ToH.B. Curry: Essays on
Combinatory Logic, Lambda
Calculus and Formalism

Edited by

J.P. SELDIN

Mathematics Department
Concordia University
Montreal, Canada

J.R. HINDLEY

Department of Pure Mathematics
University College of Swansea
Swansea, Wales

1980

D

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers
London New York Toronto Sydney San Francisco

iHtkeA-H ik S El T
nbhaecd -l TEr] pei L F
ML el T P LM aHLh

Gl -

il
..'J =

e

"y

EE;:

= S
1"—'J-r| -i---rl-H
N r-:.- mA L e s

Dedicated to Haskell B. Curry on the occasion
of his 80th Birthday

e iy]

i

il Ol =

L |:-I . I III . . r I
Iml -I‘I h ‘

COMBTNATORY AND LAMBDA SYNTAX

OPTIMAL REDUCTIONS IN THE LAMBDA-CALCULUS

Jean-Jacques Lévy
INRTA-LABORIA
Domaine de Voluceau
78150 Le Chesnay, France

Dedicated to H.B. Curry on the occasion of his 80th Birthday
1. INTRODUCTION

The standardisation theorem [Cu] implies that leftmost—outer-
most reductions reach normal forms whenever they exist. Thus
these reductions insure termination and can be called correct
in the sense of [Vu,Do,Lel]. However, they may not be optimal,
i.e. reach the normal form in a minimum number of steps because
of duplications of redexes. At first glance, it seems difficult
to design optimal reduction strategies. First, innermost redexes
seem better than the outermost ones because they avoid copying
redexes. Secondly, one does not want to reduce useless redexes,
i.e. redexes not reduced in the leftmost-outermost reduction,
but they cannot be found effectively in the A-calculus. Worse,
even in the AI-calculus where all redexes are useful for the
normal form, innermost reductions may not be optimal. Take for
instance (Rx.xI)(Ay.(Az.zzzz)(yt)) with I=}x.x . However, some
optimal strategies have been defined in [Vu] for recursive pro-—
grams schemes. Independently, an efficient, though not optimal,
strategy was designed by [Wa] for the A-calculus. Both methods
use the same simple principle : at each reduction step, contract
the leftmost-outermost redex and avoid duplications of redexes
by adding some sharing mechanism. This is done by leaving the

usual universe of A-expressions and by considering shared

A-expressions. For instance, let M=A((Ax.xy)I) with A=Ax.xx and
I=\x.x. The graph normal reduction method in [Wal works for M

as follows

(1) M+(1 I) ,(?\X-xy)l-*(i 1) Iy+(I i) s

Thus both copies of (Ax.xy)I and Iy are simultaneously con-
tracted. The corresponding reduction in the usual A-calculus

framework 1is
(i1) M » ((Ax.xy)I) ((Ax.xy)I) + (Iy)(Iy) - yy.

But shared reductions are not so easy in the A-calculus
because of functional arguments (which cannot happen in recur-
sive program schemes considered in [Vu]). Take for instance

M=(Ax.(xz) (xt)) (Ay.Iy). Then :

(i1i) M » {i z)(I t) (Ay.Iy) +~ 777

The leftmost outermost redex (Ay.Ily)z has to be reduced
without duplicating the Iy redex. The evaluator of [Wa] cannot
handle this example and makes copies of (Ay.Iy) in this case,
which makes it non-optimal. Example (iii) shows that, in order
to get an optimal A-evaluator, one must share, not only subex-
pressions, but pairs of subexpressions and substitutions for
free variables, i.e. closures in the programming languages ter-
minology. To our knowledge, such optimal evaluators have not yet
been designed for the A-calculus, and Wadsworth's method is
still the most efficient one. Unfortunately, we shall not give
here a solution to that problem. But we will characterize exactly
the redexes whose contraction needs to be shared. For doing this,

we shall study the duplication of redexes in the usual A-calculus

setting.

Take again example (i). In the corresponding reduction (ii),
at each step the leftmost-—outermost redex is at least contracted.
But in the second and third steps, some additional redexes are

reduced. In the second step, the two ((Ax.xy)I) contracted

OPTIMAL REDUCTIONS 161

redexes are copies (or residuals) of one single redex in M. In
step three, the two Iy redexes are mnot residuals of one redex in
reduction (ii), but they are residuals of a single redex if one

permutes the two first steps, which gives reduction
(iv) M > A(Iy) + (Iy)(Iy) - yy.

This key observation leads to the organisation of our paper.
First, we recall definitions and properties of permutations of
reductions. The full treatment of them has been done in [Bel]
for recursive programs schemes, but is quite similar in the
A-calculus. Secondly, we formalize duplications of redexes as
residuals modulo permutations of reductions. We show that its
symmetric and transitive closure, called the family relation, is
decidable. This implies that one can effectively find maximum
sets of redexes which are duplications of a single redex. Thus
complete reductions, i.e. reductions which contract at each step
such maximum sets, are effective reduction strategies and can be
proved finally optimal if they contract, at each step, at least
leftmost-outermost redexes.

Readers interested in a more complete treatment are sent to
[Le2] . A similar paper for the easier formalism of recursive
programs schemes is [Bel] , where results of [Vu] are shown along
the lines of this paper. Also, optimal reductions have been
studied in [0'D] (although we disagree with some of his results
[Be2]) and in [st] for combinatory logic (which is an easier

case than the A-calculus).

2. PRELIMINARIES

If V is an infinite set of variables, the set of A-expres—
sions built on V is the minimum set containing V and closed by
abstraction and application, i.e. (Ax.M) and (MN) are A—expres—
sions when M,N are already A-expressions and x is a variable.

Parenthesés are suppressed as much as possible. Around applica-

tions, parentheses may be omitted by association to the left.
There is the usual notion of free and bound variables. We do
not take care of names of bound variables and thus forget all
the meaningless problems of the so-called a-rule. Therefore,
equality of A-expressions will be equality modulo a-interconver-
tibility and, for instance, we do not hesitate to write
Ax.xXy=At.ty.

Here, only the B-rule is considered. Let say that M can be

immediately reduced toN, written M»N, iff M and N only differ

by a subexpression which is of the form (Ax.P)Q in M and P[x\Q]
in N (where P[x\Q] is the result of substituting Q to all occur-
rences of the free variable x in P). A subexpression of the form
(Ax.P)Q is called a redex. The transitive closure of - is writ-
ten 3 and, thus, MON means that M can be reduced to N. An
expression without redexes is a normal form and, if M3N with N
in normal form, then M has a normal form.

