Theoretical Computer Science 2 (1976) 97-114.
© North-Holland Publishing Company

AN ALGEBRAIC INTERPRETATION OF THE ABK-CALCULUS;
AND AN APPLICATION OF A LABELLED A-CALCULUS

Jean-Jacques LEVY
IRIA - Laboria, 78150 Rocquencourt, France

Communicated by M. Nivat
Received December 1974
Revised April 1975

1. Introduction

A wide range of A-calculus models has been proposed by Scott [11, 12]. In these
interpretations, the interconvertibility relation among A -expressions is extended by
mainly equating the unsolvable terms (i.e., expressions M such that for any
arguments Ny, N,, - - -, N the expression M N, N, - - - N, has no normal form). This
extension has been shown by Barendregt [1] and Wadsworth [14] to be consistent.
Hyland [5] and Wadsworth [14] showed the adequacy of most of Scott’s models
from a computational point of view; more precisely, each expression is equal to the
limit of its approximations in these models. We will try to go in the reverse direction
in the first part of this paper and define the value of an expression from its set of
approximations. Then we prove that, as usual, our interpretation defines a
congruence on the language of A-expressions (see Milner [8]). For this we follow
Welch [15] who made a conjecture about the completeness, in the reducibility
sense, of “inside-out reductions”.* This conjecture is provecd in the second part of
this paper by introducing a “labelled A -calculus”, which the author believes to be a
useful tool for some A -calculus problems. The results in this paper are related to the
ones in Hyland [4] and Welch [16]. The definition of our interpretation is very
similar to that of Nivat [10] and Vuillemin [13] used for systems of recursively
defined functions. Most results appeared in the author’s thesis [6].

2. Syntax

We consider the set A of A-expressions, built from an infinite alphabet V of
variables, which is the minimal set containing

(1) x (variable),

(2) (AxM) (abstraction),

(3) (MN) (application),
where x isin V and M, N are already in A. We will use the standard abbreviations
where

* In fact, there is a long proof by Welch. We just show an alternative proof which is mavbe simpler.
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MNN]Nz e Nk Stands fOI‘ (' v (((MN)Nl)Nz) D Nk ),
(Ax1x2+ -+ Xm + M) stands for (Ax,(Axz: - (Ax.M)---)),

M, N, N; being expressions in A, and x; being variables. We shall also omit the
outer-most parentheses of an expression. The usual notions of free and bound
variables are assumed defined and we denote by M[x\N] the substitution of N for

the free occurences of x in M.

We consider only two rules of conversion: the o and B rules. If N derives from
M by an a-conversion, we write M —> N. Similarly, we have M— N, and a
reduction (possibly of length zero) using only a-conversion from M to N is written

. *
M55 N. Hence M;)N and ML;N mean that M reduces by a sequence of
B-reductions, or a-conversions and PB-reductions, to N. We often forget a-
* B
conversions and M — N or M— N are understood as M —>zN or M —->N..

Equality must also be considered as equality modulo some «-conversions. We w1ll
try to use the usual terminology (residuals; standard reductions, etc.) defined in

[2, 3]. We also make use of the context notation (see [9, 14]).

Letus ﬁrst remark that A can also be considered as the smallest set containing

(i)  Ax-M (abstraction),

(i) xM,M,---M, (head normal form),

(iii) (Ax - M)NMM,---M,,
if x is a variable and M, N, M, are expressions of A. More generally, a head normal
form is any expression of the form Ax:x; - - X - XMiM, - - - M, where m, n =0 (see
[14]). Other expressions are of the form Axix;* - X - (Ax - M)NM M, - - - M, and

have a head redex (Ax -M)N. If M 2, N and N is an abstraction (respectively a
head normal form) we say that M has an abstraction form (respectively a head

normal form).

Proposition 2.1. If M has an abstraction form, then M has a minimal abstraction
form Ax - Ny, i.e., we have M—*> Ax - Ny, and for any Ax - N such thatM—i1 Ax - N we
have Ax - No— Ax - N.

Proof. M can only be of form (i) or (iii). In the first case, we have M = Ax - N,.
Otherwise, for any Ax - N such that M35 ax - N, by the standardization theorem

there is a standard reduction
Rl R2 RS Rn
M=My—M—M—- - —M,=Ax N

from M to Ax - N. Let M, be the first M; which is an abstraction. Then, since the
reduction is standard, the redexes R; contracted between M;_, and M; are the head
redexes of M;_, for 1= j < k. So each standard reduction from M to some Ax - N
has a common initial part
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Rl R2 R3 Rk
My— M —M,— - — M, U

Proposition 2.2. If M has a head normal form, then M has a minimal one.

The proof is very similar to the preceding one. In both cases, the minimal form is
obtained by contracting head redexes until an expression of the desired form is
reached.

3. Approximations

We still follow Wadsworth [14] and define the direct approximation ¢ (M) of an
expression M by

d(Ax - M) = Ax - p(M),

(MM - - M,) = x($ (M) (6 (M2)) - - - (¢ (M),

¢((/\x ‘ M)NMle M Mn) = Q, .
where () is an extra constant. Basically, ¢ (M) is obtained from M by.replacing all
(outermost) redexes of M by Q and substituting Q for XM until normal form is
obtained. If  is understood to be “undefined”, ¢ (M) is the information we have
from M without contracting its redexes. There is a slight modification of Wads-
worth’s definition, because we do not want to identify Q and Ax - Q.

We define & by &' = ¢(A). Obviously, N is the set of expressions in w-B normal
forms. More precisely, & is the minimal set containing:

Q
Ax - a
X142 Ay

if x is a variable and a, a; are already in . By considering {2 as a minimal element
in #, and extending monotonically, we get the following partial order < in N:

N <a,

Ax ra<Ax-b if a <b,

Xa14s* Gy < xbiby--+b, if a;<bh for 1<i=sn,
where a, b, a; are expressions of ¥, x is a variable, and n = 0. Here, we must take
care of a-conversion and the order < is, in fact, an order between equivalence
classes defined on & by the a-interconvertibility. So if a %‘a' and b—:—> b’, we have
a < b iff a’' < b’'. Moreover, we notice that a < b iff there are M, N in A such that

d(M)=a, $(N)=b and M>'N.
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Proposition 3.1. The set V' is a semi-lattice where every directed subset is a lattice.*
More precisely,

(1) N has a minimal element Q;

(2) for any pair, a, b of elements in N, there exists a greatest lower bound a N b

(meet operation);
(3) for any pair a, b of elements in N which are dominated by a common upper
bound, there exists a least upper bound a U b (join operation).

The proof is trivial, and obviously we can give the inductive definitions of a U b

and a Nb (up to some a-conversions, as for the definition of < above):

(Ax-a)N(Ax -b)= Ax -(a N b),

(xalaz e an) N (.xb1b2 v b")= ‘x(al N bl) (az M bz) e (a,, N bn),

a N b= otherwise,
and

QUa=aUQ=aq,

(Ax ra)U(Ax - b)=Ax-(a Ub),

(xa1az2- - a,)U (xbibo- -+ b,) = x(a: U b)) (a2 U by) - - - (a. Uby),

a U b is not defined otherwise,
where x is a variable, a, b, a, b; are expressions of &, and n = 0. The set A is also
complete for the N operation, i.e., each subset X of A has a greatest lower bound
N X in N. Moreover, the order < is well-founded in & and we have no infinite
strictly decreasing chains in N,

To any expression M, Wadsworth [14] associates a set of approximations f (M );
which is the set of direct approximations of all expressions reducible from M:

A (M)={$(N): M= N}

We briefly review some descriptive properties.

Proposition 3.2. The set s{(M) of approximations of any A-expression M is a
sub-lattice of N (with the same meet and join operations as in N').

Proof. We need only to show that N and U are closed in &/(M). Suppose a, b
are in o (M).

(1) a Nbisin (M) by induction on the size |a N b || of a N b. There are three
cases.

* If (D, <)is a partial order structure, a directed subset X of D is such that for any a, b in X, there is a
¢ in X such that a <c¢, b <c¢ (a notion similar to that of ascending chains if D is denumerable). See

Scott [11].
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(&) If aNb=Q,then a# Q and b# (1 is impossible because of proposition 3.1.
Therefore a = Q or b = ) which implies ¢ (M) = Q, and then a N b isin A (M).

(b) If aNb=Ax-cy, then a =Ax-a; and b =Ax-b,. Hence, M has an
abstraction form and, by Proposition 2.1, a minimal one Ax - M,. As a; and b, are in
o (M,), we know by induction that a; N b; is in & (Mo). Thus, Ax - (a; N b,) is in
A(Ax - My), and a N b is in A (M).

(¢) If anb=xcicyr ¢, we have the same proof using Proposition 2.2,

(2) The Church—Rosser Theorem shows the existence of a ¢ such that a < ¢ and
b < c. