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1. Introduction

1.1 PurPOSE. Procedure call mechanisms have been studied in two main frameworks:
the A-calculus for the most general case where procedures can be passed as arguments and
given as results, and the recursive program schemes for the simpler case where arguments
and results are pure values. We restrict here our attention to the recursive programs, but
we shall indicate which results also hold in the A-calculus. A complete treatment of the
pure A-calculus is given in [15].

The behavior of an interpreter is modeled by some operational semantics: According to
some parameter passing rules (Algol’s call-by-value or call-by-name, for example), some
function calls are evaluated by replacing the function call by the function body. It is well
known that different computation rules can give different results, that there is a well-
defined notion of “best result,” and also that the computation costs may differ from one
rule to another. The optimality problem we study in this paper, continuing the work of
[25], is therefore very simply stated: How can we obtain the best result with the least
possible cost? It can be split into two parts: How can we obtain the best result, and how
can we obtain any result with the least possible cost?

The first problem is usually called the correctness problem, and is related to Scott’s
denotational semantics. This semantics considers a program as a system of functional
equations whose solution is the least fixpoint of some continuous function on appropriately
ordered function domains. Cadiou [5] shows that the best result is precisely the result
defined by the denotational semantics and that it can be computed by a full substitution
process. Vuillemin [25, 26] gives a sufficient safety criterion for a rule to be correct, i.e. to
compute the best result. This criterion is extended by Downey and Sethi [9] into a necessary

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish. requires a fee and/or specific permission.

Authors’ addresses: G. Berry, Ecole des Mines, Sophia-Antipolis. 06560 Valbonne, France: J.-J. Lévy. Iria-
Laboria, 78150 Rocquencourt, France.

© 1979 ACM 0004-5411/79/0100-0148800.75

Journal of the Association for Computing Machinery, Vol 26, No 1, January 1979. pp. 148 175



Minimal and Optimal Computations of Recursive Programs 149

and sufficient security criterion of a more syntactic nature. The second problem is called
the optimality problem. Vuillemin shows that under some sequentiality conditions every
safe rule can be transformed into an optimal one by using a sharing mechanism in the
implementation. This result is shown by different techniques in Montangero. Pacini, and
Turini [18], and the underlying concept of “lazy evaluation™ is used in [10].

Our purpose is to extend these results in several directions and simplify their proofs.
Our point of view is purely syntactic: We study properties of the program scheme
considered as a rewriting system and use them to reduce semantic problems into syntactic
ones. We first notice that the results of Vuillemin [26] and Downey and Sethi [9] are based
on a lattice property of terms. This property holds only under syntactic restrictions which
are not very compelling on recursive programs but disallow any easy extension to more
complicated rewriting systems such as the A-calculus. We remove these conditions and
reconstruct a lattice property in derivation spaces instead of term spaces. Similarly, the
sharing techniques used in recursive programs are rather trivial and can also not be easily
extended to other systems. By introducing a notion of family of subterms which is also
definable in the A-calculus [15] (and therefore may probably be axiomatized), we show
why this sharing technique is really the suitable one and explain its behavior.

Infinite derivations can be directly studied with these techniques. In particular we define
a notion of #-optimality for infinite derivations based on the notion of family of subterms.
This #-optimality implies the usual optimality for finite derivations. We show that %-
optimal derivations exist in the symbolic or Herbrand interpretation which plays an
important role in the study of program equivalence and symbolic computations [7]. We
then give a sufficient projectivity condition for %-optimal derivations to exist in an
interpretation (this condition is also necessary when the interpretation is algebraic [7]).
This condition strictly extends Vuillemin’s sequentiality condition [26], since the Herbrand
interpretation is projective but not sequential. Other interpretation classes defined in [2,
13] also contain projective interpretations.

The rest of this section presents an overview of the techniques and results and technical
preliminaries. Section 2 is devoted to the study of derivation spaces. Families and sharing
techniques are presented in Section 3. Minimality and optimality results are given in
Section 4.

1.2 OVERVIEW AND EXAMPLES

Program Schemes and Interpretations. The programs that we consider are recursive
programs without assignments or side effects, like the Fibonacci program

PL: fib(x) = if x = 0 or x = | then 1 else fib(x — 1) + fib(x — 2)

It is immediately necessary to distinguish between the program scheme and the interpre-
tation. The program scheme in this example is a purely syntactic object of the form

21 ¢(x) = f(x, h(d(p(x)), (p(p(x)))),

where the symbols £, k, and p are called basic function symbols and ¢ is called the unknown
function symbol. The interpretation is defined by some data domain and by some
interpretation of the basic function symbols as mappings on this domain. Following Scott
[23], we require data domains to be complete partial orders (i.e. ordered sets having least
element 1, the “undefined,” and such that any increasing chain has a limit) and we require
functions to be monotonic and continuous. For example, the program P1 is obtained from
the program scheme X, by the following interpretation I:

D= 01\2_,_/” ~+ with L Cn for all n;

1 ifm=0o0rm=1,
Jim,n)y=93n ifm#* L, m#0 m#l,
L1 otherwise;
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m+n ifm# Landn## L.
hi(m, n) =
L otherwise:
(m) = m—1 ifms L and m#=0,
P! L otherwise.

Let us call a data mapping or valuation any mapping v from the set V' of variables into
the interpretation domain D;. Once I fixes the values of the function symbols and » fixes
the values of the variables. the value of any term ¢ not containing unknown function
symbols is completely determined. We call it (1. »)t.

The Operational Semantics. The Herbrand Interpretation. We call a program a triple
P = (2, I, v). Given a program P. a semantics is a way of associating a value with every
term (which may contain unknown function symbols). The semantics we consider are
operational semantics defined in terms of computations (see [20, 23] for the definitions and
equivalence proofs of algebraic and fixpoint semantics). We define the semantics from the
set of all possible computations of a term. We sometimes informally refer to computation
rules, which are recursive ways of associating computations to terms [1, 9, 25].

The basic syntactic operation is the rewriting of an unknown function symbol, which
corresponds to procedure calls in usual languages. The rewritten symbol is replaced by the
corresponding right-hand-side term of the program scheme, as in the following example:

2 ¢(x) = f(x, p(p(x))),
S 6(g(0))) = f( 3, [(q(x). d(p(g(X))))-
A derivation (respectively infinite derivation) is a finite sequence (respectively infinite
sequence) of such rewritings. An example of an infinite derivation of ¢(x) by 2y is
82 to = ¢(x) = 1 = fx, ¢(p(x))) = 2 = f(x. f(p(x), p(p(p(x))) —> =

Let us denote by w(f) the term obtained by replacing all occurrences of unknown
function symbols by the syntactic undefined symbol Q. Then any derivation &: fo — Hh —
we = t, — --» determines a sequence w(fo), w(f); ... » W(in), ... . For example, the sequence

determined by &, is
f f
w(to) = &, w(t) = /\ ,w(t) = // \ Y
X Q X f
,,/ \,
/

X

We use a tree representation to show that the w(t)’s form an increasing chain in the
“initial segment” ordering <, defined by ¢ < ¢’ holds iff ' can be obtained from ¢ by
replacing some @’s by some other terms. The symbolic value 3(8) computed by § is the
limit of the increasing chain w(#;) and is represented by some infinite tree. We have, for

example,

f
2N
/

S
e
X P \/Jj
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If I is an interpretation and » is a data mapping, then every derivation &: to — 11 — -+
— 1, — - determines an increasing chain (/, v)w(t). (I, V)w(t), ... . (1, v)e(ty), ... in Dy.
This chain has a limit (/. »)8 in Dy, called the value computed by 6 in (1. v). With I and &,
as in the above examples and with »(x) = 2, the chain determined by 8, is L, L. 2. 2, ... and
the value computed by & is 2.

Note that Z(8) is the value computed by § in a particular interpretation (H. vy): The
domain of H is the set of all finite and infinite trees written with basic function symbols,

variables, and Q. The functions fy are trivially defined by

/
fuldi Ao, . A=/ \\

Ay, A A

and vy is given by vu(x) = x for all variables x.

Note also that by the continuity hypothesis for functions, the value (Z, »)d is also the
value (I, »)(Z(8)) of the infinite tree computed by & in H.

Using the Church-Rosser property (see Section 2), it can be shown that the set of values
of all possible computations starting from a term ¢ has a least upperbound P(7) in Dy,
defined as the semantics of t for P.

The Correctness Problem. Assume (I, ») is given, and call correct a derivation § such
that (I, v)8 = P(). The problem is to characterize in a syntactic way the correct derivations.
Several results are well known: the “full derivation” [5, 20, 25], which simultaneously
rewrites all occurrences of unknown function symbols (an operation defined in Section 2),
or the “parallel outermost derivation” in which only all outermost occurrences are
rewritten, are always correct. “Innermost derivations” like the usual call-by-value deriva-
tion are not correct in general, as Morris’s classical example [19] shows:

P3: ¢(x, y) = if x = O then O else ¢(x — 1, ¢(x, »))
Here the innermost evaluation of ¢(2, 0) is (with simplifications):
83: ¢(2, 0) = (1, $(2, 0)) = &(1, ¢(1, #(2, 0))) = ---,

which has value L while P3(¢(2, 0)) = 0. Downey and Sethi [9] and Vuillemin [26] show
that, roughly speaking, correct derivations are of the type “outermost first.”

The Optimality Problem. Call optimal a derivation which computes the best possible
value with a minimum number of rewritings, assuming for simplicity that some finite
derivation does compute this best value. Since an optimal derivation is correct, it must
perform the rewritings in an “outermost first” way, at least if we want to produce it by a
uniform “computation rule” implemented in some interpreter. However, outermost deri-
vations tend to have the classical inefficiencies of call-by-name: If the term ¢(¢(1, 0), 0) is
computed in an outermost way with P3, we get

&(p(1, 0), 0) — if ¢(1, 0) = O then 0 else ¢(o(1, 0) — 1, ¢(o(1, 0), 0))

where ¢(1, 0) has been duplicated and must be computed twice, so that the computation
of the result 0 needs 6 steps. It takes only 4 steps if ¢(1, 0) is evaluated first.

Therefore the optimality problem is twofold: We must avoid useless rewritings and
avoid duplications. The usual solution is to share duplicated objects [18, 25], which can be
described by representing terms as directed acyclic graphs (dag’s) or pointer structures:

o(o(1, 0), 0) — if \=‘O then 0:_3% -w, 0))

o(l, 0) &=

The occurrences of ¢(x — 1. 0) are now represented by a unique object, and outermost

derivations become as efficient as innermost ones.
Notice that we count only function calls and not simplification steps when evaluating
the cost of a derivation: We evaluate “for free” the terms w(1,). A possibly more realistic
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approach might consider computations of the form fib(2) — fib(1) + fib(0) > 1 + 1 — 2.
where the last step is a basic function evaluation of unit cost.

Residuals and Families of Occurrences. Two techniques can be used to model deriva-
tions with sharing: Abandon terms and consider dag derivations as in [18], or introduce a
new notion of derivation in terms which simulates the derivation in dag’s as in [25]. We
choose the second technique, which is certainly more general. In particular it is applicable
to the A-calculus [15] where dag’s will not suffice (the corresponding data structure is
presently not known). Our constructions are based on Church’s [6] notions of residual.
Consider the following derivation, where the superscripts name occurrences:

25 d(x) =f(xa d(x)),
%' ¢'

J

o
|

I l
th=¢> 2, h=f
| / \
¢’ ¢
I l

~1

X

\
X

here the occurrence 2 is rewritten. Then it is clear that ¢ is a copy or residual of ¢', that
#° and ¢’ are similarly residuals of ¢°, while ¢° is not a residual of some occurrences in f
and is created by the rewriting of ¢°. Consider now Figure 1, which shows all possible
derivations of ¢(y(x)) by the following program scheme:

t = ¢(Y(x))
£, = £ (x),6(x)

v

| 2 3
£(8° (x),¥(x)) £(w(x),8(x)) 68> (x))

4 5
f(x,¥(x)) t2 = £(8 (x),87(x)) f (¥ (x),%x)
£(x,8" (x)) £(8' (x),x) ¢ (x)

t' = £(x,x)
FiG. |
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[ o(x) = flx, x).
Zi | Ux) = b(x).
f(x) = x.