Several reductions are possible between two expressions. If
one wants to be more specific about one reduction, mames can be
given to them. We use letters p,0,t. And one has to specify the
initial expression and the successive redex-occurrences con-
tracted at each step. In order to be very precise, one needs
some addressing mechanism of redexes in)A-expressions. Here we
avoid it by confusing redexes and their occurrences and by al-
ways assuming that this distinction is clear from the context.

F R . A 5 R
Thus we write p:M— N to say that p is the immediate reduction

consisting in contracting the redex (occurrence) R in M. More

generally, a reduction p can be specified by writing
R1 R2 R
(v) ptM—M, —>M_ ... —5H
1 2 n
*
We use also the notation p:M»*N for meaning that p is a re-
duction from M to N. By po, we mean the obvious composition of

p and o. The empty reduction starting at M will be written 0M

or simply O, when M is clear from the context. Similarly, we can

forget the initial expression of an immediate reduction and

OPTIMAL REDUCTIONS 163

write just the redex (occurrence) R instead of M-EiN. Thus (v)
is equivalent to p:MﬁN and p=R]R2...Rn. Letters R,S,T will be
reserved to redex-occurrences.

Now, suppose that R is a redex in M and p:MiN. Then R can
be copied, modified, eliminated or contracted during p. The set
R/p of redexes corresponding to R is called the set of residuals
of R by p. First, one has

R/0={R}
R/po={T|TeS/0,SeR/p}

If p:M-§>N, then R/p=R/S is defined by one tedious inspection
of the relative positions of R and S. If R is not contained in §,
then R/S={R'} where R' is the redex of N which is at the same
place as R in M. If R coincides with S, then R/S=@. If R is
strictly in S=(Xx.A)B, there are two possibilities. First R is
in A, and R/S={R'} is the redex which corresponds to R in the
contractum A[x\B] of S in N. (Remark then that R'=R[x\B]). Other-
wise R is in B and R/S={R1,R2,...Rn} where n is the number of
occurrences of the free variable x in A and every Ri corresponds
to R in the i[:-Il instance of B in the contractum A[x\B] of S in
N.

Finally, it will be necessary to consider another kind of

reductions, parallel reductions. Let F be a set of (maybe nested)

redexes in M. The immediate parallel reduction M N can be defi-
ned by use of the following definitions and theorem. A reduction
p=R]R2...Rn... is relative to F iff Vh>1 RneF/(R]RZ...Rn_l).
Moreover p is a development of F iff p is relative to F and
F/p=@. Then

THEOREM 2.1. (Finite developments theorem) : [Cu]. Let F be
a set of redexes in an expression M. Then
1) there is no infinite reduction relative to F,

2) all developments end at a same expression,

&~ U i i 2

3) for all redex R in M, if p and ¢ are two developments

of F, then R/p=R/0.

Thus, the order in which redexes of F are contracted is not
relevant and parallel reductions can be defined now without
ambiguity as reductions M —lrM] fz*Mz e —E+Mn contracting some
set of redexes at each step. Non parallel reductions are a par-—
ticular case of parallel ones since, at each step, a singleton
set of redexes is contracted. We generalize all the previous
notations to parallel reductions without difficulty.lln the rest
of the paper, only parallel reductions are considered. Therefore
we simply call them reductions. But we do not hesitate to write
p=R1R2...Rn for p={R[}{R2}...{Rn]. Remark finally that @#0, i.e.
one immediate contraction of an empty set of redexes is not an

empty (parallel) reduction.

3. PERMUTATIONS OF REDUCTIONS

If F and C are two sets of redexes in M, let FLIC=F(C/F).
Then one useful corollary of the finite developments theorem
is

LEMMA 3.1. (Lemma of parallel moves) [Cu] : Let F and C be
two sets of redexes in M. Then

1) FUC and CLF end at the same expression,
2) H/(FLIC)=H/(CLIF) for any set H of redexes in M.

This can be summarized in figure 1. Now, permutations of re-

ductions may be defined.

Definition 3.2. The equivalence of reductions by permutations

is the least congruence with respect to composition satisfying

the lemma of parallel moves and elimination of empty steps.

More explicitly, this relation = is the least equivalence

relation satisfying :

OPTIMAL REDUCTIONS 165

1) FUC = CUF when F and C are two sets of redexes
in a same expression,
2) ¢=o0,

3) pot = po't if o=¢'.

C/F F/C C/F
—_—b_
H/(FUC)=H/ACUF)
Figure 1

Similarly, an embedding relation can be defined by stating :

QIU iff It. pr=o. Fortunately, both embedding and permutation
equivalence relations can be proved effective by extending the
residual definition to reductions. (Remark that pZo is not
clearly decidable since the length of p and ¢ may differ because
of the elimination of empty steps).

Suppose p and ¢ are two reductions which start at a same

expression. Then the reduction residual ag/p of o by p is a reduc-

tion starting at the end of p which is defined inductively on
the sum of length of p and o by :

0/p=0

(oF) /o=(a/p) (F/(p/0))

From this definition, some easy algebraic properties of

residuals of reduction can be shown. For instance

(ot)/p=(o/p) (t/(p/0))
p/(at)=(p/a) /T
p/0=p

A simpler way of considering residuals of reductions is to

iteratively apply the square diagram of figure 1. Thus one gets

figure 2.

Now, we extend obviously the parallel moves lemma. If p and

o start at the same expression, let pllo=p(o/p). Then :

LEMMA 3.2. Let p and o be two reductions starting at M. Then
1) pllo and ollp end at the same expression,
2) t/(plo)=1/(ollp) for any other reduction T starting

also at M.

Proof : obvious iteration of lemma 3.1. []

OPTIMAL REDUCTIONS 167

Let @ﬁ be the reduction consisting of n empty steps starting
at M, and Gn=®¢...0 (n times) when M is assumed from the context.
Furthermore, let |p| be the length of p (i.e. its number of
steps). Now, one can state the easy decision procedures for re-

lations = and [.

LEMMA 3.3. Let p and o be two reductions starting at M. Then
1) p=oc iff p/o=@" and o/p=@" with m=|p|,n=|al,
2) plo iff p/o=0" with m=|p]|.

