occurrence 2.1 of

M. Finally, note that the redex occurrence A of M, is created by the first step of 4,
even though the replacing term does not contribute to its redex, since it is a variable!
For any nonelementary derivation A, we define \ A by

o\0 = {v},
v\{(AB) = {w\Blwe v\ A}

The residual mapping is extended to sets of redex occurrences by defining

UNA ={J{u\A|ue U}

Finally, if A is an elementary multiderivation 4: M LN with U = {uy,uz,. .t}
we define v\ A as v\(4,4, . A4,), where A; M,_, 3 M, M, =M and M, =N. Of
course, v\ 4 is independent of the order of the u;s. We extend v\ 4 to nonelementary
multiderivations and to sets of redex occurrences as above

Let-A, B € (M), with | B| = 1, contracting the set U < 9#(M). We define the residual
B\ 4 of B by A as the elementary derivation in Z(# (4)), contracting the set U\ 4 We
also define 4118 = A(B\A)

LEMMA 2.2: THE PARALLEL MOVES LEMMA Let 4, B € 2(M), with |A| = |B| = 1. Then
F(Au B) = F(Bui A), and for all u in &(M) we have u\(4 11 B} = u\(Bu A)

Proof Similar to the proof of theorem 6.5 in [23], lemma 11in [17], lemma 2.1.6 in
31 |

The parallel moves lemma is iflustrated in figure 2
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BuA

Figure 2

COROLLARY: THE CHURCH-ROSSER PROPERTY Since |B\A4| = |4\B|= 1, lemma 22

shows that the multiderivation relation is strongly confluent {see [13]) and therefore
that the relation — is confluent. Therefore, for every M, there is at most one normal

form N such that M 3 N

: The parallel moves lemma permits us to generalize the residual relation to arbitrary
| derivations, as follows.

DEFINITION2 3 Let 4, B € (M), with |B] = 1. We define A\B € %(F(B)) by induction
[ on Al
i 0\B =0 (1)
ff ) .
e (A A;)\B = (4,\B)(A\(B\4)) with |4,] =1 @

i Note that 4,\(B\A,) is defined by induction, since iB\A,| = 1, and that it can be
concatenated to A,\B, by the preceding lemma Now for A, B € (M) of arbitrary

lengths, we define 4\ B € Z(#(B)) by induction on |B|:

ANO=4 (3)

AN(B, B;) = (A\B)\B, with |B,| =1 “
We also extend the notation 411 B = A(B\ 4) to derivations of any length. It is easy

to show by induction that | 4\ B| = | A|, that equations (1) through (4) are valid without

Jength conditions, and to generalize the parallel moves lemma:

LEMMA 2.4: THE GENERALIZED PARALIEL MOVES LEMMA For all 4, B e 9(M) we have
F(ALB)= F(#11A)and for all uin R(M), u\(As B) = u\(BLL 4)

The last part of lemma 2 4 can be generalized to an arbitrary multiderivation coinitial
with A and B as follows.

LEMMA 2.5 THE CUBE LEMMA  For all 4, B, C € @(M) wehave C\(ALiB) = C\(BL1 4},

Proof Byinductionon|A|+ [B|+[C| If C = 0, use(1); otherwise,let C = C, C; with -
|C,] =1 We get
(ALIB\C, = (A\CH((BAANC\4)) by (2)

= (A\C)B\ALC,)) by (4)

E = e e e T A R T A e gL
e e et P St gt e
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C
A B
A C\B
B\A
C\(AU B)

Figure 3
= (A\C;)(B\(Cy L1 4)) byind hyp
= (ANCH((BV\CNANC,)) by (4)
={A\C)LI(B\C,)

Thus

CAALBNC,) = CA((ANC)L(B\C,))
= C,N\N(BA\C,)LI(ANC,)) bylemma 24
= CA\((BLANG,) symmetrically

Finally, C,\{(4U B) = C,;\(BL1A) by the induction hypothesis, which achieves the
|

proof, using (2)