We first see that the diagram is a lattice, a central property in Vuillemin’s work [25,
26]. We then see that the shortest derivation from ¢ = ¢((x)) to ¢’ = f(x, x) is

(Y(x)) = $(0(x)) = d(x) > flx, x),

while the corresponding outside-in derivation in dag’s would be

it

This derivation corresponds to the dotted line in Figure 1. That the two occurrences of
y in 1, should be shared is clear from Figure 1, since they are both residuals of the y in ¢.
That 6* and 6° should be shared in #, is less clear, since they have no common ancestor
along the dotted line. Sharing of §* and 6 is justified by two observations:

(1) 6* and 68° are created “in the same way” by the two previously shared occurrences
of ¢ in ¢,.

(2) They have indeed a common ancestor §° along the derivation ¢ — ¢(8%(x)) — ta.

By applying these two observations, we may hope to characterize the shared derivations
in any diagram. In fact we can relate occurrences in different terms and define a notion of
Sfamily of occurrences in two hopefully equivalent ways corresponding to the two observa-
tions above. Write (c, f) < (¢, t) if the occurrence ¢’ in ¢ is a residual of the occurrence ¢
in ¢ by some derivation from ¢ to ¢

(1) If (¢, t) = (c/, V'), then the two occurrences are in the same family. Two occurrences
created “in the same way” by two occurrences of the same family are of the same family.
Here all  are residuals of the ¢ in f and form a family, and all 6 are created “in the same
way” from the different . (Vuillemin’s labeling system [25, 26] is one way of formalizing
the notion of family of occurrences according to this definition.)

(2) The families are defined by the symmetric and transitive closure of the relation <.
Here all y are of the same family as before, and so are the § for §° = 0* < ¢, ° < 6° <
65 8' < 0%, and ® < 6°. (The term ¢ in (c, ) is assumed here from the context: §*
abbreviates (6%, t2).)

It is not true that all the 6 are residuals of some unique occurrence. However, 6° can be
considered as a canonical element in the family, since the derivation ¢(¥(x)) — ¢(6(x))
does nothing but create a member of the family as quickly as possible. The properties of
this canonical element will be crucial below in studying complete derivations, which model
the dag derivations and consist in deriving simultaneously all members of a family. In
Figure 1, t —» t — t; — t’ is a complete derivation.

The Lattice of Derivations. Figure 2 presents a more complicated situation. It shows
the derivations of /(K(I(x), y)) by the program scheme

) I(x) = x,
Z7: { K(x, y)y = x.

(In the A-calculus, take / = Ax.x and K = Axy.x). Figure 2 is not a lattice, and we have /'
=I=I"=]"= 1% sothat I' and I” should be of the same family and shared. This is

clearly impossible. This situation is forbidden by Vuillemin [25] since he requires every
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| 2
T (K(I7(x),y))

12(1%(x))

/

1’ (x)

K12 (x),y) 1 (K(x,y))

K(x,y)

X
FiG. 2

right-hand-side term of the program to begin with a basic function symbol and to contain
every symbol of the left-hand side. It is possible to preprocess the schemes and initial
terms to satisfy these conditions, but the computation costs are drastically changed.
Moreover, it is less clear how to do such preprocessing in the A-calculus.

Four derivations reach I7(x). In two of them I is a residual of /', and in the other two
I” is a residual of I Since I' and I° are different objects in the initial term, we can
consider that the four derivations reach two different objects which are equal as terms by
a syntactical coincidence. This is shown by using labels in Figure 3: This revised diagram
is a lattice and the family definition is consistent. Several formalisms can be used to define
the objects we manipulate. For technical convenience (and in particular for easy extension
to the infinite case) we choose to use the notions of derivation classes and residuals: Two
derivations reaching the same term with different residuals should be considered as
different objects.

In fact considering only residuals of occurrences is not sufficient, since the phenomenon
in Figure 2 can be hidden by using creations: Just add to Z; the equation ¢(x, y) =

I(K(I(x), y)) and start with ¢(x, y) — I(K(I(x), y)). Then the occurrence of ¢ has no
residual in any nonempty derivation. We therefore generalize Church’s definition in
Section 2 and define the residual d»/d; of a derivation d» by a derivation 4. We introduce
the equivalence dy ~ d, iff d/d, ~ d/d, for any d. We give several equivalent definitions of
~, and show in particular that d; ~ d holds iff 4 and d» perform the same operations in
different orders. The equivalence is then used to define an ordering d, < d: if d» performs
all operations of 4. Derivation classes now form a lattice. We eventually relate ~ to the
classical standardization theorem [8] and to Vuillemin’s labeling system [25].

The families, their canonical elements, and the complete derivations can be defined as
before by considering equivalence classes of derivations instead of terms. Their study is
the purpose of Section 3.

Minimality and Optimality Results. Minimality results are first shown in the Herbrand
interpretation. For any finite approximation a of the infinite tree Z(¢) computed by  on
t, we construct a least derivation (with respect to <) d, computing a. Ordering infinite
derivations as well as finite ones, we also construct a least infinite derivation 4 computing
any infinite approximation A4 of Z(r). We show that the associated complete derivations d.
and 84 are outermost and are also least computations of a or 4 in the sublattice of complete

derivations.
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&0,y

k(180 ,y) 1%(K(x,y)) (18

[ 4
K(x,y) 1%(x) 18 (%)

y

X
Fic. 3

Our next goal is to obtain optimality results from the minimality results. We first show
that we can restrict our attention to those implementations in which physical computations
simulate complete derivations (like dag’s or delay rules [18, 25]): They are indeed the best
possible implementations under a fairly general constraint. In these implementations the
number of operations performed in a physical computation is proportlonal to the length
[d| of the corresponding complete derivation d. Hence we say that d is optimal for
computing a if it computes a and satisfies |d |=<|d’| for any d’ which computes a (and starts
from the same term). We also notice that |d| is nothing but the number of elements of the
set #(d) of families derived in d. Hence #(d) C #(d’) implies |d|<|d |. We say that d is

F -optimal for computing a if it computes a and satisfies F(d) C #(d) for any & which
computes a. We show that minimality and % -optimality coincide for outermost complete
derivations, so that d, defined above is % -optimal and hence optimal for computing a. An
advantage of the #-optimality notion is that it also makes sense for infinite derivations.
We show that 84 is % -optimal for computing 4. We finally show that, in the Herbrand
interpretation, some correct and optimal derivations are generated by a simple computation
rule.

The situation is more complex in arbitrary interpretations. An interpretation may
contain “parallel functions” which require any computation rule to evaluate their argu-
ments in parallel. In this case least and #-optimal derivations may not exist, and optimal
derivations have no simple characterizations. Several conditions were introduced in order
to forbid parallel functions: sequentiality conditions [13, 25] or a stability condition [2]. We
introduce here a projectivity condition: An interpretation I is projective if for any infinite
tree A and any approximation a of (I, v)4, there exists a least A, < A such that a C
(I, v)4,. Then computing « in (I, ») is nothing but computing 4, in H, and all results
obtained for the Herbrand interpretation apply: If P is a program and if a C P(?), then «
has least and % -optimal derivations. We show that sequential [13, 25] or stable [2]
interpretations are projective.

1.3 PRELIMINARIES. Let us give the formal definitions of the objects we manipulate. As
in [20], we define terms as members of free algebras.

F-Algebras. Let F= {f, fo, ..., fm} be a set of function symbols each symbol f is given
with its arity o( f.) = 0. We denote by F* the set of k-ary symbols in F. The nullary symbols
are called constants. An F-algebra is an object I = (Dj, fl, ..\ f) where Dy is a set
and each 7 is a mapping from D% into D A morphism of F-algebras I and I' is a
mapping 6: Dy — D;, which preserves the operations f:
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Vk, Vf. € F*. vd € D}, 8(fld)) = f1 6(d)).

The Free F-Algebra. Consider a denumerable set V' = {X1. X20 ... Xpo ..} Of variable
symbols and let Vi = {x1. X2 ... xx}. A free F-algebra M(F, V') generated by V'is an F-
algebra containing ¥ and such that for any F-algebra /. every mapping »: V' — D; extends
in a unique way into a morphism (7, »): M(F. V) — . All free F-algebras generated by V'
are clearly isomorphic. The elements of M(F. V) can be represented by well-formed
formulas or trees: f(x. g(x. »)) with p(f) = p(g) = 2. or

f
/\
x &
/\

x )y

The interpretation of the function symbols is obvious, and f***" will be simply denoted
by f:

—in well-formed formulas: f:11, ta, ..., L) = f(f1 Loy oo s L)
-—in trees:

A
[ty by o, by — // \
oot

1 Loty

Intuitively, (/, »)¢ is the value of ¢ when the function symbols [ are interpreted by the
functions f’ and the variables x by the values v(x).

A substitution is a mapping o: ¥V — M(F, V), which extends to a morphism a: M(F, V)
— M(F, V). We write o:t/x, and for t € M(F, V), ot = t{t/x]. The term o is obtained by
replacing all occurrences of x; in ¢ by the corresponding ..

Occurrences of Symbols in Terms.  Let - denote concatenation and € be the empty word.
For t € M(F, v) and s € F U V, the set €(s, t) of occurrences of s in't is defined by

() t=xEV, €(xi, x) = {€}, €(s, x;) = a for s # xi.

(ii) ¢ =f(t), fE€ F*, €(s, 1) = € UUL1((f. ))-€(s, 1)) with € = {e} if s = fand € = %)
otherwise.

Example. t = f(x1, f(x2, x1)). Then €(f, 1) = {e, (f, 2)} and €(x1, 0) = {(f; 1), (/. 2)
(f, 2)}. The number j in each pair (f, j) represents the chosen argument of a function
symbol f (see [7]); for convenience we also keep the function symbol, which is in fact
redundant. Thus occurrences denote the path to a node in a tree (see Rosen [22]).

The size ||t|| of a term ¢ is the number of distinct occurrences in ¢.

LemMa 1.3.1. Lett” = f[¢'/x.] and ¢” € €(s, t"). Then either ¢" = c-c’ withc € €(xi, 1)
and ¢’ € €(s, t'), or " € €(s, 1).

PrOOE. By induction on the length of ¢”. [

Recursive Program Schemes. Derivation and Residuals. Consider two disjoint sets F=
{fis for s fm}, Of basic function symbols, and ® = {¢1, ¢o, ..., ¢ n}, of unknown function
symbols, given with the arities p( f,) = 0 and p(¢,) = 0. We write M = M(F U @, V) and
€@, 1) = UX,€($ ., 1). All terms implicitely belong to M, and since we shall only be
interested in occurrences in €(®, 1), we abbreviate ¢ € €(¢, ¢) into ¢ in 1. Given ¢, cint,
then ¢ contains ¢’ if ¢ is a prefix of ¢/, and ¢ and ¢’ are disjoint, if neither ¢ contains ¢’ nor
¢ contains ¢. An occurrence c in ¢ is outermost in ¢ if it is not contained in another ¢" in ¢.