Proof : by using properties of residuals of reductions and
the previous lemma. Remark first that, when p,o0,T are coinitial,
one has (plio)/t=(p/T)LI(c/7). Thus one can prove by induction on
the definition of = that p=a implies t/p=t1/0 for all t. Thus p=a
implies p/o=p/p and o/p=0/0. Therefore p/o=¢m, c/p=@n where
m=[p|, n=|o].

Now, if plo, there is T such that ptzo. Hence pt/0o=¢P with
p=lpt|, which implies p/o=¢" for some n. As lp/ol=lp|, one has
n=[p|,

Conversely, suppose p/o=¢" and a/p=¢" for some m,n. Then
p=pllo and o=oljp by elimination of empty steps. But pllo=ollp for
any coinitial p and o. And p=o. Similarly, when p/0=¢m, let

t=0/p. Then pt=pllozolip=oc. []

Two equivalent reductions are reductions with the same initial
and final expressions, but the converse may not be true. Take
for instance M=I(Ix) with I=)x.x . There are two redexes R and S
in M, but reductions P[ESiIx and bifilx are not equivalent since
R/S#¢ and S/R#@. Similarly, if A=Ax.xx and R is the only redex
in AA, one gets OZRZRR#RRR... (However O[R[RR[RRR...). In figu-
re 3, some more complicated example is treated.

Some easy properties of = and [can be proved by algebraic
manipulations. We give a list of them (forgetting the appropriate

conditions on initial and final expressions of reductions).

plo=olip,

pso iff Vr. t1/p=t/0,
pospt 1ff o©=T,

p=c implies p/tz0/T,

elp,
plolt implies plrt

M= I((Ay.Ix)z)

I 2
ST = ST2 = Ts2 = TLS
RT1 F: ST2

Figure 3

OPTIMAL REDUCTIONS 169

plolp iff p=o,

plo implies p/tlo/7,
polpt 1ff ofr1,

plola,

olpla,

pLt and o[t implies plo=olipLT.

Thus, [is a preorder with = as associated equivalence. Also
£ is a congruence for / and hence for LI. Moreover [and = are
left-simplifiable. Finally, [induces some semi sup-lattice
structure on coinitial reductions quotiented by = . Thus, we
find in a very elementary way the computation lattice exhibited
in recursive programs schemes by [Vu] . However, his proof was
more complicated and holds only with certain restrictions, which
permit to identify plo with N>P whenever p:M:N and U:MiP. All
our study can be rephrased in category theory terminology [P{].
We have two remarks.

First, it is not true that [induces some lattice property
in the A-calculus. Two coinitial reductions may not have some
greatest lower bound. Take for instance M=(?\x.Ka(xY))Kb with
Ka=Ax.a, Kb=Ax.b, Y=(Ax.f(xx)) (Ax.f(xx)). Then

p:M+Ka(KbY)+Kab
U:M+(Ax.a)Kb
have no glb.

Secondly, the standardisation theorem in [Cul says that any
reduction may be reordered in a standard way. That is : to any
reduction corresponds some outside-in and left-to-right reduc-

tion. This theorem can be improved. So, let p=R1R ..Rn be a

)"
standard reduction iff, for all i and j such that 1<i<j<n,

RieRIJR.B. . ouaR, implies that R! is internal to R. or disjoint
J 1 1 i+l 3=1 1 1

to the right of Ri' Then, the mew standardisation theorem says
that, for every reduction p, there is a unique standard reduction

o such that p=o. The existence part of the proof follows from

the usual proof of the standardisation theorem which consists

in permuting reduction p. The unicity comes from remarking that,
if Sp is a standard reduction and R is outside S or to the left
of S, then R/Sp#@. Thus standard reductions play the role of
canonical representative in permutation-equivalence classes.
(The situation is a bit analogous to the uniqueness of left
derivations for a given parse tree in context-free formal lan-

guages.)

4. DUPLICATIONS OF REDEXES — REDEX FAMILIES :

In the introduction, the interest of looking at duplications
of redexes modulo permutations was already mentioned. The exam-
ple (i) is more completely described in figure 4. There seem to
be three kind of redexes in this example. For R and S, it is
very easy because all the Ri and Si's are residuals of R and S.
But, for the T case, the only feasible connexion between the
Ti's can be exhibited by closing residuals downwards. For ins-—
tance, the only way of connecting Tl and T2 is to say that
TBETl/S3’ TBET/RI’ TQETle and TAETZISA' Thus, only using resi-
duals, it seems possible to connect even redexes which are not
in the initial expression. However, we need to be careful.

Remark first that Tl and T, are not connected if the initial
expression is (FI)(FI). Thus the wanted relation needs to be
relativized to the initial expression. This can be achieved by
considering redexes and their history, i.e. the reductions which
give rise to them. In that order, we allow to also read reduc-
tion pR as redex(occurrence) R with history p.

Secondly, we must not forget permutations when closing down
the residual relation. Otherwise, we could connect R and S in the
example of figure 3, which should not be related since, for
instance, the Wadsworth's evaluator never contracts them simul-
taneously. Similarly, if A=Ax.xx and R=AA, then R with the empty

history O must not be connected to R with history R.

OPTIMAL REDUCTIONS 171

M=A(FT)
R
S
(FI)(FI)
Ally)
(Iy)(FD) (FT)(Iy)

/N

A=hxxx, Fzhxxy, T=hx.x

Figure 4

This leads us to the following definitions.

Definition 4.1. Redex S with history o is a copy of redex R
with history p, written PR=0S, iff there is a reduction T such
that pT=0 and SeR/rt. Similarly, two redexes R and S with histo-
ries p and ¢ are in a same family, written pR=0S, iff pR<oS or

0S<pR or there is some 1T such that pR=rT=cS.

Thus, in the example of figure 4, one gets RS]T1=R52T2
since
RSITISRS]SBTBESTSRSZSATAZRSZTZ .
Similarly, one can check that R#S in figure 3. Now, we study
properties of copies and families. Some first easy set of pro-
positions can again be proved by some pure algebraic manipula-

tions.

LEMMA 4.2. Let p=p' and o=c'. Then

1) pR<oS 1iff p'R<o'S,
2) pR=gS iff p'R=0'S.

Proof : obvious since = is a congruence for composition. []

LEMMA 4.3. pR<oS iff plo and SeR/(o/p). Thus < is easily
decidable.