The cube lemma is illustrated in figure 3

1f we now define, for 4, B e @{M), A = Biif for all C € Z(M), C\A = C\B, we get
the following corollary:
CORCILARY VA, Be @(M), ALiB=BuA

We shall call = permutation equivalence

LEMMA 2.6: L1118 ASSOCTATIVE YA, B, C e Z(M), (AL By C = AL(BLIC)

Proof
(ALiB)LUC = (AL B){C\(AL B))

= (AL B}{C\(B1L1 A)) by lemma 2.5

= A(B\A)(C\BN\(4\B)) by(4)

= A((BL1C)\A) by (2)

= AL(Bu )
The empty multiderivation 0 in 2(M) should not be confused with the elementary :
multiderivation starting from M and contracting an empty set of redex occurrences, '
which we shall denote . In particular, | @| = 1. However, it follows from the definition
of residual that for every 4 in (M) we have )\ A = . By an ¢asy induction oni jA|
we get that 4\ & = 4, and thus 0 = (¥, and also that A\A = &, with n = |A| This
and lemma 2.4 easily imply that if 4 = B, then #(A4} = F(B)
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Figure 4

LEMMA 2.7 = IS A CONGRUENCE Let 4, B € Z(M), with A = B. We have
YC e (M), A\NC = B\C

YCe@(M), ALC=BuC

VC e 9(F(A)), AC = BC

¥C such that #(C) = M, CA= CB.

Proof Easy consequences of the definitions. |
COROLLARIES VA€ B(M), AANA=0.VAcPM), ALA=A

We now define a relation . between coinitial multiderivations as follows:
VA, Be (M), ACBif ALUB=B

THEOREM 2.8: LATTICE OF DERIVAIIONS THEOREM {F(M)/=,C,L1> is an upper semi-
lattice.

Proof Easy algebraic manipulations from the preceding lemmas. [ |

Phrased in categorical terms, this result means that the category whose objects are
terms and whose morphisms are the equivalence classes of derivations admits pushout

Caution! The lattice structure given by the parallel moves theorem is on derivations
and not on terms For instance, if we consider the system R consisting solely of the
rules I{x) — x and J{x) — x, figure 4 shows that the terms I(J(K)}) and J(I{K}) do not
possess a least upper bound. Note that this phenomenon may be traced to the existence
of two non-equivalent derivations between /(I(K)) and I(K) This shows that the
categotical viewpoint is the right one here: we need to talk in terms of arrows, not just
relations between terms. And now the confluence diagrams can be 1eplaced by more
informative commuting diagrams expressing permutation equivalences of derivations.
For instance, in figure 4 certain sub-diagrams are confluent only for unimportant
syatactic coincidences (due to the double occurrence of I in I(J{I(K)))), but the others
are commuting diagrams expressing a strong equivalence of computations.

Using all that precedes, it is easy to prove the following relations (with the appro-
priate conditions on initial and final terms of the following derivations)

(AB\A =B f &)
(CAN(CB) = A\B {6)
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1 AT Biff A\B = 5™ with m = | 4| (7)
A=Bif ACBC A (&)
] A=0ift A = @"for somen >0 (9
- A Bift AC = B for some C (10)
AL B implies ANCZ B\C (11)

A B implies CAC CB (12)

Note that (7) and (8) show that = and = are easily decidabie

We could also have defined = as the smallest congruence relation on @(M)
such that ¢ =0and ALB =B A This justifies our terminology of permutation
i equivalence

Finaily, we may extend relations = and = to derivations by confusing the derivation
M3 M 3M % B,

with the multiderivation

v U v,
M,SM S Su,

where Vi < n, U, = {u,}

3 Standardization, Call by Name, Call by Need

We are going to show in this section that every derivation s equivalent by permuta-
tions to a certain derivation computing redexes in an outside-in manner. In analogy
to what happens for recursive definitions or A-calculus, we shall call these special
detivations standard However, it should be remarked that, unlike in these two formal-
ism, the leftmost outermost derivations are usually not standard in TRS. For instance,

consider
X = {F(X,A)——}B,C—)C,D—)A}.