A recursive program scheme X is a system of equations

5. Di( X1, X2y ooy Xpts)) = T
“li=1,2,...,Nand 1, € M(FU ®, Vi)

Since we consider a fixed program scheme X, we will omit explicit mention of Z below.
Let 1 € M and ¢ € €(¢, 1), and let y be an additional variable. There exists a unique
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decomposition ¢ = t.[¢.(t)/y] such that t. € M(F U @, V U {y})and €(y, t) = {c}. Then
t is derived immediately into t' by rewriting c, written t — ¢, iff I’ = r.[7.[t/x]/ 'v]. Hence ¢’
is obtained by replacing the occurrence ¢ of the subterm ¢,(t) by the subterm r[t/x], i.e.
by replacing the function call by the correspondmg body

A derivation d: t—> t'is a sequence d:t— 1n—5 1, -.—$ 1, = r'. The concatenation of
d:t=> ¢ and d':f' > 1" is written d;d’ and ¢ denotes the empty derivation. When ¢ is clear
from the context, a derivation is simply denoted by d = ci;cy; -+ ;cx. Therefore ¢ will denote
either an occurrence or its derivation, unambiguously in each context.

Let 1 = ¢ as above. Given ¢’ € (¢, t'), three cases are possible by Lemma 1.3.1:

(i) ¢ = c-c1 with ¢ € €(¢, 7:). Then ¢’ is created by the derivation.

(i) ¢’ € €(), t.). Then ¢ in t' is a residual of ¢ in t.

(iii) ¢’ = c-c1-co with ¢; € €(xx, 1) and c2 € €(¢;, tx). Then ¢ in ¢ is a residual of c-
(¢, k)-c2 in t. (See Church [6] for the corresponding definitions in the A-calculus.)

Example. Z: ¢(x) = f(x, $(x)), t = f@(6(x)), (X)) 5 f(A6(x), $(6(x))), $(x)) with
ten = fly, ¢(x)). Here (f, 1)(f; 2) is created, (£, 2) is a residual of (f,2),and (f, 1)(f, 1) and
(s DS, 2)(¢, 1) are residuals of (f; 1)(9, 1).

Given C C €(¢, ), let C/c denote the set of residuals of the elements of C by immediate
derivation of ¢, and let ¢’/c abbreviate {c¢’}/c.

The notion of residuals is extended to derivations for C C €(¢, t) by C/@ = C and
C/(c;d) = (C/c)/d and thus allows us to keep track of occurrences along derivations. Note
that C/d is a set of occurrences in the final term of 4.

2. Equivalence of Derivations Modulo Permutations

2.1 PREEQUIVALENT DERIVATIONS. We consider derivations between two expressions
and write d = &' iff d and d’ are two derivations of the form ¢ — ¢'. It is straightforward
that = is an equivalence relation and forms a congruence with respect to concatenation of
derivations. Furthermore, if d < 4’ means that there is some d, such that d;d, = &, one can
check easily that there are d and & such thatd<d <dand d # d'.

We can have d = d’ by some syntactical coincidences. For instance, in the above program
scheme X7, Figure 2, one has d = &' if

d:I(I(x)) > I(x) and d":1(I(x)) S I(x)
or

d:K(K(x, y), y)—(> K(x,y) and d':K(K(x, ), y) & K(x, y).

Note that in the above examples, derivations equivalent with respect to = do not yield
the same set of residuals. Namely, one has ¢/d = & and €/d’ = {€}. In order to avoid these
problems, we consider a first refinement of =.

Notation 2.1.1.  Let Zo(t) be the set of derivations starting from ¢.

Definition 2.1.1.  Two derivations d and d’ of D(t) are preequivalent, written d = d', iff
d=d and c¢/d = ¢/d for any cin .

This relation is obviously an equivalence relation which is a refinement of =. Moreover,
preequivalence is a congruence with respect to concatenation. Furthermore, if d < d’
means that there is some d, such that d;d) = &', one can see by the following example that
one can have d and &' such that d < d < d and d # d'. Take

o &(x, y) = ¢( p, x),
Yx) = x;

d:dU(X), Y(x)) = SEU(X), Y(x))
d =dd.
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Then d-d = d and d';d = d, but d # d'. The relation = has also been considered by
Hindley [11] for the A-calculus. A first interesting case of preequivalent derivations appears
when we try to attach some meaning to the simultaneous derivations of a given set C of
occurrences in a term /.

Definition 2.1.2.  Given a set C of occurrences in a term ¢, the set Z(1, C) of derivations

relative to C is defined inductively by
0 € R(t., C) (where o is the empty derivation),

dice R, C) ifce C/dand d € Z(, C).

If d € A(t, C) and C/d = ., then d is a complete derivation relative to C.
Intuitively, a derivation in Z2(, C) does nothing but derivations of residuals of C. It is
not clear whether all complete derivations relative to a given C end on the same term, and

furthermore occurrences in ¢ have the same set of residuals in the final term.
First, there is an easy case, i.e. when C is a set of disjoint occurrences, it is straightforward

to check that no derivation relative to C can be infinite and that all complete derivations
relative to C are preequivalent. Moreover, notice that the set ¢1/c: of residuals of an
occurrence ¢; by immediate derivation of ¢; is a set of disjoint occurrences. These two
remarks allow us to consider the following permutation lemma.

Lemma 2.1.1 (permutation lemma). Let ¢ S ¢, and t = 15, and let dy and d; be two
complete derivations relative to c\/cz in 1z and c2/c, in 1. Then cy;d; = c2,dh.

PrOOF. Let d; = ci:ds and dy = c2;ds. Let ¢ be in t. One has di = db and ¢/di = ¢/d> by
inspecting the possible relative positions of ¢, ¢1, and cz. O

TueOREM 2.1.1.  If C is a set of occurrences in a term (., then the lengths of all derivations
relative to C have an upper bound. And if d\ and d» are two complete derivations relative to
C, then d) = d2.

ProOE. If ¢ € C, let m(c, C) be the nesting level of ¢ in C (i.e. the number of prefixes
of ¢ in C). Let k = k(C) be the maximal nesting level in C and n(C) be the number of
occurrences in C at level i. Consider the k-tuple n(C) = (ni(C), ne-1(C), ... ,n1 (C)). Then
one checks that n(C/c) < n(C) for any ¢ in C when < is the lexicographic ordering on N k,
Thus all derivations in (¢, C) are bounded in length. Now suppose di and d; are two
complete derivations. By induction on n(C), we get d\ = do. The only difficult case is when
d, = cid; and d» = cz;d5. Let d7 and df be complete derivations relative to ¢1/c2 and ¢2/
c1. By the previous lemma, we have C/(c;d3) = C/(cadi) = C'. Consider ds complete
relative to C'. Then d{;d; and d%:;ds are two complete derivations relative to C/c; and C/
c1. By induction, one has d, = d4.ds and dy = d};ds. Thus, for any c in ¢, one gets c/(cy;dh)
= ¢/(c1;
d,. O

This theorem corresponds to the property E of Curry and Feys [8] shown for the A-
calculus, and shows that the simultaneous derivation of any set of occurrences in a term
makes sense. The order in which a set of occurrences is derived has no importance.
Derivations are bounded and one always gets the same expression. Furthermore, residuals
remain consistent. ‘

Thus, if C is a set of occurrences in ¢, we write (-5 ¢, or t is derived immediately into
by rewriting of C, if any complete derivation relative to C is of the form t > 1.
Corresponding derivations are written D:¢ = ¢’ and are sequences

~

dyds) = c/(c;dl;ds) = ¢/(ca;db) by use of the permutation lemma. Hence d =

c e Cy
Dit—=> 1 =5ty e =51, =1

’

when Cy, Cy, ..., Cy are sets of occurrences. Concatenation and residuals are written in the
same way as before. (Residuals can be consistently defined by the previous preequivalence
property.) Preequivalence is defined as in Definition 2.1 1. Let /(1) be the set of derivations
of set of occurrences starting from 7. Note that _7(7) can be considered as a subset of (1)
by identifying rewritings of occurrences to rewritings of singletons. By convention, we use
small d’s for elements of Z'(1) and capital D’s for elements of (7).
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Strictly speaking, equality of derivations in Z(z) is equality step by step of the rewritten
sets. However, it will be more convenient to identify steps of the form 15 7 with empty
derivations. For instance,

2 ¢ c @ c
> t—->hH=l—->HL—>>hH=I>

As previously, we write D = Ci; Cy; +--; C, when the initial term ¢ is assumed by the
context. Using the same notations for sets of occurrences and their derivations is justified
by the fact that 7 = 1, and 1 = 1, are equal as derivations iff C; and C; are equal as sets.

With this convention, the empty derivation can be noted &. Furthermore, the length | D|
of a derivation D is the number of nonempty sets rewritten in D.

We can now extend the permutation lemma to sets of occurrences, and this corresponds
to the lemma of “parallel moves” in [8].

LeEMMA 2.1.2.  If C, and C; are sets of occurrences in a term t, then Cy;(C2/Cy) = Ca;(C1/
Co).

ProOOF. Obvious by considering complete derivations relative to C; U C.. [

2.2 RESIDUALS OF DERIVATIONS AND EQUIVALENT DERIVATIONS. The previous lemma
was used by Curry and Feys [8] for proving the Church-Rosser theorem, which states that,
for any D; and D, in Z(¢), there are two derivations D; and Dj such that Dy; D] = D,; Ds.
The situation can be illustrated by Figure 4, where each elementary square is an application

of Lemma 2.1.2.
In fact, Lemma 2.1.2 shows that D} and D5 can be chosen such that D;; D} = D,;D5. But

first, we use this lemma to define residuals of derivations and then an equivalence on
derivations stronger than preequivalence.

Definition 2.2.1. If D\, D, € 2(t), then the derivation Do/ D, residual of D, by D, is
defined inductively by

@/Dl = @,
(Dy; C2)/ Dy = (D2/D1);(C2/(D1/D2)).
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Intuitively, the derivation D./D; is what remains to be done of D after performing D,
in order to close the Church-Rosser diagram, Figure 4. The fact that this definition makes
sense and the following properties are easily proved bv induction on | Dy} + IDs).

Lemma 2.2.1. If D\, D2 € Z (1), then

() D/D = D:

(2) (D3 D%)/Dy = (D2/ D1)(D2/(D1/D2));

(3) D2/(Dy;D1) = (D2/ D)/ Dy

(4) D]Z(Dg/Dx) = Dg:(Dl/Dz).

Note that clause (4) implies the Church-Rosser property. We can now define the
equivalence ~ as the consistency of residuals of derivations.

Definition 2.2.2.  Two derivations Dy and D; in Z/(1) are equivalent, written D, ~ Do, iff
D, = D, and D/D, = D/ D, for any D in Z(¢).

Remember that equality of derivations means equality of each nonempty set of occur-
rences rewritten by each derivation. Furthermore, we need not worry about empty steps
because, if D/D; = D/D; for any D, then the equality is true for any initial prefix of D and
thus for any steps of D/D, and D/D:.

It is obvious that ~ is an equivalence relation and forms a congruence for concatenation.
Moreover, if Dy ~ Do, then D; = D, by considering any D which derives only one
occurrence. Thus, the equivalence ~ is a refinement of =. The converse is not true. Take

Zs: Pp(x) = B(x),

d = ¢(x) = $(x),
d =dd.

Thend =d’,butd’'/d=dand d'/d' =D

The relation ~ is well behaved with respect to residuals.

LeMMAa 2.2.2. D] ~ D2 ﬂVD-Dl/D = Dz/D {ffVDD1/D ~ DQ/D

PrOOF. Suppose Di, D;, and D are in Z(¢). Then, by Lemma 2.2.1, one has D,/D =
D,/ D iff Di;(D/D:) = Dy(D/D). Suppose Dy ~ Ds. Then D, = D; and D/D, = D/Ds.
Hence if ¢’ is the final term of D and D’ € 2(¢’), then (D;D’)/D, = (D;D")/ D> implies
D’/(D,/D) = D’/(D:/D) by Lemma 2.2.1. Therefore Dy/D ~ Dy/D and D,/D = D/ D as
~ is a refinement of =. Suppose now that D,/D = D,/D for any D in Z(1). Then D, = D;
by taking D = @. Now, by induction on |D| and using Definition 2.2.1, one easily gets D/
D1 = D/Dz D

We now strengthen clause (4) of Lemma 2.2.1.