Proof : As pR<oS, there is T such that pt=c and SeR/t. By
definition plo. Thus plls=c and p(o/p)=pt. By left-cancellation
o/p=t. Therefore R/(o/p)=R/t and SeR/(o/p). Conversely, if plo
and SeR/(o/p), one takes t=(c/p). [

LEMMA 4.4. < is a preorder. Namely,

1) pR<oS<tT implies pR<TT,
2) pRsoS<pR 1iff p=o and R=S.

Proof : Since pR<oS<tT, there are p' and o' such that pp'=o,
co'=t, SeR/p' and TeS/o'. Thus pp'o'=t and TeR/(p'c'). Therefore
pR=1T. Now suppose pR<oS<pR. Then plolp and SeR/(o/p) by previous
lemma. Thus p=Zo and c/p=®n for n=|ag|. But R/¢n={R} and S=R. The

converse is obvious. []

LEMMA 4.5. < satisfies some interpolation and unicity pro-
perties:

1) If pLolt and pR<t,there is some redex $ such that
pR<oS<1T,

OPTIMAL REDUCTIONS 173

2) If pRIScS and pstUS, then R]=R2 (same occurrences).

Proof : Let plolt and pR<tT. Then, by definition, there are
reductions p',0',1"' such that pp's0, 0o'=t, pT'=T and TeR/t'.
Thus pt'=Zpp'c' and 1'=p'qg’ by left-cancellation. Thus
R/t'=R/(p'0') and TeS/o' for some S such that SeR/p'. Therefore
pR=oS=<tT.

Now, we remark first that the residual definition
implies that there is at most one redex R such that SeR/p for
given S and p. Thus, if pRISoS and pRZSGS, we have SER]/(U/D)

and S€R2/(0/p). Therefore R1=R2. O

We turn now to the hard part of this paper, which is to show
that the family relation is decidable. The trouble comes from
the necessity of looking now inside A-expressions and from not
being able to go on with algebraic manipulations. But first of
all there is an easy case when one considers families of redexes

with an empty history.
LEMMA 4.6. R=pS iff SeR/p.

Proof : First, if SeR/p, then R=pS and R=pS. Conversely, we
use an induction on the recursive definition of =. Thus, we
assume that there is some tT such that R=tT, TeR/t and either
one of the following two cases. First tT=pS. Then R<pS since
R<tT. And SeR/p, since p=p/0. Otherwise pS<tT. Then plt. Since
Olplt, we get by interpolation R<pS'<tT for some redex S'. But

S=S' by unicity. Therefore R<pS and SeR/p. [J

Roughly speaking, the decision procedure for the family re-
lation is as follows : pR=0S iff R and S are "created" in the
same way along p and o, when p and ¢ are standard reductions.
The problem is to formalise creations of redexes. This is not
easy in the A-calculus. One way is to define a labelled

A=calculus (see [Le2]) following the idea of [Vu] for recursive

B et e L REARE JERSERCNEE

programs schemes. Another way, considered here and in [Bel],
introduces an extraction operation on reductions and is to cha-

racterize redexes which do not create R in pR.

Let a context C[] be a A-expression with some missing
subexpression and C[M] be the)-expression obtained by filling
the hole by the expression M. Similarly, we may have contexts
¢c[, , ...] with several (disjoint) holes. Let two reductions
p and o starting at M be disjoint iff they are intermal to two
disjoint subexpressions of M. This means that M=C[N,P] and

p:C[N,P] > C[N',P], o:C[N,P] > c[N,P'].

Let the function part of redex R=(Ax.M)N be the left subex-

pression (Ax.M), and the argument part of R the right subexpres-

sion N.

Suppose now x is a free variable in M. Let M [s @ swa) HE

the centext corresponding to M without all free occurrences of
x. Assume that the reduction Rp is such that p is internal to
the i.t--}1 instance of the argument N of R=(Ax.M)N in its contrac-—
tum M[x\N]. Thus Rp is as in figure 5 (d). Let then the reduc-
tion p//R, read p parallelised by R, be the reduction defined
inductively by :

0//R=0

(Sp)//R=(S"/R) ((p/F)//(R/S")) where SeS'/R and F=S'/(RS).

Remark that, since Sp is in the '1?'--h instance of the argument
of R in its contractum, one has S' in the argument part of R,
F disjoint from p, R/S'={Rl} and ¢/F in the it—-h instance of the

argument of Rl in its contractum. (See again figure 5 (d)).

Now, we eliminate unnecessary steps of p for redex R with

history p.

Definition 4.7. The extraction relation » is the union of

the four following relations

OPTIMAL REDUCTIQNS 175

1) oRS> pS' if SeS'/R,

2) p(RLo) >, 0O if |ol=1 and R, o are two disjoint

reductions,

3) p(RUo) >3 PO if |ol>l and o is a reduction internal

to the function part of R,

i . B ; .
4) pRo vy po' if |ol|21, ¢ is internal to the 1‘2-1-l ins-—

tance of the argument of R in its contractum and o'/R=0//R.

This definition is summarized in figure 5. Remark that, in
the last case, the reduction ¢' is in the argument part of R.

For instance, in the example of figure 4, one has :

RS S,>RS,>S,

ST R298R

RS]TIDST.

7R

Let > denote the transitive closure of >, i.e. peo iff there
is a (possibly empty) chain of extractions leading from p to o.

The key property is the following lemma.

LEMMA 4.8. © has the Church-Rosser property, i.e. if pro

and p=t1, then obv and TV for some reduction v.

The proof is tedious, as usual for Church-Rosser properties,
because of its number of cases, and is sketched in the appendix.
It relies mainly on the following remark : if R and S are two
distinct redexes in an expression M, and T is a redex such that
TeTi/(R/S) and TETZ/(S/R), then there is some T' such that
TeT'/(RUS)=T'/(SLR). Now comes the decision procedure for the

family relation.

THEOREM 4.9. Let p and ¢ be two standard reductions. Then
pR=cS iff pReTT<0S for some TT.