The standard derivation starting from the term F (C, D} and ending in its normal form

15

F(C,D)—> F(C,A) > B,

whereas the leftmost outermost rule leads to the infinite derivation
FC,D)—- F(C,D)—

31 Outside-In and Standard Computations

Let us first give some preliminary definitions and technical lemmas
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DEFINITION 3.1  Let u € (M), o the redex scheme at uin M. We define the contractum
in M at u as the set Cy,(u) of occurrences of M that are inside «:

Carltt) = {uv e O(M)}v € O(x) }

We also define

Cor(w) = {uv e O(M)|v ¢ Ow)}.

Note that u € C,,(u), since o« ¢ ¥, and thus Vv e Cy(u), u < v

Let 1, ve #(M), with u < v. The nonambiguity condition imposes ve C,(u). Further-
mote, for any elementary A: M — N such that v e V, we get u\4 = {u}

LEMMA 3.2 Letu, v e B(M). If Cp(t) N Cagv) # &, then u € Car(v)

Proof Easy corollary of nonambiguity. ]

DEFINITION 33 Let 4: M, % M, EiMz LI —I—IiM,,, and u e (M) We say that A
preserves u iff A does not contract a redex above u, thatis, Vi<ndve U,v <u

LEMMA 3.4 Let A € @(M), preserving v For every u in #(M) such that u < v, we have

u\A = {u}

Proof Easy induction on 4| E |
We can easily refine the parailel moves lemma to derivations presetving an occur-

rence u, using:

tEMMA 3.5 Let 4, B be coinitial, both preserving u. Then 4\ B preserves u

Proof Easy induction on [4| + |B|, using the following observation Let A,: P >0
For all w e #(P), w\ 4, does not contain any occurrence above both v and w. [ |

TEMMA 3.6 Let A, B be coinitial, with 4 = B. If B preserves u, then A too preserves u

Proof Assume that AZB, B presetves u, and A does not preserve u That is,
A=A, A,A,, where A, preserves u and A, contracts set W such that 3w e W. By
lemma 3.5, B\ A, preserves u, and by lemma 3.4, w\(B\ 4,) = {w}, whence A\B # 0,
contrary to hypothesis. a

We are now ready to present the important definition of an occurrence being external
for a (multi)derivation.

DEFINITION 3 7 Let A € (M), u in @(M). We say that u is external for 4, and write
u € Z(A), ift either A preserves u o1 4 = 4, 4,45, and there exists v < such that 4,
preserves u, A,: P 5 0, with v € ¥V and u € Cp(v) and v € Z{4;).

Note that in the second case v and the decomposition of 4 into 4; 4,4, are unique:
A, is the first step in A that does not preserve u, and v is the unique redex occurrence
above u contracted at this step. Intuitively, u is external for 4 iff A does not contract
at some step a redex above u for which the symbol at u in M did not contribute
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Example Let X = {F(x, B) » G(x,x), A — B} and consider
A: My = F(C,A) = M, = F(C,B) - M, = G(C, C)

We have Z(4) = {A,2}.

DEFINITION 38 Let A: M, 4 M, % M, 5 & M, We say that u is an initial redex
occurrence contributing to A, and wiite u e #(A), ift i < n UnAli— 1] # &
Finally, we define the external redex occurrences of A as &(A) = H(A) ~ % (A)

Note that outermost redex occurzences in the star ting term of A may be excluded from
&(A) either because they are not external for A4 or else because they are not contracted
inA

We shall first extend lemmas 3.4, 3.5 and 3 6 above to % (A4). For lemma 3 4 we need
an extra hypothesis: v must be below the redex scheme at u.

LEMMA 39  Let A € Z(M), u in B(M). If Z(4) v Cyy, we have u\A = {u}

Proof By induction on |A] Let v € #(A4) n Cyylu) # & It A preserves v, use lemma
34. Otherwise, A = A4, A, Ay, and there exists w < » such that the following hold:

a A, preserves v, and therefore u\ A4, = {u} by lemma 3 4

b A,;:PLQ with we W and ve Cp(w) Furthermore, by (a), ve Cp(u), and thus
w € Cp(u), by lemma 32 Therefore, u\ 4, = {u}, and w e Cy(u).

¢ Also,w e Z(A;)and therefore, using w & Q(u), we get ul\ 4, = {u}, by the induction
hypothesis, and finally, u\ A = {u}. [

We now extend lemma 3.5 as follows.

LEMMA 3.10  Let A and B be coinitial and B preserve u e (4) Thenue Z(A\B)

Proof By induction on |A|.

Case1: Apreservesu. Then by lemma 3 5, 4\ B preserves u, and therefore u e (4\ B).

Case2: Jv < usuchthat A = 4, 4, A,, as in the definition above As A 1 and B preserve
u, A;\B preserves u, by lemma 3.5, Similarly, B\ A, preserves u, and therefore
v\(B\4,) = {v}, by lemma 3.4. Finally, B\ 4, preserves v (since v < u), A, preserves
v trivially, and by lemma 3.5, B\(4,A,) preserves v Now ve & (4,) implies
v € Z(A;\(B\(4; 4,))), by the induction hypothesis, and therefore,

ANB = (A, \B) (A \(B\A1))(4;\(B\(4, 4,)))

is a decomposition, which shows that u € & (A\B) [

Note also that it follows from the definition of % that if 4 preserves u € #{B), we have
u e Z(AB) We shall freely use this property below. We are now able to prove the

extension of lemma 3.6

LEMMA 3.11  Let 4 and B be coinitial, with AT B, We have @ (B) & Z(A)
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B1 P B, Q Bs
A1 . AL . A", . @
B R Bz S Bs
A At "
2 L1 2 " A2 " z
B B, B
A Al "
3 3 A3 &
Figure 5

Proof Let AC B and u € #(B). We show that u € 2{A) by induction on [ 4]

Case 1: B preserves u Then A preserves u, by lemma 3.6, and thus u € Z(4)

Case 2: Otherwise, B= B, B,B,, with B,: P L Q; weV, v<u; B, preserves u;
u e Cplv); and v € Z(B,). Since A does not preserve u, we have A = A; A, A5, where A,
preserves # and 4,: R ¥, § such that Iwe W w < u Let A, Ay, ., B, B, . beas
shown in figure 5, which expresses the paialiel moves lemma for 4 and B. By lemma
3.5, A} preserves u and therefore v, B, preserves v triviaily, and by lemma 3.5, again
A7 preserves v. By lemma 3 10 we get v € Z(B;) As A} preserves u, v is contracted by
B, by lemma 3 4. Similarly, B} preserves 1 and therefore w, according to the relative
positions of v, w e Z(R)

Case 2.1: v # w. Since our systems are nonambiguous, # € Cy(v) and w < u imply
v e Cp(w), and thus w\ B, = {w}. Therefore, w e Z(S} Using v e Z(B}), we get by
lemma 39 that w\ B = {w}, and therefore 4,\(B{B;B;) # {J, a contradiction with
ACB

Case2.2: v =w Since A, and B, preserve v, so do A5 and B3, by lemma 3 5. By lemma
3.10 we get v € Z(B3) As By Bj preserve v, we have v € % (By B; B3) Since A; 2 By B3 B3,
we get v € Z(A3), by the induction hypothesis, and that 4; 4, A4; is a decomposition
of A, which shows that u e Z(A). =

COROLIARY A = Bimplies Z(4) = Z(B).
External redex occurrences are their own residual until they are contracted:

LEMMA 3.12 Let A:M 5N and ue Z(A)L1B(M) We have either u e %#(A) and
u\A = J or u ¢ #(A4) and u\A = {u}.

Progf Straightforward fiom the definitions of % (4) and %(A) ]
LEMMA 313 If 4 = B, we have &§(4) = &(B)
Proof Let A= B and ue &(4). We get ue Z(B) by the corollary to lemma 3.11.
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Lemma 3 12 implies u\ A = £ and therefore, by the parallel moves lemma,'u\B =
Now lemma 3.12 applied to B gives u € #(B), and thus u ¢ &(B). | ]

Ii u is preserved by A, then any prefix occutrence v < u is also preserved by 4,
obviously. This property is also true of members of %(A).