LemMA 2.2.3. If Dy, D2 € 2(t), then Dy;(D2/D1) ~ D2(D1/D2).

Proor. Consider any D in 2(f). We want to prove that D/(D:;(D:/ D)) =
D/(Ds;(D1/D2)). By induction on | D|, it is enough to prove for any set C of occurrences in
t that C/(D1;(D2/D1)) = C/(D2;(D1/D2)) (which is already known by Lemma 2.2.1) and
that (D1;(D2/D1))/C = Di(D3/D1) and (Dyg;(D1/D2))/C = D3(Di/D5) for some D! and
D% In fact we will take Di = D;/C and D% = D,/C. By induction on | D1|+]|D:| and with
Lemma 2.2.1, we only consider the case where D, = Ciand Dy = C; and C, and C; are two
sets of occurrences in t. Let Ci = C;/C and C5 = C»/C. Then, as C2/(Ciy(C/Cy)) =
C./(C;C%) = C3/Ci by Lemma 2.1.2, one has (Ci;(C2/C1)/C = C1;(C3/CY). Similarly
(C5(C1/C2))/C = C3(C1/Ch). 1

The equivalence ~ was given in terms of consistency of residuals of derivations. But two
other characterizations of it can be proved.

PROPOSITION 2.2.1. Dy ~ D: iff D1/Dy = D3/ D, = <.

PrOOF. Suppose D; and D; are in Z(1) and D ~ D,. Then by definition, we have
D/D, = D/D. for any D of Z(t). Thus D»/D, = D,/ D, = @. Similarly Dy/D; = D:/Dy =
@. Conversely, suppose D1/ D; = D2/ D, = . By the previous lemma, one has D//(D::(D:/

D)) = D/(Ds(Dy/Dy)). Hence, by an application of Lemma 2.2.1, we get D/D: =
D/D,. [
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PROPOSITION 2.2.2.  Let = be the least relation satisfving

(1) Ci(Co/Cr) = Ci(C1/Co) if Cy and Csy are sets of vccurrences in a term I.

(2) Di;Dy;Ds = Dy:D3y; Dy if Dy = D,

(3) D1 = D, if D\, = D3 and D3 = D; for some Ds.

Then D, ~ D; iff D, = D:.

Proor. First, if D; = D,, then it is easy to show D, ~ D, by Lemma 2.2.3, since the
equivalence ~ is a congruence for concatenation and is transitive. Conversely, let D, ~ Ds.
Then D,/D, = D,/D, = & by Proposition 2.2.1. Moreover, for any D, and D;, one has
obviously Dy;(D2/D:) = Ds;(D1/ D). Now, as D, ~ D,, we get D, = D; by the construction
of Figure 4. [

Thus, the equivalence ~ corresponds to the least congruence for the concatenation
generated by the parallel moves of Lemma 2.1.2. In fact, it is possible to generate this
congruence only by the permutation lemma, Lemma 2.1.1. We can now name the relation
~ as the equivalence of derivation modulo permutations.

PROPOSITION 2.2.3.  The equivalence ~ is left cancellative. That is, if D;D, ~ D; D, then
D, ~ D,.

Proor. Obvious from Proposition 2.2.1. [

2.3 THE LATTICE OF DERIVATION CLASSES. We now define a preorder on derivations.

Definition 2.3.1. D, < D, iff AD-(Dy;D) ~ D,.

PROPOSITION 2.3.1.  The relation < is a preorder, i.e. it is reflexive and transitive, with ~
for associated equivalence, i.e. D, < Dy < D, iff D, ~ D>. Moreover D, < D, holds iff D,/ D,

ProOF. D = D since D ~ D. Assume D; < D; < D;. Then there are D] and D3 such
that Dy;D1 ~ D; and Dy; D% ~ Ds. Hence Dy;Di; D3 ~ D3 and D, < D3. Now suppose D;
=< D,. Then Dy;D ~ D, for some D. Thus Lemma 2.2.1 and Proposition 2.2.1 imply (Dy; D)
/Dy = (D1/Ds);D’ = ,. Therefore D,/D, = @.

Conversely, if D1/D; = ,, one has Di;(D2/D:) ~ D, by Lemma 2.2.3, i.e. D; < D,. Now
if D, = D, < D,, we have D1/D; = Dy/D; = & and thus D, ~ D, by Proposition 2.2.1. []

Notation 2.3.1. Let [ D] be the equivalence class of D and let [Z(¢)] be the set Z(r)/~.

THEOREM 2.3.1.  The set [D(t)] with the quotient ordering < is an upper semilattice. Two
elements [ D:] and [ D;] have the l.u.b. (least upper bound)

[D1;(D2/ D1)] = [D2;(D1/ Dy)].

ProOF. One has D, < Dy;(Dy/D,) and D; < Ds;(D:/D,). Furthermore, let D; < D and
D; = D. By Proposition 2.3.1, we have D,/D = Dy/D = ,. Lemma 2.2.1 implies (D:;(D2/
/Dv))/D = (D,/D);D’ = D’ where D" = (D./D,)/(D/D:). But D’ = D,/(Dy;(D/Dy)) =
D;/(Dy(D:/D)) = (D2/D)/(D1/D) by Lemmas 2.2.1 and 2.2.3 and Definition 2.2.2. Hence
D’ = & and Dyy(D:/D:) = D by Proposition 2.3.1. [

It is also shown in [3] that [D;] and [D,] have a g.1.b. (greatest lower bound). Note that
Theorem 2.3.1 can be expressed as a Church-Rosser property way by “for any D; and D;
in 9(1), there is a minimum [ D] such that D; = D and D, < D.”

2.4 STANDARD DERIVATIONS. Standard derivations, which work in an outside-in way
and (by convention) from left to right for disjoint occurrences, are introduced in [8]. The
standardization theorem in [8] allows any reduction to be standardized. Although there
can be several standard derivations between two given terms, each equivalence class
contains a unique standard derivation. This will be our improved standardization theorem.

Definition 2.4.1. For ¢ = s(t) and di:t; — 1, let s(d) = ((s, 1)-dv); ((s, 2)+-do); -
((s, k)-dr) where k = p(s). The derivation d is standard if either d = €;d’ and d’ is standard,
or d = s(d) and d; is standard for all 7.

Notation2.4.1.  The set C of occurrences is internal if e & C. The derivation D is internal
if it derives only internal sets. Let €* = ¢€; €; ---; €.

LemMA 2.4.1 For any C, there are n and C’ internal such that n = 0 and ¢ ~ €",C’.
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Proor. By Theorem 2.1.1. since we can consider any outside-in complete derivation of

c. O

THEOREM 2.4.1. There is a unique standard derivation in each equivalence class of

[Z0)].
PROOF. Existence (Mitschke [17]). Consider any derivation D:r = 1’. With Lemma
2.4.1, we can write D = Cy; Cy; +-+; C, where either C, = {€} or C, is internal for all i. Let

(D) be maximal such that D = D’;"”;D” with D" internal. Let n(D) be the number of
internal C, preceding some e-step. Formally n(D) is the number of i such that C; is internal
and 3j, 1 =i<j=<n, such that C, = {€}. Consider the triple (||!'||. n(D), [(D)). We have
two cases. First, D = €"?’; D, with D, internal. By induction on ||¢’||, we get D> ~ D3 where
D} is standard and D ~ €P;D%. Second, D = Dy:C;é"?; D, with C and D; internal and
/(D) > 0. But C cannot create € and C;e is a complete derivation of C U {e}. Hence Cie ~
€?;C’" with C’ internal by Lemma 2.4.1 and p > 0 since € € C U {¢}. Therefore D ~ D’
with D’ = Dy;;e”,C’; €27 D,. Then n(D’) < n(D) if C' = @ or (D) = 1, and n(D’) =
n(D), (D) < (D) if C’ # & and /(D) > 1. By induction D’ ~ D” where D” is standard.

Uniqueness. Letd,d":t— t’ be standard such that d ~ d’. We prove d = d’ by induction
on (|d| + |d'|, ||t']|). The induction works easily when d = s(d), d’ = s(d) or d = €;d\. d’
= ¢,d}. Now supposc d = €;,dy and d’ = s(d’). Then s = ¢ € ® and €¢/d’ = {€} # D which
contradicts d = d’ and thus d ~ 4’. [J

2.5 LaBELED DERIVATIONS. We use Vuillemin’s labeling system [25] to mark occur-
rences along derivations. (See [15] for the A-calculus.) Given an alphabet E, let the set E*
of words on E be set of labels. A labeling i of a term ¢ is a mapping u:€(®, 1) — E*. A
labeling v of the program X is an N-tuple (vy, »2, ..., vn) of labelings »; of the 7,. Given a
labeled term (¢, j1) and an immediate derivation d:1-> ¢’ with ¢ € €(¢;, 1), the corresponding
step of labeled derivation d:(t, u) S (t', ) is defined by

w(c’) = u(cr) ifc¢’ €ci/e,
u(c’) = u(cyvi(c1) if ¢ creates ¢’ and ¢’ = c-cl.

For example, let 1 = ¢(¢(x)) and Z:p(x) = flx, ¢(¢(x))) and let us write labels as
exponents of occurrences in terms. Suppose (Z, r):p(x) = f(x, %(¢°(x))) and (¢, p) =
$°(¢%(x)). Then (1, p) — fip*(x), $°“(&”(¢°(x)))). )

Notation 2.5.1. We write d =, d’ if d and d’ are of the form d, d":(t, p) —(¢', p).

The permutation lemma, Lemma 2.1.1, also holds for labeled derivations.

LEMMA 2.5.1.  If c1, ¢z are in t, then ci;(ca/c1) =, ca;(c1/c2) for all p.

ProoF. By inspection of cases. []

PROPOSITION 2.5.1.  If di ~ d>, then d\ =, d; for all p.

PrOOF. Obvious from Lemma 2.5.1 and Proposition 2.2.2 built on Lemma 2.1.1 instead
of Lemma 2.1.2. [J

Definition 2.5.1. Two labels a and 8 are incompatible, written «|g, iff there are no y
and 8 such that ay = B6. A labeling p of a term ¢ is consistent if the labels u(c) and u(c’) are
incompatible for any pair ¢ and ¢’ of nested occurrences in ¢. A labeling » of X is consistent
if all the »; are consistent.

With our notation, if u is consistent and ¢ < ¢’ then u(c)|u(c’). We remark that «|f8
implies ay|B8 and ya|8B for any y and 8. The consistency of labelings is a technical
condition used to connect labeled terms and the equivalence ~.

LEMMa 2.52.  If u, v are consistent and if (t, ) —> (¢, i), then | is consistent.

PrOOF. By inspection of cases in one step of labeled derivation. []

PROPOSITION 2.5.2. If u, v are consistent, then for any d there is one and only one
standard d’ such thatd =, d’.

Proor. By Theorem 2.4.1, for any d, there is a standard 4’ such that 4 ~ d’. Hence
d =, d’ by Proposition 2.5.1. Now suppose that d and d’ are standard such that d =, d".
More precisely, let d, d':(¢, p) S (¢, W) We prove d = d’ by induction on (|d| + |d'|,
llel). If d = s(d), d’ = s(d’) or d = €d,, d’ = €d}, the induction works easily by using
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Lemma 2.5.2. Assume now that d = €,d; and d’ = s(d’). We have s = ¢ € ® and ¢ =
B(t). = o(t'). Along d’, we get p'(€) = u(e). But d:(o(t), p) > (7[t/x], w) = (1, u).
Consider any ¢, in 7[t/x]. Either ¢, € ¢/e with ¢ internal to some 1 and pi(c1) = p(c)|p(e)
by the consistency hypothesis, or ¢, is created by € and pu(e) < u(cy). Therefore there is no
¢ in 7{t/x] such that pi(c) < p(e). Hence no occurrence in ¢’ can have p(e) for a label, which
contradicts u(e) = p'(e). [J

THEOREM 2.5.1. Dy ~ Dy iff Dy =, D, for all u, iff D1 =, D: for some consistent p, v.