/
SI//
i s / e EHEN SeS'/R
r—:—» CIMN] ==~ C[M\N,]
|
|
R |R/cr
. ¥
C[M\,N] =——3C[M'N,]
o/R
+—:—-n» C [OWMIN] —-——5——-"1-» CLOXMIN]
|
|
R =R/cr
. y
CM[X\N]] =——— C[M,
[M[x\N]] "y C[Ma[x\N]]
|—;—> CL(MMINT -———Er--—-*CIE(M-M)Nn]
|
|
R IR/a"
Y Y
CIM[X\N]] =====%=—— - C[M[x\N,]]
o/R =c/R /-(
rd
o|* u-///
s
Y //

Figure 5(a)

R inMand oinN

Figure 5(b)

oinN

Figure 5(c)

o in one instance
of NinM [x\N]

Figure 5(d)

OPTIMAL REDUCTIONS 177

Proof : Remark first that PR>1T always implies pR=1T. In
the first three cases of the definition of b, one gets obvious-
ly tT<pR. In the last case, if p=p'R'p", then t=p't' and
p"v=T1'/R' where v=1"'/(R"p").Furthermore, R/v={T'} and
T'eT/(R'/t"'). Thus pPR<p"(R'Ut")T' and p' (R'Lt")T">TT. Therefore,
when pRetT and oSe1T, one gets pR=oS.

Conversely, it is enough to show that PR=<0S implies pReTT<o$
for some 1T, because of the Church-Rosser property of ©. For
suppose p and 0 are standard reductions and pR=0S. Then there
is a chain of piRi such that p_R_=pR and ann=GS and, for

00
1€i<n, either os_ R SpiRi or piRiSpi_ R. By lemma 4.2, one

can always assume]téa; Py is standard. IW; ;hall prove the
existence of TiTi for 1<i<np such that pi_lRi_]BTiTi@piRi. Then
by Church-Rosser of &, we may conclude that there is some =TT
such that pRetT<oS.

So let p and o be standard reductions and pR=0S. We use
an induction on |o|. If =0, then o/p=0 and SeR/c. Thus oSepR
and pRPpR. Let p#0. Then, as pR<cS implies plo, one cannot have
0=0. Thus o=8"'c'. Let too p=R'p'. If R'=S', then p'R<c'S, since
[is left-cancellable. By induction, there is T'T such that
p'ReT'T and ¢'Set'T. Thus, if ™=R't', we get pReTT<0S. Suppose
now R'#S', which is in fact the only interesting case. Then,
since plo, R' cannot be external to S' or to its left. Otherwise
R'/o# which contradicts p/o=@". Thus, since p is standard,
there is a decomposition of o=prpHUQd such that PgsPsPy are
standard reductions respectively internal to the function part
of §', internal to the argument part of §' and disjoint from S'.
(Remark that the definition of || makes it associative). Now we
have several cases with respect to the relative positions of R
and of the residual S" of S' by p.

1) If R is external to S" or to the left of S8". Then one

proves easily by induction on |p| that ReT/p for some redex T

external to S'or to the left of S'. ThuspReT. But, since pR<cS,

one gets T=0S and SeT/c by lemma 4.5. Therefore oSeT.

2) If R is internal to the function part of S", let

=g’ = ={g" h -
then {Sf} S /pf and v (anpd)/pf. Then Sf/v {8"} and the reduc
tion v is internal to the argument of g or disjoint from S
Thus v is disjoint fromthe function part of Sf. Thus there is

a redex Rg in the function part of Sf such that Rf/v={R}. There-
fore pRBprf and pRprR . Since pR=0S, one gets too prfSUS. By

£
] T _ 1t TRt et
lemma 4.3, S(Rf/(olpf). So, if (prf)/S —prf, then prfSU S and
S'p;R'bprf. Now, since e is in the function part of S' and Pe

is standard, the reduction,p%=pf/5' is also standard. Thus, by

induction, there is 1'T'such that ¢'Set'T' and p%R%BT'T‘.Therefore
oSeS'T'T! and_S‘péR%DS'T'T'. By Church-Rosser for &, there is some

TT such that S't'T'etT and prfDTT. Thus oSeTT and pRetT.

3) If R is disjoint from S" and to the right of S", there
is again some Rd’ disjoint from the residual Sd of S' by Py such
that pR&ded and pREded. Then one goes on as previously.

4) If R is in the argument part of S", then there is too
some redex Ra in the argument part of the residual Sa of S' by
pa such that pRépaRa and pRzpaRa. We do as previously, but one
gets trouble, since pa/S' is no longer some standard reduction.
However o R =08, since pR<0S. Thus, by lemma 4.3, SeRa/(clpa).
So, there is some redex R;eRa/Sa such that p;R;SU'S, where
p;=pa/S'. But R" is in some instance of the argument of Sa in its
contractum. Say the]'.r:-h instance. Then, since p; is the union
of disjoint reductions, each of them being internal to some
instance of the argument of S' in its contractum, if p; is the
part of p; inside the it--h instance, then there is R; such that
D;R;Sp;Rg and S‘p;R;DpaRa. Since p;R;SU'S, one has too oéR;So'S.
But, now p; is standard, and we can go on by induction. So there
is 1'T'such that ¢'SeT'T' and p;R;DT'T'. Thus oS2S't'T' and
S‘p;R;QS'T'T'. By Church-Rosser of &, there is 1T such that
S't'"T'p1T and paRaBTT. Therefore oSetT and pRetT. [J

OPTIMAL REDUCTIONS 179

Remark that the previous theorem really gives a decision
procedure since, when pR and oS are given, there are effec-
tive ways of finding the standard reductions p' and o' equiva-
lent to ¢ and o by permutations (see [K1]) and furthermore the
extraction relation ¢ always ends at some normal form (because

pReTT implies |pl>|tl).

Notice too that, if p is a standard reduction and pReaS,
0 is also standard. This is obvious by considering the defini-
tion of . Therefore, we can conclude that, in each redex family
class, there is only one pR such that p is standard and |p| is
minimum. Similarly, this pR is the only one such that p is stan-
dard and pR is in P-normal form. This canonical representative

of the family class of, say, 0S will be written e*(os) and named

; * ;
the normal form by extractions. Thus USSBe (0S) where o, 1s the

standard reduction such that OSEU.

Finally, take the example of figure 4. Then there are three
family classes with canonical representatives R,5,S8T. In general,
if R=pS, then R=e*(pS) by lemma 4.6. This lemma has a nice gene—
ralisation, which will be fundamental in the rest of the paper.
We first remark that the extraction relation can be done in some

right to left order.

LEMMA 4.10. If Rpec and okt, there is some v such that pe v

and RvPbT.