LEMMA 3.14 Tfue Z(A), then Vo <u v e Z(A)
Progf Induction on |4|.

Case 1! A preserves u Then A preserves v, and uv ¢ % (A)

Case 2: A= A;4,4, with 4,: PE»Q and Iw < u such that we W, u € Cp(w) and
we Z(A;) Moreover, A, preserves « and therefore »

Case 21: u<w Then v e 2(4;) by the induction hypothesis, and therefore, since
A, A, preserve v, we get v € Z(4),

Case22: w<v=<u Then» e Cp(w), and therefore the decomposition A; A, A, shows
that v € Z(A).

The set #(4) is therefore closed by prefix. When it contains some u e (M), with

A4 e O(M), is also contains all the members of Cy(u) %(4) is obviously non-cmpty,
since it always contains A, preserved by every derivation. We shall now show that &(A)

is also non-empty whenever 4 % G
LEMMA 315 If A # 0, we have £(4) # &5

Proof By 1nduct10n on [A] If A =0, the proof is trivial Otherwise, let A = 4 1A,
withd,: M5 N elementary If 4, = 0,then U # (, and any member of U is obviously
in £(4). Otherwise, let us consider v € &(4,), which exists by the induction hypothesis.

Case 1: There exists # in U such that u < v Then u & #(4,) by lemma 3 14 and thus
u € Z(A) since A, preserves u Therefore, u € £(A)

Case 2. Otherwise, v is preserved by A4, , and thezefore v e # (A4)

Case 2.1: There exists u in U n Cyy(v). Then by definition, u e % {4}, and therefore
u € &(A)

Case 2 2: Otherwise, v € %(A), and therefore v € £(A) ]

We are now ready to use &(A) to construct an outside-in equivalent of 4 The
following lemma is useful to show that this construction will always terminate.

LEMMA 316 Thete is no infinite chain A, o4, =45 t> -, where A =~Biff 4 = B
and B = A\u, with u € £(4)

Proof Let A: M, 4 M, 5 M, 5. .5 M, It A =0, there is no B such that 4 =B
Otherwise, let u € 6(4). According to lemma 3.12, there exists k < n such that
u\A[k — 17 = {u} and u € U,. Therefore, (4\u)[k - 1,n] = A[k — 1,n]\u contracts
the sets Uy — {u}, Upyy, ., U,. Thus A\u is less than A in the lexicographic ordering
on the tuples (U}, |U, _1[ LU n
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; A = A
_ U1€ E(A 1 ) o
A,= A\,
| B[4 E(A,) 5
-}
At =G ]

Figure 6

DEFINITION 3.17  The derivation A is said to be outside-in iffeither A = Qor A = 4, 4,,
where A, is the elementary derivation contracting some u in £(4) and A, is outside-in

In other words, in an outside-in derivation, we contract at every step some redex
occurrence external for the rest of the derivation

Let A be any multiderivation. We construct an outside-in equivalént B of 4 as
follows If A = 0, we stop with B = 0 Otherwise, let us pick some u in &(4). We define
B as the elementary derivation contracting «, followed by an outside-in equivalent of
‘ A\u. By Neetherian induction, using lemma 3.16, the construction always terminates.
i By construction, BC A But according to lemma 3 15, the construction can only stop
when 4 C B, and therefore B = A, which justifies our terminology. The construction
is iliustrated in figure 6.

\
[ _

[ | DEFINITION 3.18  Let A be any derivation We say that A is standard iff A is outside-in
! and at every step the redex occurrence u is the lefimost in £(A)

Similarly to the above, we define the standard derivation B in the class of 4,
and write B = st(4) Using lemma 3 13, we easily get by Neetherian induction that
st(4,) = st(A4,) whenever 4, = A,

To conclude, we have shown the following:

THEOREM 3.19: STANDARDIZATION THEOREM Every derivation class contains a unigue
standard derivation

Note that the leftmost condition is unimportant here: any choice function over sets
of disjoint occurrences would guarantee the uniqueness of the standard derivation