Proor. Denote the above clauses (1), (2), and (3), respectively. Then (1) = (2) by
Proposition 2.5.1, (2) = (3) by instantiation, and (3) = (1) by Theorem 2.4.1 and Lemma
252, 0O

COROLLARY 2.5.1. Dy = D: iff, for all p, v (or for some consistent u, v), one has
Dyi(t, p) = (11, ), Doi(t, p) = (ta, 2), and (t, 1) = (f2, o).

For the case of the A-calculus, all theorems and propositions of Section 2 are valid (see
[15]). However some proofs, such as Theorem 2.1.1, are more complicated.

3. Familes of Occurrences and f-Complete Derivations

3.1 FaMILY OF OCCURRENCES. In order to compute in an “optimal” way, we must
share duplicated objects (see [18, 25]). Sharing residuals is certainly necessary, but not
sufficient, as shown by the following example. . c

Let Z:¢u(x) = fix, x), ¢2(x) = glea(x)). Let d:t = di(da(x)) = flge(x), ¢2(x)) —
fg(2A(x)), gl¢pa(x))) = t" where C = {(f. 1), (f. 2)}. The two occurrences c1 = (f, 1)(g, 1)
and ¢; = (f, 2)(g, 1) in ¢’ are not residuals of the same occurrence in a term appearing in
d. But it is easy to see that they have to be shared. This can be approached in two ways.
The first approach used by Vuillemin [25] is to share them because they have the same
label in any labeling of d. Intuitively, residuals of shared occurrences are shared but
occurrences are also shared which are created in the same way by shared occurrences. The
second approach, used here, does not involve labels. There is a permutation d’ of d, namely

4t = $i($a(x)) > G1(g(d2(X)) > fg(De(X)), g2(x)) =1

such that ¢’ = (¢, 1). Then ci, c. are indeed residuals of a unique occurrence ¢ =
(é1, 1)(g 1) in ¢1(g(¢2(x))), and therefore can be shared in d. The two approaches will be
shown equivalent. Thus the behavior of labels will be explained within the classical

formalism of residuals.
Notation 3.1.1.  From now on, the derivation-occurrence pair (D, c) is an abbreviation

for D:t <> ¢’ and ¢ in ¢’. We also consider pairs (D, C) where C is a set of occurrences in
t.

Definition 3.1.1. We consider the relations < and ~ (read “has for residual” and
“belong to the same family as™) over pairs (D, c) defined as follows:

(D1, ¢1) < (De, ¢2) if 3D, (Dy;D) ~ Dy and ¢; € oo/ D;
(Dl, C1) ~ (D2, Cz) if (Dl, Cl) = (Dz, Cz) or (Dz, C‘.Z) = (Dla C), or
B(D, C), (D1, C1) ~ (D, C) ~ (DQ, CQ).

Hence the second relation is the symmetric and transitive closure of the first one. It is

straightforward to check that < is a preorder and ~ is an equivalence.
PROPOSITION 3.1.1.  The two above relations are consistent with the equivalence of

derivations with respect to permutations. Namely, if D, ~ D1 and Dy ~ D5 we have

(D1, 1) < (Da, ) iff (D4, c1) = (D3, ¢2) and
(D]. C]) ~ (Dz, Cz) ![f(Dll. C1) ~ (DQ. (‘2).
PROOF. Obvious since (D}, D) ~ Dy when D, ~ Di. D, ~ D’ and (Dy: D) ~ D.. U]
PROPOSITION 3.1.2.
(1) (D1, ¢1) = (D, ¢2) iff Dy = Dy and 2 € ci1/(D2/ Dy).
(2) If Dy~ Dyand if (D, ¢) = (D, ¢) for i = 1.2, then ¢, = c..



164 G. BERRY AND J.-J. LEVY

3) If (D1, ¢1) = (D3, ¢2) and Dy = D < Do, then there is a unique ¢ such that (D1, ¢,) <
(D, C) = (DQ, CQ).

@) If (Di, ¢) = (D, ¢) for i = 1, 2, then there are a unique ¢’ and some D’ such that
D’ ~ Lub. ({D:1],[D:]) and (D;, ¢;) = (D', ¢’) = (D, ¢).

Proor. Obvious once we remark that D, ~ D, implies ¢/D, = ¢/D; and that we have
by definition ¢; = czif c Ec;/D and ¢ € c/D. U

Hence (D, c1) ~ (D, ¢) iff ¢ € ¢;/D, i.e. occurrences are in the family of an initial
occurrence iff they are residuals of it. But also, created occurrences can be in the same
family. We will indicate what is the meaning of the family relation for them. We show
that, in a given family, there is only one (4, c) such that 4 “generates” c. This element is
exactly the one for which |d| is minimum. Furthermore, two occurrences will be in the
same family iff they are created in the same way.

Definition 3.1.2. The derivation d generates (d, c) iff d = @ or d = dy;c; with d,
generating (dy, ¢1) and c; creating c.

We now adopt some technical but convenient notations concerning derivations in
subterms.

Notation 3.1.2. Given c and d = cy; co; -++; ¢z, we use the notation c¢-d for denoting the
derivation c-c¢i; ¢+ ca; -+-; ¢-cr (When it exists). Let (d, ¢)*(d’, ¢’) = ((d;(c-d")), (c-c’)). Let
d’, ¢\, c)=(d", c")iff (d, ¢c) = (d’, c')*(d”, c").

Note that if 4 generates (4, ¢) and if (d;c) = (¢’;d’), then d = ¢’-dy and ¢ = ¢’- ¢, for some
d, and c,. Note also that (d, c)x(d’, ¢’) is defined iff d and d’ are of the form #,—> #; and
t7 = t5 and 1} is the subterm of ¢ at occurrence ¢. Furthermore, the operation * is
associative. Moreover, if ¢ creates ¢’ and if d’ = (d;c), then (d, ¢)\(d’, ¢’) is defined (see
preliminaries). We can now express an operation on any pair (d, ¢) which consists in
extracting from d the steps contributing to the creation of c.

Definition 3.1.3. The canonical representative of (d, c), written (d, c)o, is inductively
defined by

(D, ¢)o = (D, ¢),
d,co= (' c1)o ifd=d';c’and c € c1/¢,
(d, ¢)o = (d’, ¢")o*((d’, ¢')\(d, ¢))if d = d’;¢’ and ¢’ creates c.

We now prove that this definition is consistent with the equivalence of derivations

modulo permutations.
LemMA 3.1.1. If ¢; and c; are in a term t, then, for any c, one has ((c1;(c2/c1)), €)o =

((czs(e1/c2)); €)o.
ProoF. By inspection of cases. []
This lemma is stronger than the permutation lemma, Lemma 2.1.1, because not only

residuals but also created occurrences behave well with respect to permutation.
Notation 3.1.3. The generator gen(d, c) of ¢ by d is defined inductively for any pair (4,
¢) by
gen(Q, ¢) =,
gen((d’;c’), ¢) = gen(d’, a1) if c € a1/,
gen((d’;c’), ¢) = gen(d’, ¢’) if ¢’ creates c.

Thus, if d:t = 1’, then gen(d, ¢) is in 1.

LEMMA 3.1.2.  For any pair (d, c), if d = (d;d>), then

(1) (d, c)o = (d1, gen(ds, ¢))o* (D, gen(d:, c))\(d2, c)o),

(2) (d, c)o = ((d;d3),c")o if (da, €)o = (3, ).

ProOF. Obvious by induction on |d;| and application of Definition 3.1.3 and Notation
3.13. 0

PropoSITION 3.1.3.  If'd, ~ d,, then (d,, c)o = (d2, C)o.

Proor. By the remark following Proposition 2.2.2, it is enough to consider the case
when d, = (d';cii(¢cz/c1);d”) and dy = (d'.c2i(c1/¢2);d”). Then Lemmas 3.1.1 and 3.1.2 give
the result. [J
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Now, we can speak consistently of (D. c¢),. where each step of D consists in the
simultaneous derivation of a set of occurrences, since all derivations designated by D are
equivalent. Furthermore, canonical representatives are consistent for the family relation.

ProrosITION 3.1.4 [f(D], C1) ~ (D2, c2), then (Dl, C])o = (Dg, C2)o-

PrOOF. It is enough to consider (D, ¢1) < (D2, ¢2). Then by definition, there is D such
that D;;D ~ D; and ¢ € ¢;/D. Hence, by Lemma 3.1.2 and Proposition 3.1.3, one gets

(Ds, ¢2)0 = ((Dy; D). ¢2)0 = (D1, ¢1)o. O

We now prove the converse of Proposition 3.1.4 by showing (D, ¢) ~ (D, ¢)o for any
(D, c).

Definition 3.1.4. If D:t 5 ¢’ and c is in ¢, then ¢ and D are disjoint iff D = (Cy; Cy; ++;
C,) and ¢, C; are disjoint for any i such that | <i=<n. Thus ¢/D = {c}.

LemMa 3.1.3.  If ¢, D are disjoint and ¢, € ¢/ D, then ¢, and D/ D, are disjoint. Moreover
¢1/(D/Dy) = {¢1} and ¢, € ¢/(D1/D).

Proor. By induction on |D|. The only nontrivial case is when D = C. By hypothesis
we have ¢ and ¢’ djsjoint tor any ¢’ in C. As residuals of disjoint occurrences are still
disjoint, one has ¢; and C/D, disjoint tco. Thus ¢,/(C/D1) = {c1}, i.e. ¢1 € ¢/(D1;(C/Dy)).
But since Diy;(C/D)) ~ Cy(D)/C) and since residuals are consistent with respect to
permutations, we have ¢; € ¢/(D;(D1/C)), i.e. c1 € ¢/(D1/C). |

PROPOSITION 3.1.5.  For any (D, ¢), there is some (D1, c1) such that (D, ¢) < (D, ¢1) and
(D, ¢)o = (D, ¢1). Thus (D, ¢)o ~ (D, ¢).

Proor. Consider any singleton derivation d equivalent to D. Then (D, ¢)o = (d, ¢)o by
Proposition 3.1.4. Use an induction on |d|. If d = &, then (d, ¢)o = (4, ¢) = (d, ¢). Now
suppose d = ¢’;d’. By induction, there is (D1, c1) such that (d’, ¢)o = (D, c1) and (@', ¢)
< (D1}, ). Let (do, co) = (d, ¢)o and (do, co) = (d’, ¢)o. If we use Lemma 3.1.2, there are two
cases.

First, if ¢’ creates gen(d’, ¢), then dy = ¢’;d5 and ¢y = cb. Therefore, if D\ = ¢’;D' and
¢, = ¢, we have (do, co) = (D1, ¢1) and (d, ¢) = (D1, c1).