The proof is similar to the proof of 4.6.
*
LEMMA 4.11. Let pR=e (gS). Then plo iff pR=cS.

Proof : The if-part follows from 4.3. Suppose now that T is
the standard reduction such that t=o. We have tSepR and plrT,
since 0R=e*(US) and plo. Moreover TS=E*(TS) is in normal form
with respect to extractions.

By 4.2, it is sufficient to show pR<TS, since T=0. We work

by induction on |T|. If 1=0, then tS®pR implies p=0 and R=S.
Thus pR<tS. Let now t=Tt'. By using the previous lemma, we have
only two cases

1) p=Tp' and p'R=e*(T'S). Then p[t implies p'[t' by
left-cancellation. By induction p'R<t'S. And thus pR<tS.

2) p'R'ne*(T'S) and Tp'R'epR. Then by the definition of
©, one always has p'[p/T. Since p[T,then p/T[T/T. But t/T=@t'=t".
Thus p'[p/TLt'. Therefore, by induction, p'R'<t'S. And, by in-
terpolation, there is some redex S' such that p'R'<(p/T)S'<t'S.
Now, we again look at the definition of p. Let p"=p/(Tp'). Then

"

p'" is always disjoint from R' and there is only one residual R"
of R' by p". Furthermore pR<(TUp)R". But, by 4.3, S'¢R'/p". Thus

S'=R". And pR<(TLp)S'<T1'S. That is pR<tS. O

5. COMPLETE REDUCTIONS

First, we generalise the finite developments theorem. Let
[oR] be the family class of pR, i.e. the equivalence class of
pR with respect to =. Let FAM(p) be the set of family classes of

the redexes contracted in p. More exactly, if p=FIF2...Fn..
FAM(p)={[F]F2...Fn_1Rn]IRnan, n=1}

Say that p is relative to X if FAM(p)<X. Similarly, a reduc-
tion p relative to X is a development of X if there is no redex
R such that [pR]eX. Then lemma 4.6 tells us that these defini-

tions are exact extensions of the ones of §2.

THEOREM 5.1. (Generalised finite developments theorem). Let
X be a finite set of family classes. Then :
1) there is no infinite reduction relative to X,
2) if p and o are two developments of X, then p=c. (This
implies that p and o endat the same expression and t/p=t1/0 for
for all reductions 1 starting at the initial expression of p

and o0.)

OPTIMAL REDUCTIONS 181

Froof : The finiteness part is proved by using a labelled
A-calculus (see [Lel] with a so-called bounded predicate. In
that case, there is a strong normalisation property of this
calculus. And it is straightforward to show that relative reduc-
tions to some finite set X can be embedded in such a calculus.
(One has just to show that SeR/p implies that R and S have the same
labels. Thus pR=cS also implies that R and S have the same labels).
Now the second part of the theorem follows easily from noticing
that, when p and ¢ are relative to X, also plio and oup are

relative to X. [

Developments have nice properties with respect to the family
relation. This follows from the two next remarks. First, when
o5epR, one gets clearly FAM(p)cFAM(o). Secondly, also
FAM(p)=FAM(0), when p is the standard reduction such that p=o.
(This comes directly from the proof of the standardisation
theorem). Thus, if pRue*(US), the reductien p is relative to
FAM(o).

Notice too that, when p is relative to X and ¢ is a develop-
ment of X, one has p[o, since one always can extend p to some
development pt of X and pt=o by the previous theorem. Therefore,

one gets the two following lemmas.

LEMMA 5.2. Let p be a development of X. Then, for all rede-
xes R with history p, one has e*(pR)SpR.

Proof : Let cS=e*(pR). Then ¢ is relative to FAM(p). There-
fore o is relative to X, since FAM(p)<X. Thus olp, since p is

a development of X. By 4.11, 0S<pR. []

LEMMA 5.3. Let p be a development of X. Then, for any oS
such that plo, one has [0S] ¢FAM(p) .

Proof : First, since p is a development of X, p is also a
development of FAM(p). Thus there is no T such that [pT]eFAM(p).
Now, suppose pl[oc and [0S]eFAM(p). Then p=p]Fp2 and there is some
redex ReF such that p]R=GS. Let Q'R'=e*(p]R). Then
e*(le)=e*(GS), and p' is relative to FAM(pl). Thus p' is rela-
tive to FAM(p) and p'[p. By 4.11, p'R'<cS. Therefore p'R'<pT<cS
by interpolation for some redex T. Thus pTﬂp'R'=p]R and

[pT]eFAM(p). Contradiction. [J

Now, we consider complete reductions, which we will show as
being particular developments. Let a reduction FIFZ"°F ... be
complete iff, for every nzl, Fn#m is a maximum set of redexes

such that, for all ReF_ and SeF , F. F,...F_ R=F F_ ...F_ _S.
n n 1" 2 n—1 12 n-1

Thus, at each step of a complete reduction, one non—empty

family class is contracted.

LEMMA 5.4. Any complete reduction p is a development of
FAM(p) .

Proof : By induction on |p|. The case p=0 is obvious. Let
p=cF. By dnduction ¢ is a development of FAM(¢). Thus there is
no pR such that [pR]eFAM(o) by 5.3, since o[p. Suppose now that
there is R and Se¢F such that pR=cS. Then e*(US)SOS by 5.2. Let
0'S'=e*(US). Then o'[olp by 4.3. By 4.11, since also 0'S'=e*(pR),
one gets ¢'S'<pR. By interpolation, there is some T such that
0'S'<oT<pR. Therefore uS=oT and TeF , since p is complete. By 4.3,
ReT/(p/0). Therefore ReT/F and ReF/F, since TeF. Contradiction
since F/F=¢. O

LEMMA 5.5. Let p be a complete reduction. Then |p|= #FAM(p),
where # FAM(p) is the number of elements in FAM(p).

OPTIMAL REDUCTIONS 183

Proof : Let p=F1F2...Fn. Then |p|=n. Let I<i<j<n and
s ass o .= sElE, o i , 4
G F]F2 Faps pJ FIFZ FJ_] Then, since p; is complete and
piEDj’ one cannot have 0;R=p.S for some ReFi and Sst, by using

5.4 and 5.3. Furthermore Fi#m for every Fi' Thus n= #FAM(p). []

Further properties of complete reductions may be shown (see
[Be],LeZ]. For instance, complete reductions make a sub-semi-—
lattice of the one of reductions. That is pllo is complete (up

Lo some empty steps), when p and o are complete reductions.