Example LetX = {F(x, B) -+ G(x,x), A -» B,C —» D} Among the derivations starting
at F(C, A), all the ones that do not use the reductions marked with an X in figure 7

are standard
Finally, we remark that it is possible to express standard derivations in terms of
residuals, because &(A4) can be characterized as the set of redex occurrences of A that

stay outermost modulo permutations in the following sense.
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PN

F(D,A) F(C,B)

A\

F(D,B) ,-/ ~a
~ G(D,C) G(C,D)
X -
\l X
G(D,D)
Figure 7

DEFINITION 320 Let 4: M, 4 M, % M, 5.5 M, and u € #(A) We say that u is
outermost in A, and write u e Out(A), iff Vi < nVy e UNALG — 1A e Uu; < v

In other words, u € Out(A) iff u € U for some i < mand Vi <i, fu; e U, u; <u There-
fore, Vi < i, u\A[ j] = {u} and u\ A[i] = u\ A = (. Note that lemma 3 12 implies that
¢(A} = Out(4). The converse is true for outside-in derivations.

LEMMA 321 If 4 is outside-in, we have &(4) = Out(A)

Proof LetA:M,3 M 3 M3 .5 M, be an outside-in derivation and u e Out{A).
By definition, 3i <n, u, = u and Vi<i, u;£u Since A is outside-in, we have
ue é(Ali — L,n]) and, since A[i — 1] preserves u, we get u e £(4). The converse
follows from lemma 3.12 [ |

LEMMA 322 &(A4) = (5., Out(B)

Proof Let B= A We have, by lemma 3.13, &(4) = (B) < Out(B), which shows that

#(A) = (=4 Out(B) For the converse, take B = s{(4) and use the preceding lemma.
||

That is, £(A4) is the set of redex occurrences which are outermost in every permutation
of 4, or equivalently, which are outermost in some outside-in equivalent of A

The results obtained so far do not allow us to say how to compute in a standard
way, since &(A) may depend on the whole of 4 We are now going to 1elativize these
notions to the starting term of derivation 4, so that we may define an outside-
In computation rule, generalizing the call-by-name computation rule for recursive
ptogram schemes

3.2 Normal Derivation, Call by Name

DEFINITION 323 We define the set of external occurrences in term M as
ZM)y=) 4ea0nZ(A) Similarly to above, we define the set of external redex
occurrences in M as £(M) = Z(M) n %(M), or cquivalently, EM) = (4 spn &' (4),
where for A in P(M) we define &'(A} = Z({A) " R(M) _
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It is easy to show, similazly to lemma 3 22, that ¢'(4) = ()5 , Out'(B), whete
Out'{d) = {ue BM,)|Vi <nVveu\A[i — 13w, € Uy, < v}
with A: My—2ts M, 25 pr Oy pp

We may therefore characterize alternatively £(M) as the set of redex occurrences of M
which are outermost in every derivation issued from M:
EM)= [\ Out'(4).

A B(M)

We shall now show that £(M) is not empty if M is not a normal form. But first we
need a technical lemma,

NOTATION We write —,, for - — 4 (internal reduction). We say that derivation A
is internal iff it is composed of internal reductions. That is, 4 in (M) is internal iff
M=FM,; . M, and 4 preserves 1, 2, .., p (and therefore #(4) = FN,;. .N,) Of

cousse, if A is internal, every permutation of A is internal.
LEMMA 324 Let A: M —F, AN.For any B in Z(N) we have Z(4B) = Z(A)
Proof Obvious from definitions, since A € #(B) n

LEMMA 325 Me AF I &M)=

Proof 1f M is a normal form, #(M) = & and thus £(M) = . Conversely, by induc-
tion on M. Assume M € 4'%. We show £(M) = &,

Case 1: Every 4 in 9(M) is internal Thus M = F(M,, . ,M,} and for some &k < p,
M, ¢ #F By induction hypothesis there exists u, in &(M,), and therefore ku, is in
E(M)