Second, if ¢’ does not create gen(d’, ¢), then gen(d’, ¢) € cz/c’ for some c,. Let ¢ =
gen(d’, ¢). By Lemma 3.1.2, we have dy = ¢5-d0, ¢o = chec and do = ¢2-dg, co = c2-C4.
Hence, as cy/c’ is a set of disjoint occurrences, the derivations c5 -dg are disjoint for all ¢
in co/c’. But these derivations form do/c’. Therefore dj < do/c’. Moreover co and ds = (do/
¢’)/dj are disjoint. Hence ci € c/ds. But by the permutation lemma, we have c’dods ~
doy(c’/dy). Thus ((doy(c’/do)), co)o = ((¢';db), ct)o = (do, co) by Lemma 3.1.2. But as d
generates (do, ¢o), we have (do, co)o = (do, ¢o). Then again by Lemma 3.1.2, we get o € co/
(¢’/do). Let DY = Di/ds. Since (db, c¢b) < (D1, c1), we have ¢/ € co/D1 by Proposition
3.1.2 and therefore ci € c¢t/(D7/ds) by Lemma 3.1.3 since cj and ds are disjoint. Again by
Lemma 3.1.3, we get ¢} € ¢1/(ds/D?). In short, if ¢; = ¢} and D, = ¢’;D1;(ds/ DY), then (d,
C) = (D]., C1) and (do, C()) = (D], (,‘1). D

THEOREM 3.1.1. (D, c1) ~ (D2, ¢2) iff (D1, €1)o ~(Da, c2)o.

PrOOF. Obvious from Propositions 3.1.4 and 3.1.5. [J

PROPOSITION 3.1.6.  For any (D, ¢), the element (D, c)o = (do, co) is the only one in the
family of (D, ¢) such that do generates (do, co). Furthermore, it is the only one in the family of
(D, c¢) such that |dy| is minimum.

Proor. By definition, if dy generates (do, co), then (do, co)o = (do, co). Thus, Theorem
3.1.1 gives the first part. Furthermore, if (do. co) = (d, ¢)o and (do, co) # (d, c), then |do| <
|d| by Definition 3.1.3. Again, Theorem 3.1.1 gives the second part. []

The next proposition gives the key property for showing that the complete derivations
(or derivations with sharing) form a sublattice of the lattice of derivations. This will be
crucial in proving the optimality results. (The remark following Proposition 3.1.2 was
indeed a special case of this proposition.)

ProposITION 3.1.7.  Let (D, ¢)o = (dv. ¢v). Then d, = D iff (dv, co) = (D, ¢).

Proor. Corollary of Proposition 3.1.2 (clause (1)) and Propositions 3.1.5 and 3.1.2
(clause (4)). O
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We now show the connection between families and labels.

Definition 3.1.5. Given any term ¢, the labeling u is elementary if 1:€ (6. 1) — E. ie. the
range of u is the set of letters E.

LemMma 3.1.4.  For any label o, if 1 and v are injective elementary labelings. there is at
most one (d, ¢) such that d:(t, u) — (t', ). d generates (d, ¢), and p/(c) = a.

ProOOF. By induction on the length of a. [

THEOREM 3.1.2.  Let Dy = (1, p) = (1, ) for i = 1, 2. Then (D\. ¢;) ~ (D c2) iff w(e)
= po(cz2) when p. v are injective elementary iff pi(c1) = pa(cz) for all p.

PrROOF. First (Dy, ¢1) ~ (D, c2) implies pi(c1) = uz(cz) by the definitions. The converse
follows from Lemma 3.1.4 and Theorem 3.1.1.

A more general form of Curry’s Property E (Theorem 2.1.1) expresses that complete
derivations relative to a finite set of families are upperbounded in length and equivalent
(see [15]).

3.2 COMPLETE DERIVATIONS

Definition 3.2.1. The set C of occurrences is f-complete with respect to D, in short
(D, C) is f~complete, iff C = {c'|(D, ¢') ~ (D, ¢)} for any c € C.

Definition 3.2.2. (D, C) is d-complete if C is maximal such that there are D', D”. ¢ with
D~ D’;D” and C =c¢/D".

Definition 3.2.3. (D, C) is l-complete if C = {c¢’|u'(¢") = u'(c)} when ¢ € C and
D:(t, ) = (£, ).

Definition 3.2.4. The derivation D is f~complete (respectively d- and /-complete) if
D # @ or D= Dy;C when D, and (D, C) are f~complete (respectively d- and /-complete).

LemMma 3.2.1.  If D is f~complete, then (D, c)o < (D, c) for any c.

Proor. *By Proposition 3.1.7, it is sufficient to prove dy < D if (D, ¢)o = (do, co). We use
an induction on |D|. If D = &, then dy = & < D. Otherwise D = D;;C; with D, and
(D1, Cy) f~complete. If ¢ € ¢;/C), then (D, ¢)o = (D1, ¢1)o and by induction dy = D, < D.
Otherwise, there is only one ¢; in C; which creates c. Let (do, ct) = (D1, ¢1)o. One has
do = do;co by Definition 3.1.3. But, as (D,, C) is f~complete we get (D1, ¢1)o = (D1, ¢2)o for
all czin C, by Theorem 3.1.1. By induction d < D,. Hence C, = ¢/(D:1/d5) by Propositions
3.1.7and 3.1.2.Sodo = D. O

PrOPOSITION 3.2.1. D is f~complete iff D is d-complete iff D is I-complete when the initial
labelings are injective and elementary.

PrOOF. Obvious with the above lemma and Theorem 3.1.2. []

Notation 3.2.1. We shall abbreviate f- (d- I-) complete derivation into complete deriva-
tion. We denote by # Z(r) the set of complete derivation starting at ¢.

PROPOSITION 3.2.2. The set [FD(t)] = F D(t)/~ with the < ordering is a sublattice of
[D(D)] with the same L.u.b. operation.

PrROOF. Let us remark that if (dy, co) = (D2, c2)o and dy < D, < D,, then there is a ¢,
such that (do, co) = (D1, ¢1) = (D, ¢2) by Propositions 3.1.2 and 3.1.7. Suppose now that D,
D, are complete; then it is obvious by induction on |Ds| that Di;(D./D,) is complete for
any D, with the use of Lemma 3.2.1. [

Notation 3.2.2. Let the family [D, c] be the equivalence class of (D, ¢) with respect to
~. Notice that the notation [D, C] is unambiguous when D;C is complete. Let .% (D) be
the set of families of occurences derived in D.

The next result shows that a family is derived at most once in a complete derivation.

PROPOSITION 3.2.3.  If Dy;Cy;D2; Co; Ds is complete, then

[Dh Cl] 7 [Dl;cl;DZ, Cz]-

Proor. By Lemma 3.2.1 and Proposition 3.1.7. [J i
Definition 32.5. For any d € 2(1), the complete derivation d associated with 4 is

defined by

&,
d.C, where ¢ = {¢’|(d, ¢) ~ (d, ¢')}.

A
I

i

c
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It is straightforward that d is complete, that d < d. and that every complete D & F (1)
is equal to d for some d € Z(t). Note that d ~ d’ does not imply d ~d".

3.3 OUTERMOST COMPLETE DERIVATIONS. As announced in the Introduction, the cor-
rectness problem leads us to consider outermost derivations. We summarize here the
syntactic properties of outermost derivations that we shall need.

Definition 3.3.1.  An occurrence ¢ in ¢ is outermost if it is not contained in another
occurrence ¢ in t. A derivation D € Z(t) is outermost iff at least one outermost occurrence

is derived at each step of D.
The main property of outermost occurrences and outermost derivations are the following

ones.
LEMMA 3.3.1. Let ¢ be outermost in t; let t—C» t" where c & C. Then ¢/C = {c} and c is
outermost in t’.

PrOOF. Straightforward. [

PROPOSITION 3.3.1. Let d be outermost. Then d < D implies F(d) C # (D). Moreover
F(d) = F(a).

PrOOF. By induction on |d|. Let d = di;c. Then #(d)) C #(D) since dy = d = D.
Furthermore ¢/(D/dy) = &. Hence D/dy = D1;C, D with ¢ € C by Lemma 3.3.1. And
[d, ¢] = [(d;;D}), c]. By Definitions 2.2.1 and 3.1.1, one has [(di;D?), ¢] € % (D). Thus
F(d) C F(D). Now consider D = d. Asd < d, we get #(d) C #(d). And #(d) C #(d)
is obvious by the definition of d. []

PROPOSITION 3.3.2. If d is outermost, then d is outermost.

ProOF. By induction on |d|. Let d = di;c. We have two cases. First d < di and #(d)
C () by Proposition 3.3.1. Then d = d; by Proposition 3.2.3, and d is outermost by
induction. Second ¢/(d1/d.) # @. Then d = dy:C where ¢ € C and c is outermost by Lemma
3.3.1. Hence d is outermost.

PROPOSITION 3.3.3. Let d be outermost. Then d < d’ is equivalent to F(d) C F(d).

ProoF. Thatd < d’ implies #(d) C %#(d’) is shown as in Proposition 3.3.1. Conversely,
assume #(d) C F(d’). Then F(d'\d/d’)) C F(d') U F(d) = F(d'). But d’;(d/d’) is
complete by Proposition 3.2.2. Hence d/d’ = @ by Proposition 3.2.3. [J

4. Minimal and Optimal Computations

4.1 SEMANTICS OF RECURSIVE PROGRAMS. We first study infinite derivations. We then
define interpretations in terms of complete F-algebras and eventually we define the
computations of a program.

Definitions: Ordered Sets. We consider partially ordered sets (D, C, 1) having a least
element L. A totally ordered subset of D is called a chain. When they exist, Lu.b. and g.L.b.
are denoted by the symbols U and N. A subset V of D is directed iff it is nonempty and
satisfies Va, B € V, 3y € Vsuch thata C yand S C y,and Disa complete partial order,
or is a c.p.o., if every directed set V C D has a Lu.b. or limit UV. Two elements o, 8 € D
are joinable, written « 1 B, iff Iy € D such that « C y and 8 C v, and a c.p.o. D is
consistently complete if any two joinable elements « and B8 have a Lu.b. a U B; then any
subset X C D hasa glb.NX =U{a|VxE X, a C x} since the latter set is directed.

A mapping h: D — D' is monotonic if a C B implies h(a) C’ h(B). If D and D’ are c.p.0.’s,
a monotonic mapping h: D — D’ is continuous iff h(UV) = UA(V) holds for every directed
V C D (note that the set U(V) is directed).

Definitions: Completions of an Ordered Set [4]. Let (D, C, L) be an ordered set. A
completion D” of D is a complete set containing D (up to monotonic injection) and such
that for any complete D', every monotonic mapping h:D — D’ extends in a unique way
into a continuous mapping 4”:D” — D’. All completions are equal up to unique isomor-
phism. A standard completion is the completion by ideals: Call ideal a directed set V C D
such that Va € V, VB € D, B C « implies B € V, and let D” be the set of ideals of D
ordered by inclusion. Then D” has least element { 1}, each « € D is represented by the
ideal {8 € D|B C a }, and the Lu.b. of a directed set ¥V C D~ is the union of the elements
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of V. Every monotonic mapping h:D — D’ extends in a unique way to a continuous
mapping h™:D* — D', where h™(I) = U{h(d)|d € I}.

We keep the same ordering denotation C for a completion D" of D.

Definitions: Infinite Derivations. Let -/ *(1) be the set of infinite set derivations from 1.
and .7 27 (1) be the set of infinite complete derivations from ¢, defined as in Section 3.2.
We denote by & a (singleton) infinite derivation, and by § its associated complete derivation
(see Definition 3.2.4). We denote by A an arbitrary infinite set derivation. Let A, be the i
first steps of A, and define A <. A" to hold iff ¥i = 0, 3j = 0 such that A, < Aj. Then =.
is a preorder, and we denote by ~. its associated equivalence and we write [A] for the class
of A and [Z *(1)] for & *(t)/~-.

Call a complete lattice a lattice L such that any proper subset of L has a g.L.b. and a Lu.b.

PROPOSITION 4.1.1  The structure ([27(1)], <.) is a completion of (:/(1), =) and is a
complete lattice, of which ([F 2 7(1)], =) is a sublattice.