6. OPTIMAL REDUCTIONS

We come back to the problem discussed in the introduction.
First, we show that call-by-need stategies are terminating. Let
some reduction p be terminating iff its final expression is in
normal form. Now, if p=F]F2...Fn..., let R(p) be the set of
redexes one of whose residuals is contracted in p. More exactly,

R(p)={R|R/FlF2...Fi_lnFi#w, iz1}

Let some redex R in an expression M be needed iff, for all
terminating reductions p starting at M, one has ReR(p). Let a

reduction p=FlF2...FU... be a call-by-need reduction, iff there

is at least one needed redex in every Fn’ for nzl.

We easily show that there is at least a needed redex in any
expression M. Take R as being the leftmost-outermost redex of M.
Let p:MiN be a reduction such that R#R(p). Then R/p={S} and S is
the leftmost—outermost redex in N. Thus R is needed, since, for
all terminating p issued from M, one has ReR(p), since one must
have R/p=@.

THEOREM 6.1. Let M have a normal form. Then any call-by-need

reduction starting at M is eventually terminating.

Proof : By the standardisation theorem [Cul, since M has a

normal form, the leftmost-outermost reduction eventually reaches

the normal form. Let d(M) be the length of the terminating

leftmost-outermost reduction issued from M. Let

FoF FOF

g:M —M —2+M i e -JL-M -Eil+

1 g

be a call-by-need reduction. We want to show that
d(M)>d(M])>d(M2)>...d(Mn)>...

Thus, we will have d(Mp)=0 for some p>1. That is M_ in

normal form.

So let p=R]R2...Rn be the terminating leftmost-outermost
reduction starting at M. Then D/FI=C1C2"'Cn with, for every
i, either Ci=¢ or Ci={si} where Si is leftmost—-outermost (since
residuals of leftmost-outermost redexs remain leftmost-outer-
most). Thus p/Fl is the terminating leftmost-outermost reduc—
tion issued from M1 (up to some empty steps). Now, as o is call-
by-need reduction, there is a needed redex TEF]. Therefore
TeR(p). That is RieT/R]RZ...Ri_]
d(M)>d(MI). Similarly d(M])>d(M2), ete. s O

for some 1. Thus Ci=¢ and

Now, we define some cost measures for reductions. As said
in the introduction, some A-evaluator using sharing allows to
contract copies of a single redex in one unit of time. So let us

say that F with history pis aset of copies of a single redex

iff there is one redex S with history o such that oS<pR for
every ReF. Natural reductions to consider are now the following
c-complete reductions. Say that the reduction p=F|F2...Fn...

is c-complete iff, for all n2l, the non-empty set Fn is a
maximum set of copies of a single redex. Now, we shall assume
that the cost of such a c-complete reduction satifies the

equation : cost(p)=|p].

Furthermore, since all redexes in a set of copies of a
single redex are in a same redex family and since we do not
contract in one unit of time redexes which are not copies of

one redex, we may assume for any reduction p: cost(p)= # FAM(p).

OPTIMAL REDUCTIONS 185

We first show that these two constraints one the cost mea-
sure are compatible and that c-complete reductions are effective,
because they correspond exactly to complete reductions. (Remark

that c-complete reductions are the right version of non—copying

reductions in [0'D].)

LEMMA 6.2. A reduction is c-complete iff it is a complete

reduction.

Proof : Suppose p is complete. Let R be redex with history
p. Let F be the set of redexes S such that pR=pS and F' a
maximum set such that ReF' and there is some oT such that oT<p$S
for all Sef'.We want to show F=F'. First F'cF since, for all
SeF' and S'eF', we have oT<pS and oT<pS'. Therefore pS=pS'. Now
by 5.4 and 5.2, since p is a complete reduction, p is a develop-
ment of FAM(p). Therefore e*(pS)SpS for every SeF. But, for all
SeF and S'eF, since pS*pS', we have e*(pS)=e*(pS’) . Therefore
F is a set of copies of a single redex. Since ReF, we thus get
FeF', since F' is maximum.

Now, we prove easily by induction on |p| that a reduction p
is complete iff it is c-complete. The case p=0 is obvious. Let
now p=cF. By induction o is complete iff o is c-complete. Now,
if p is complete, by the first part of the proof, F is a maximum
set of copies of a single redex. Therefore p is c—complete.
Suppose now p c-complete. then ¢ is complete by induction and
F is one family class, by again the first part of this proof.

Thus p is complete. [J

Therefore, we can speak only of complete reductions. And
lemma 5.5 tells us that the discussion on the cost measure is
consistent, since |p|=#FAM(p) for any complete reduction p.
Notice too that, if p=R1R2...Rn... is some non parallel reduc-
tion, we have too #FAM(p)<|p|. Now, we prove the optimality

theorem.

THEOREM 6.3. Any complete and call-by-need reduction reaches

the normal form in an optimal cost.

Proof : Let p be a call-by-need and complete reduction. Let
0 be a terminating reduction starting at the same expression as
p. We first prove FAM(p)cFAM(o). The case p=0 is trivial. Let
p=p'F. Then FAM(p)<FAM(p')u{[p'S]} for any SeF. By induction
FAM(p')<FAM(0). But o/p' is also terminating, since the final
expression of o is in normal form. Since there is some need?ﬁ
redex R in F, we know that RnR(o/p')#@. Therefore U/p'=diFéGé
with R/UiEFé' But U=U|F203 with 0;=01/p', Fé=F2/(p'/c])- Thus
there is R2€F2 and RéeFé satisfying :

c]RZS(UIUp')Rézp'R.

Therefore [p'R]eFAM(c) and FAM(p)<FAM(o). Thus, we may con-

clude that any terminating call-by-need reduction p reaches the

normal form in |p| steps such that :
lpl= #FAM(p) (by 5.5)
and

lpl= cost(p)< #FAM(o) <cost (o)
for any other terminating reduction o. [J]
COROLLARY 6.4. The leftmost—outermost complete reduction
reaches the normal form in an optimal cost.

Other call-by-need strategies were studied in [Le2] and
correspond to the safe computation rules in [Vu]. The converse
of theorem 6.3 may also be proved, i.e., among the complete

reductions, only the call-by-need ones are optimal.