Case 2: There is some 4: M —,, A Let us show that #(4) € &(M). Contrariwise,
assume that there exists B in 2(M) and « in &(A4) — Z{B). Since BC A1 B, we have
u¢ Z(AC B) by lemma 3.11. But #(41:B) = Z(A) by lemma 3 24, a contradiction
with u € £(A4) Therefore, £(4) = £(M), and since 4 # 0, we get &(M) # ¢ by lemma
315 |

This permits us to define the notion of normal derivation issued from a term M, similarly
to what happens in 4-calculus:

DEFINHIION [f M e A", the normal derivation issued from M is 0. Otherwise, let u be
the leftmost occurrence in £(M) and A the elementary derivation: M > N. The normal
derivation issued from M is A followed by the normal derivation issued from N,

THEOREM 3.26: NORMAL DERIVATION IHEOREM If M admits a normal form N, the
normal derivation issued from M will end in N; it is the standard in the class of all

derivations going from M to N
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Proof Let M be a term admitting a normat form N and 4 be some derivation from
M to N Let now B be any derivation issued from M. We have BE A4 and thus
Z{A) < Z(B) by lemma 3 11 This shows that (M) = Z(A): the external occurrences
of a term admitting a normal form are the occurrences external for any deiivation
going to this normal form. Assume now there is some u in (£(4) N #(M)) — F#(4),ie,
u is a redex occurrence in M external to A but not coniributing to 4. According to
lemma 3 12 we have u\ A = {u}, contrary to the hypothesis that N is in normal form.
This shows that &(M) = §(4) With a simple induction on |4, it is now easy to show
that st(4) is the normal derivation issued from M. n

The notion of normal derivation may be considered as the generalisation to
term rewriting systems of the call by name computation rule for recursive equations
[2,6,8,27] In the terminology of [24], we have that all our systems are d-outer, using
the dominance ordeting d defined by “u(dM)v iff either « < v or ulo, u e Z(M), and
v E(M)”

In the next section, we are going to extend these results to define a call-by-need
computation rule for terms possessing a normal form. Before that, let us remark that
it is possible to extend lemma 3.24 to external redex occurrences, yielding a canonical
form for the standard of external derivations issued from a given term.

LEMMA 327 Let A: M -, A N For any B in O(N) we have §{AB) = £(A).
Proof Let ue %#(AB) — %#(A4) We have u ¢ Out(AB) and therefore u ¢ &(A.B). [ |

LEMMA 328 Let A: M —%, A N.For any B in (N}, AB is standard iff 4 and B are
standard.

Proof An easy induction on {4}, using lemma 3 27 above. [ ]

COROLLARY Let A: M %, 4 N be standard. For every noninternal B in Z(N} we
have st(B) = AC, with C = st{B\ A)

Proof 1I B is not internal, it is easy to show that A C B. Consider C = st(B\ 4). Since
Aisstandard, AC is standazd by lemma 3 28 But C = B\ 4 implies then that AC = B.
By unicity of standard derivations, we get st(B) = AC. [

33 Call by Need

We are interested in defining an interpreter for any TRS I in our class Such an
interpreter will be defined by a computation rule, where we choose in any term M some
redex occurrence to contract next The interpreter will compute correctly if, started on
any term M possessing a normal form N, it defines a derivation that terminates in M
after a finite number of steps.

Note that this question is non-trivial only if for some rule &« — f§ in ¥ we have
¥ (@) — ¥ (B) # &, since otherwise any computation rule is correct; we leave this casy

proof to the reader,
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In the general case, we saw in the last section that the normal computation rule
(leftmost of £{M))is correct. Actually, with the help of lemma 3. 16 we could easily have
proven correct a more general computation rule: contract any redex occurrence in
£(M). Intuitively, the redexes named by £(M) need to be contracted in order to get to
the normal form of M. We shall here formalize this concept, and generalize the results
of 3 2 by defining precisely what is a correct call-by-need interpreter.

DEFINITION 3.29 If M admits a normal form N, then u € Z(M) is a redex occurience
needed for the normal form, in symbols u € 4 (M) iff u € B(4) forevery A: M 5 N

To order to prove further properties of needed redexes, consider first a few technical
lemmas about outside-in derivations. In the following, we abbreviate outside-in as “oi”

LEMMA 330 If A = B with A oi, then %(4) = 4(B).