Proor. Notice that [Z*(¢)] contains () and that the relation < is the restriction of
<. to Z(t). Moreover we have from the definitions A = U{Ax|k = 0} and the first part of
the proposition follows. Using the completion by ideals, it is easily seen that a completion
of an upper semilattice is a complete lattice, which shows the second part. The third part
is obvious from Proposition 2.2.3. [

We denote therefore <. and ~. by < and ~. It is easy to see that the full or Kleene
derivation K(t) (see [20]), which consists in deriving at each step all occurrences of unknown
function symbols, belongs to the maximum class of [Z(7)].

Definitions: Ordered and Complete F-Algebras [20]. An ordered (complete) F-algebra is
an F-algebra I = (D, C, _L,ﬂ) where Dy is ordered and has least element L, and the
mappings f are monotonic (continuous). A morphism of ordered (complete) F-algebras is
a morphism 4 of the underlying F-algebras which preserves L (i.e. satisfies §(1) = L), and
is monotonic (continuous). A free ordered (complete) F-algebra generated by V is such that
for any ordered (complete) F-algebra /, any mapping »:v — D; extends in a unique way
into a morphism of ordered (complete) F-algebras (see “The Free F-Algebra” in Section
1.3). To construct a free ordered F-algebra Mq(F, V'), consider a new nullary symbol @
and order M(FU{Q}, V) by the least ordering < such that £ < a for all a and f{a) < fla)
for all f € F and a, a’ such that a < a’ (this ordering can be seen as the “initial segment”
ordering on trees; see the Introduction). We let Mg = (M(F U {2}, V), <, &, f,) and
denote by a, @/, ... the elements of M. It is easily seen that the completion by ideals Mg
= (M(FU {Q}, V)", <, Q, f7) is a free complete F-algebra generated by V. Its elements
are denoted by 4, 4’, ... and can be viewed as infinite trees written on F, V,  and ordered
by the “initial segment” ordering. The functions /7 are simply denoted f.. For any 4 €
Mg, complete F-algebra I, and v:¥V — Dy, (I, v)A4 is the value of 4 when the f, are
interpreted by the f7, the x, by the v(x,), and £ by L.

Definitions: Symbolic Value of a Term. We associate with any t € M = M(F U @, V)
its symbolic value w(r) € Mo(F, V') by replacing all occurrences of elements of ® by {:

(1) w(xl) = X,,

(i) w(f(t) = f(w(t)) for all f€ F,

(iil) w(gp(t)) = Q for all € .

LemMa 4.1.1. Ift 5 0, then w(f) < w(l').

PrOOF. Obvious by induction on the length of the derivation and on the size of ¢, a

Definitions: Programs and Values of Derivations. We call program a triple P = (Z, I,
v) where X is a program scheme, / is a complete F-algebra called the interpretation, and
v:V — Dy is a data mapping. If P = (Z, I, v) is a program and if 1 € M, then the set
{(I, v)w(t’) |t > '} is directed in D; by Lemma 4.1.1 and the Church-Rosser property. This
set has a limit P(¢) in Dy, called the value computed by P on t. For I =Mg and v:x — x, we
write 2(1) = (2, M§, v)(1) = U{w(t')|1 - t'} for all (1) the symbolic value computed by 2
ont. Let Aito— 1y — 1y — - € Z%(t). Then the set {(, v)w(1,)|i € N} is a chain in Dy, and
has a limit (/, »)A called the value computed by A in (I, v). As before, the symbolic value
computed by A is Z(A) = U{w(1)|i € N} € M.
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Given P. A and a € D;, we say that A computes o if o C (I. v)A. We call correct
(respectively symbolically correct) any A which computes P(1) (respectively Z(1). It is clear
from a remark above that the Kleene derivation K(z) is always correct.

4.2 Least COMPUTATIONS IN M5. We now restrict our attention to the symbolic
interpretation Mg, and first prove the existence of least computations of every approxi-
mation of 2(¢).

Definition 4.2.1. Lettr € M and let A € M5 satisty A < Z(1). Then A € Z7(1) is least
for A iff it computes A and satisfies A = A for any A" which computes 4.

LemMa 4.2.1. If Z(t) # Q. then there exists a least n = 0 such that w(€") # §. Every
standard or outermost derivation d € Z(t) such that w(d) # Q is of the form d = €"; f(d\. d.

o, di) where t S5 f(t,, ts, ..., tx) and d, € Z(1) for | i< k.

PrROOF. If 3(f) # R, then there exists a standard d € Z(r) such that w(d) # Q. If 1 = f(t)
then n = 0 satisfies the conditions. Otherwise ¢ = ¢(t), and any standard or outermost &'
such that w(d’) # 2 must begin with e. The result follows by induction on |d|. [

Definition 42.2. Lett € M and a € Mg satisfy a < Z(1). Let du(1) € (1) be constructed
by induction on | a] by

() do(t) =Qifa=Qora=x€ Vora=f€ F’,

(i) du(t) = €, fida (1), day(D2), .., do(t)) if @ = flay, G, ..., ax) and t Sfh, b, .., k).

PROPOSITION 4.2.1.  Ift € M and a < Z(t), then d (1) is standard, outermost, and least for
a.

PrROOF. Obvious by induction on |a| from the definitions and Lemma 4.2.1. O

We extend the result to infinite derivations.

Definition 42.3. Lett € M and 4 € My satisfy 4 < 2(0). Let S = {a.|n=1} C Mg be
an increasing chain with limit 4 in Mg (such a chain always exists by the definition of a
completion). Let 8s(f) € 27(1) be such that 8s(f) = da, (10); da, (11); -3 da, (tk-1); --- where
to = t and du,(tk—1):tk—1 — I is constructed as in Definition 4.2.2. Denote 8%(t) = da (t0);
oy (11); +++; da(tr-1) and 8%(1) = &

THEOREM 4.2.1. If S is a chain of limit A, then 8s(2) is least for A and also for any A’
such that A < A’ < w(8s(?)).

PrOOF. Let A’ be such that 4 < A’ < w(8s(¢)), let § such that w(8) > A’, and assume by
induction 8 = 8%(¢) which holds trivially for k = 0. Then by the definition of =< on Z7(1),
there exists & € Z(t:) such that § ~ 8§(1);:8". But w(8') = w(8) > A" > ax+1 implies §" =
d.,, (tx) by Proposition 4.2.1, and therefore § = 84(tyda, (1) = 8. O

Note that since 8s(7) is a singleton derivation, all occurrences which it derives are
outermost. It is intuitively clear that 8s(t) performs no useless steps, which can be of two
kinds:

—rewriting of an occurrence contained in an outermost occurrence which is useless for
computing A4: This is avoided since 8s(¢) is least for 4.

—rewriting of an occurrence which will disappear when rewriting some outermost
occurrence which does not use all its arguments (as in K(x. y) = x): This is avoided since
ds(t) is outermost.

4.3 OPTIMAL COMPUTATIONS IN MJ. As we said in the Introduction, since 84(1)
performs no useless steps, we can think of constructing some “optimal computation” from
it. But, for the definition of optimality, we need to compare various cost measures
corresponding to various implementations using different data structures.

We simply consider implementations as sets of physical computations K. and we assume
that we can associate to any K some derivation (K ) and some integer cost(K). We restrict
our attention to implementation where the only shared objects correspond to occurrences
of the same family in the associated derivations. This will be expressed by requiring the
following inequality:

cost(K) = card(.» (r(K))).

where card(X) is the number of elements in the set X.
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The dag structure of [18] described in the Introduction or the delay rule of [25] are
particular implementations of this kind. They are exactly implement complete derivations,
so that r(K) is complete for any physical computation K. The natural cost measure for
such implementations is cost(K) = | r(K)|. We have cost(K) = card(# (r(K))) by Proposition
3.23.

Let us see that those implementations which exactly implement complete derivations
(dag’s or delay rules) are indeed the best possible ones under our constraints. If K is a
physical computation in some implementation, let d = r(K). We have w(d) < w(d) and
also |d| = cost(K). This follows since card(#(d)) < cost(K) by hypothesis and |d| =
card(#(d)) by Proposition 3.2.3. Hence by directly implementing d at cost |d| as with
dag’s, we get a better result with a lower cost.

Therefore optimality results only need to be investigated within complete derivations
with cost measure |d|. But remembering that |d| = card(#(d)), we shall compare
derivations not only by their lengths (i.e. |d| < |d'|) but also by the set of families they
derive (i.e. #(d) C #(d')). This will give a more precise optimality result which extends
to the infinite case where no cost measure in the usual sense is definable.

Definition 43.1. Lett € M and a < Z(1). Then d € F 2(1) is optimal for a if a < w(d)
and |d| < |d| for any & € F2(1) such that a < w(d). Let 4 < Z(t). Then § € FD™(1)
is F-optimal for A if 4 < w (8) and F(8) C F(&') for any § € F (1) such that 4 <
w(8').

THEOREM 4.3.1. Let t € M and a < Z(¢), let a € Mg such that a < a’ < w(du(1)). Then
d.(1) is least for a and a' in F 9(t) and is optimal and F -optimal for a and a'.

PrROOF. Let d € % 2(1) such that a < w(d). Then d.(r) < d by Proposition 4.2.1; hence
Fd ) = F(du(t)) C F(d) by Proposition 3.3.1 and do(r) = d and |d.(1)| = |d| by
Propositions 3.3.3 and 3.2.3.

THEOREM 4.3.2. Let t € M and A < Z(t). Let S be an increasing chain in Mg with limit
Sin M3, let A’ € MS such that A < A’ < w(8s(1)). Then 8s(1) is least for A and A in F 2 ™(1)
and is optimal for A and A’.

PrOOF. Straightforward extension of Theorem 4.3.1 to the infinite case (see Theorem
42.1). O

Let us now see how to effectively construct optimal derivations:

Definition 4.3.2 (see Barendregt [1]). A computation rule in Mg is a total recursive
mapping € which associates a subset C of €(®, ) to any + € M. The derivation A«(?)

defined by € on ¢ is

(1) ¢ (1) fy

A/(t):t — —————————)‘6’(1") In

- 1>

Notice that €(t.) may be empty for some #n.
LemMa 43.1. Z(t) = Q holds iff there exists d € D(t) such that d = eV (see

Notation 2.4.1).
ProoF. By inductionon N. [J
Definition 4.3.3.  Let the parallel useful outermost computation rule m be defined by

(o ifZen) =9
m(P(t)) = {{E} otherwise;

7(f®) = U i 7(0).

Note that = is indeed a computation rule since 3(s) = £ is decidable by Lemma 4.3.1.
Although d was only defined for singleton derivations d, it is easy to define A,(1). But the
cost of one set derivation in A.(f) is the number of families of rewritten occurrences.

The following result extends a result in Downey and Sethi [9].

PROPOSITION 4.3.1.  The derivation A(t) is correct for any t, and 8 € 7 *(t) is correct Iff
8 = A(1). The complete derivation A is optimal in M for any 1.




Minimal and Optimal Computations of Recursive Programs 171
PROOF. By construction, we have A.(1) ~ 8s() where S is the symbolic computation of

A-(1). The results follow from Theorem 4.2.1 and Proposition 4.2.1, since F(AA(1) =

F(8s(r)). U ) -

It is also easy to see that any optimal § € & “(1) is a “‘true permutation” of A(1), .e. can
be obtained from A(r) by a sequence of permutations of the form Ci;(Co/ Cr) ~ Coi(C1/C)
with C1/Ce # @ and C./C1 # .

4.4 OpTIMAL COMPUTATIONS IN INTERPRETATIONS. We assume that we are given a
program P = (X, I, ») and an initial term 7, and we investigate the existence and
effectiveness of optimal computations of approximation a of P(?).

Definition 44.1. Lett € M and a C P(f) in D;. Then § € 27(1) is least for « if it
computes « and satisfies § < &' for any & which computes a. If d € F2(1), then d is
optimal for a if it computes « and satisfies || < |d'| for any &' € # 27(1) which computes
. If 8 € FD™(1), then § is F -optimal for « if it computes a and satisfies #(§ ) C F (&) for
any § € #2*(1) which computes a. We abbreviate optimal for P(#) and #-optimal for
P(t) into optimal and F -optimal.