7. CONCLUSION

It remains to design some A-evaluator implementing our

complete and call-by-need reductions. The trouble, as stressed

OPTIMAL REDUCTIONS 187

in [Wal, comes from the bound variables. Our results were
expressed in words of term rewriting systems and, thus, seem
somewhat general. Therefore, some general theory of rewriting
systems, including the A-calculus case, would be welcomed. For
instance in [Hu], the problem of defining call-by-need reductions
is considered. However, the most important question is to find

shared evaluators for rewriting systems with bound variables.

8. ACKNOWLEDGEMENTS

To Gérard Berry who contributed to the ideas of this paper.

Thanks too to Gérard Huet who simplified some of the notations.

9. APPENDIX

Proof of lemma 4.8 : Cases will be number m.n where

> p' and o> a'.
PP P n

1) RS> S' with SeS'/R.

1

1.2) RSDZS” with S"/R = {S} and S" disjoint from R. Then
s" = §',

1.3, 1.4) Similar cases.

Now, we notice that, in case m22 and |p|zl, |o|21, one
has Rpobmp'o' iff Rp»mp', g is disjoint from p" = p'/(Rp) and
(R/p)(c/p”)bmo'. Remark that, when m = 2 or m = 3, then
p=p'/R and p" = Qk, o/p" =o. Furthermore, we also remark that,
when pto and T is disjoint from p, then p/tepo/T and o is
disjoint from t. Therefore, it is enough to show that, when

RSorS'c' and RSo®Rt, then there is t1' such that S'o'est' and

Rtet'.
2) RSGDZS'U' with S'c' disjoint from R and So = (S'c')/R.

Therefore, the initial expression is of the form C[R,M] and

reductions RSo and S'c' are of the form :

Si

*
CR,M| — C[R,Ml] —— CIR,N]
R
S * .
C[R,M] ——— C["R-,Ml] Er—— C[R,N]

Then, when SobnT, since So is internal to M, T is also internal

to M. Therefore one checks easily that Rtet' and S'a'et'.

3) RSUDBS'U' with S'c' in the function part of R and
S0 = (5'0")/R. Therefore the initial expression is of the form

C[(Ax.M)N] where R = (Ax.M)N. Reductions RSoc and S'oc' are of

the form :

OPTIMAL REDUCTIONS 189

CL(xMN] — C[(Ax.M))N] '__"ET"" clOx.m)N]
R
CIMTH e Bt clM, [x\N]] _;_... clM_[x\N]]

We treat this case more algebraically.

3.1) ¢ =T and STblV because TeV/S. But o' = T' and
TeT'/(R/S'). Since {S} = S'/R, one has TeV/(S'/R). Since R # s',
there is some V' such that TeV'/(RUS') = V'/(S'UR). Therefore
VeV'/R and T'eV'/S'. Hence S'T‘b1 V'. Furthermore, since S'T'
is in the function part of R and since T'eV'/S', we also have
g

in the function part of R. Therefore RVDZV'.

3.2) SUDZT because t is disjoint from S and 1/S = o.
Again, since R # S, there is t' such that o' = 1'/S' and
T = t'/R. Now, one checks easily that t' is disjoint from §'

and in the function part of R. Therefore S'o‘bzr' and RTD3T‘.

3.3) So>4T because 7 is in the function part of S and

T/S = 0. This case is similar to the previous one.

i L. St .
3.4) SUDAT because 1 is in the i— instance of the
argument of S in its contractum and o//S = 1/S. This case is
similar to the previous ones in case |o| = 1. Now, when o = 9195

we use the decomposition of Solqzszsz according to the remark

preceeding case 2.

4) RSUDiS'U' with So in the i.tikl instance of the argument
of R in its contactiun and (S'c')/R = (So)//R. Then the initial
expression of RSo is of the form C[(Ax.M)N] and R = (Ax.M)N.
Then RSo and S'c' are such that

4. S e Je LDV L

clOx.mN] —S o [Ox.MN] —;,——- CLOx.MN]
R

CIMLx\N]] ——mmmmmmm — culx\N 1] ====-F-—— c[M[x\N]]
S

C[MX[N,...NI...N]]

C[MX[N, celN N]

Therefore, if Sort, T is also in the it~h instance of N in
M[x\N]. The reductions So and S'c' are isomorphic reductions

5. . 3
inside M. Thus there is 1' such that Rt>,1' and S'o'>st'. O

4

FOOTNOTE

1. Tor example, F[Fz.. .Fn will denote the parallel reduction

*
M —-—-Mn above.

OPTIMAL REDUCTIONS 191

10. REFERENCES

@eﬂ Berry G., Lévy J=J (1979). "Minimal and optimal computa-—
tions of recursive programs', J. Assoc. Comp. Machinery,

vol. 26, N° 1.

[Be2] Berry G., Lévy J-J (1979). Letter to the Editor, SIGACT
News (July).

th Curry H.B., Feys R. (1958). "Combinatory Logic", vol. 1,
North-Holland.

[Dd Downey P.J, Sethi R. (1976). "Correct computation rules
for recursive languages', SIAM Journal on Computing, vol. 5,
N® 3.

[Hu] Huet G., Lévy J-J. (1979), "Call-by-need Computations in
non-ambiguous linear term rewriting systems', IRIA-LABORIA

report N° 359 (August).

[Le 1] Lévy J-J. (1976), "An algebraic interpretation of the
A-calculus and an application of a labelled A-calculus",

Theor. Comp. Sc., vol. 2, N° 1.

[Le2] vrevy J-J. (1978), "Réductions correctes et optimales dans

le lambda-calcul", Thése d'Etat, Université de Paris 7, (Janvier).

[O'D] 0'Donnell M.J. (1977), "Computing in Systems described
by Equations", Lectures Notes in Comp. Sc. N° 58, Springer-

Verlag.
[Pl] Plotkin G.D. (1978), Private Communication.

[St] Staples J. (1972), "Efficient Combinatory Reductions",

to appear in Zeit. Math. Logik.

Bhﬂ Vuillemin J. (1974), "Correct and Optimal Implementation
of Recursion in a simple programming language", J. Comp. Sys.
8c., vol. 2, N° 3,

[Fa] Wadsworth C.P. (1971), "Semantics and Pragmatics of the
A-calculus", Ph.D, Thesis, Oxford.