Proof let A=A, A, with A;:M 5 M’ Then ue &(4)=&B) Thus ue AB)

Furthermore, 98(A,) = %(B\ A}, by the induction hypothesis. Therefore, #(A) = 9(B)
|

COROLLARY If M has the normal form N, then A4 (M) = %(A), where A4 is any oi
derivation from M to N.

LEMMA 331 If Aisoiand BC 4, then A\ B is oi (except for some empty steps).

Proof Byinduction on|A4| Let 4 = A, A,, with A,;: M 5 N. By the induction hypo-
thesis, we already know that A,\(B\A,) is oi Consider now A4,\B, ie, u\B. If
u\B = ¢, then A\ B is obviously oi Suppose now u\B # ¢ Since 4 is oi and
A = BL1 A, we know that u € £(4) = &(4A\B). Thus u € Qut{Bu A), by lemma 322,
and u\ B = {u}. Now for all C = A\ B, one has u € Qut(C), since BC = 4 and u € £(A4).

Again by lemma 3.22, one has u € §(A\ B). [ ]
LEMMA 332 If A, Barcoiand 4 = B, then |A| = |B|

Proof If|4| =0, then B=0 and B =0, since B is oi. Similarly if |B] = 0. Now let
A=A,A,and B=B,B, with 4,: M 5 N and B,: M 5 P Denote temporarily by C'
the derivation C, where the empty steps are suppressed As £{A4) = &£(B) and u € £(4),
ve &(A), we have u and v disjoint Thus if B; = B;\4; and A; = A,\B,, one
has B;:N 5 Q and A4;: P> Q Therefore, using the previous lemma and an
induction on |A| 4 |B], we get |A| =1 + |4,]| =1 + |(B,\A45)]. Again by induction,
{Bx\A3)| = |(42\Bs)|. But one also has |B| = 2 + {{(4;\B,)']. u

NOTATION Let d(A) = [st(A)}]

By the previous lemma, since st(A} is oi, one has d{A4) = | B| for any B oi such that
B = A. The fact that external redexes are preserved until they are reduced gives us

properties of this notion of distance

LeMMA 3.33 If A2 B, then d(A) = d{A\B}.
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d(.M') = d(ﬂfl) > d(ﬁfg) = d(ﬂfg) > d(]\ﬂ;) > d(ﬁfs) = d(ﬂfﬁ) > d(Mr) =0

Figure 8

Proof Obvious fiom the two previous lemmas. |
LEMMA 334 If A23B and |B| = 1, then d(A} > d(A\ B) iff Ast(A))n &(B) # &

Proof Let C =st(4) and C = C,C,, with C;: M >N Let B=M 5 P Then with
C=ALCB, we get C=BuIC and ue Out(Bu ), since u € &£(C) = (B2 ). This
means that u\B = @& iff ue VV Now the lemma follows by induction on |C|, since
A\B = C\ B and by lemma 3.31 and lemma 3.32 ]

For the following corollary we denote by d(M) the length of the standard derivation
of M to its normal form when it cxists.

COROILARY Let M have the normal form N. Then d(M) = 0iff M = N. In addition,
let M 5 M’ Thenif U A(M) = ¢, onehas d(M) = d{M') Otherwise, d(M) > d(M").

This is summarized in figure 8, where the slanted steps are needed and the vertical
derivations are standard.

This concludes the proof of the correctness of the call-by-need computation rule.
Actually, any interpreter which is fair for needed redexes, in the sense that it will never
postpone forever the contraction of needed redexes, is correct for computing normal
forms. Note that the standard derivation is the longest derivation contracting only
needed redexes

The next problem we shall tackle is how to effectively compute a needed redex in a
given term We know from the corollary to lemma 3 30 that 4 (M) = %(A) for A any
outside-in derivation going from M to its normal form But this is useless practically.
Intuitively we want our interpreter to compute an element of A (M) without looking
ahead This problem will be stated precisely and solved in part IT of this paper (chapter

12)
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