Several difficulties appear when trying to define “optimal computation rules” in inter-
pretations:

—The process of determining the next occurrences to be rewritien may involve com-
putations in the interpretation. We must assume that these computations are effective.
(Another approach would be to consider simplifications as in [26].)

—No computation rule can always generate optimal derivations, since the empty
derivation is optimal if and only if P(r) = L, which is undecidable in general.

—An approximation « of P(f) may have no least computations and several optimal but
not % -optimal computations. Let us give an example over the flat domain of integers:

N, =

1

Here optimal derivations always exist since every value a C P(1) is always computed by

some finite derivation.
Let pmult be the “parallel multiplication” defined by

pmult(L, L) = pmult(L, n + 1) =pmulttn + 1, L) =1,
pmult(n, n’) = n X n',
pmult(0, L) = pmult(L, 0) = 0.

Consider the program scheme Z:¢(x) = x and the initial term ¢ = pmult(¢(0), $(0)).
Then P(f) = 0 and P(¢) has no least derivation and two optimal but not & -optimal
derivations t — pmult(0, $(0)) and t — pmult(¢(0), 0). Moreover no rule can optimally
compute ¢ = pmult(ty, t2) for all ; and ,: If £ = 0 and # # 0, the optimal derivations of ¢
are given by those of 1, and symmetrically if nH # 0 and £, = 0. If , = t; = 0, then the
optimal derivations of ¢ are given by the shortest optimal derivation of #; and f.. But /, =
0 and 1, = 0 are again undecidable. In fact even to be correct, any rule must evaluate #; and
1, in parallel: This is why pmult is called “‘parallel multiplication™; see [25, 26].

Hence we cannot hope to have simple characterizations of optimal derivations and rules
except in particular classes of interpretations. We shall first give a sufficient condition for
least and % -optimal derivations to exist.

Definition 4.4.2. Let I be an interpretation and »: ¥ — D; be a data mapping. Denote
crla, A) = N{A" < A|(I, )4’ D «} for any A € M3 and « C (I, v)4 in D;. Then [ is
projective iff (I, v)(ci(a. A)) D a holds for every » and A. We then call ¢;.(a, 4) the
canonical form of A for a and ¢;.((I, )4, A) the canonical form of A. Most of the time, /
and » will be assumed from the context. Then we write c(a, A) = cr.(a, A) and «(4) =
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cr (I, v)A, A). We write A D a for (I, ¥) A D aand A D A’ for (1, v)4 D (1. v)A’. We use
the relation 4 = A’ for (I, v)A = (I, v)A’. We denote by S and = the strict orderings
associated with C and <, so that « < B means « C 8 and « # 3.

LEmMa 4.4.1. If a C o' C A, then c(a. A) < c(a’. A). IfA <A and o C A, then c(a. A)
= c(a, A").

ProOF. Straightforward. []

THEOREM 4.4.1.  Let I projective and v:V — Dy. Let t € M and « € D; such that o C
P(1); let S be any chain in Mg of limit c.(a. 2(1)) inM§. Let o, «” € Dy satisfy a C o’ C
(I, v)(8s(1)) and « C " C (I, v)(8(1)). Then 8s(1) is least for a and o’ in = *(1) and 8(1) is
least and F -optimal for o and o” in F < (1).

Proor. Computing « in D; is nothing but computing c(a, Z(1)) in Mg the result
follows from Theorems 4.2.1 and 4.3.1 and from c(a’, (1)) < w(8s(?)) and c(a”, Z(1)) <
w(8s(?)) implied by Lemma 4.4.1. [

When computing an & C f(f1, >, ..., I») in a projective interpretation, the computations
of t, fa, ..., 1, are in some sense independent; it is impossible to compute less of 1 by
computing more of 13, as it was when computing pmult(t:, t:) when 1, = 1, = 0. Hence the
projectivity condition forbids “parallel functions” like pmult: We indeed have no canonical
form for pmult(0, 0).

The projectivity condition may be restricted to only hold on finite terms if Dy is algebraic
(see [4, 7).

Definition 4.4.3. An element a € Dy is isolated iff for all directed sets V C Dy, a C
UV implies 38 € V such that a C . Let #(a) = {B € Di|B isolated and 8 C a}. Then D;
is algebraic iff for every a € D; the set .«/(a) is directed and has Lu.b. a. As an example,
the set M3 is algebraic and has for isolated elements the finite trees of Mq.

PROPOSITION 4.4.1.  If Dy is algebraic, then I is projective iff (I, v)(cie. a@)) D « holds for
every a € Mg and a isolated such that o« C (I, v)a.

PrROOF. Let a isolated and assume A D a. Then since (I, v)4 = U{(/, v) aja < A} there
exists a < A such that a D a. If 4’ < A is such that 4" D «, there exists a’ < 4’ such that
a D a Then c(a, @) = c(a, a U @) = c(a, @) < @’ < A" holds as in Lemma 4.4.1. Hence c(a,
A) = c(a, @) D a. Now for any a € Dy, consider A’ = U{c(B, 4)|8 € #(a)}, where the set
on the right is directed since ./(«) is too. If 4” D a, then 4” D fand A” > c(B8, A) for all
B € A(a), so that 4” > A’. But (I, A’ = U{(I, »)c(B, A)|B € ()} D U{BIB €
#(a)} = a since Dy is algebraic and eventually 4" = c(a, 4) D a. O

In this case we also have the converse of Theorem 4.4.1:

PROPOSITION 4.4.2. If D, is algebraic and I is not projective, then there exist a program
P, aterm t, and an o C P(1) such that a has no ¥ -optimal derivation.

Proor. There exist v, a, and a C a such that c(a, a) 2 a, so that the set {a’ < ala’ D
a} has at least two distinct minimal elements b and b, with b N b’ 2 «. With additional
variables y;, we can write b N b’ = b[2/y] and b = bi[c/y] and b’ = by[c’/y] withe N ¢
= Q. Take then Z:¢(x) = x and ¢ = bi[¢(c1 U ¢1)/y1, d(c2 U )/ ya, ..., d(cx U ck)/yr]: There
is no optimal computation of « from ¢ for (Z, I, »).

Notice that the projectivity condition mixes syntax and semantics. We now investigate
purely semantic conditions on the f° " which make 7 projective.

A first condition is Vuillemin’s sequentiality condition, used in Vuillemin’s optimality
proof [25]. No algebraicity condition is needed.

Definition 4.4.4. A function h:D} — Dy is sequential iff Ya € D}, 3i, 1 < i<k, such
that B € D%, B, = a; and B D a implies A(B) = h(a). An interpretation / is sequential if all
functions f” are.

All indexes i satisfying the definition at a given & are called sequentiality indexes of h at
«: To increase the output of 4, one must increase its input on these indexes. Functions like
if then else, constants, or usual arithmetic functions on the “flat integers” (see Introduction)
are sequential. Vuillemin [25, 26] shows that composition and limits of sequential functions

are also sequential.
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The “parallel or” described above is not sequential. and M3 is nor sequential since we
have together fla, Q) Z AQ Q) and AAQ, a) Z fiS2, §2): Here f has no sequentiality index on
(2, Q).

Notation 44.1. If c is an occurrence in 4 € Mg, we define the subterm ¢ | 4 of 4 at
the occurrence ¢ by .
elA=4,

(f; i)C/ lﬂAl, AQ, vee sy An) = CI l A,.

LEMMA 4.4.2. Let a € My, let I be sequential, and let v:V — Dy. Then either (I, v)A =
(I, v)a for any A > a or there exists ¢ such that c | a = Q and c | A #* Q for any A > a such
that (I, v) a & (I, v)A.

Proor. By induction on ||a||. The result is obvious is ||la|| = 1. Let a = flai, a3, ..., an),
and let k be a sequentiality index of fat (, »)ay, (I, »)as, ..., (I, v)a. Determine c for a, by
induction. Then (f, k)cx answers the questions. [

PROPOSITION 4.4.3.  Every sequential interpretation is projective.

PrOOF. Let I be sequential, v:¥ — Dyand 4 € M. Let a C (I, v)A. We have two

cases:
Case 1. 3Ja < A such that a D a. Let A’ < A such that « C A". Thena N 4’ D «;

otherwise there exists, by Lemma 4.4.2, csuchthatc JanNA' =8, c|la#Q,andc | 4’
# Q, which is impossible by definition of g.1.b. Since the set {a’ < a|a’ D «a} is finite and
closed by g.l.b., we have c(a, @) D a. But also ¢(a, 4) = c(a, a), so that c(a, 4) D a.
Case2. Va<A4,a 2 a. Then a = (I, v)A and c(a, A) = c(A4). From case 1 we deduce
that A’ = A and a < 4 imply 4’ > c(a) and that c(a) = a. Then c¢(4) > U{c(a)|a < 4};
hence (1, v)c(A) = U{(I, v)c(a)|a < A} = U{(, v)ala < A} = (I, v)A, which concludes the

proof.
Least computations of a C P(f) from ¢ are easily constructed in Vuillemin’s sequential
interpretations: Build a derivation t = to - ty = t; —> -+ — 1, — ... by selecting no

occurrence in ¢, if w(t,) D « and by selecting an occurrence of an unknown function symbol
which corresponds to an occurrence ¢ in w(t,) determined as in Lemma 4.4.2 otherwise.
Vuillemin’s delay rule implements the corresponding complete derivation (see [25, 26]).
We leave to the reader to see that this complete derivation 3x() has the following uniform
optimality property:

Vde F2(), 3k=0, (ILydC I »d(t) and F(Gu(r)) C F(d) and |8u(r)| <|d.

This property was indeed taken as the optimality definition in [25, 26]. However, it is
specific to Vuillemin’s sequential interpretations and is not true in the Herbrand interpre-
tation: For Z:¢(x) = x, no computation of f{¢(x), ¢(x)) has this property.

We now show that the class of stable interpretations defined and studied in [2, 3] is also
projective.

Definition 4.4.5. Let D be an algebraic c.p.o. such that two elements « and B have a
glb. a N B. Then h:D* — D is stable iff Va,p € D*, a 1 B implies h(a N B) = h(a) N
h(B). An interpretation / is stable iff every f” is.

PROPOSITION 4.4.4.  Every stable interpretation is projective.

Proor. Show by induction on [la| that @ 1 &’ implies (I, »)(@ N @) = (I, v) a N
(I, v)a' and apply Proposition 4.4.1. []

A particular class of stable interpretations is the class of Kahn and Plotkin’s sequential
interpretations on concrete date types [13]. This class contains Mg (which is not sequential
in Vuillemin’s sense).

The design of optimal computation rules for these interpretations is especially important
in coroutine systems (see [12]), but is beyond the scope of this paper.

5. Conclusion
Only recursive programs schemes have been considered in this paper, with a single
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operation, 1L.e. the substitution of recursive function ocurrences. But in usual programming
languages, there are more rules for evaluating expressions. For instance. there are rules for
“if then else” or “+” ... These rules are called simplifications by Vuillemin. Here. we have
treated them at a metalevel via projective interpretations. But a more realistic approach,
especially for cost measures, would be to include them as rewriting rules. This means that
one has to be able to handle more complicated rewriting rules than the one considered
here. Thus, a unifying or axiomatized point of view should be adopted to preserve the
syntactic results of this paper. This seems possible along the lines of O’Donnell [21] or
Rosen [22]. Furthermore, the axiomatized approach should include the A-calculus where
much of the syntactic part of this paper is valid. Also for a practical outcome, the
algorithms corresponding to the derivation strategies should be studied. For the formalism
of this paper, a lazy evaluator with a delay mechanism is easily designed. But the
implementation of such evaluators may not be so easy for other rewriting systems such as
the A-calculus.
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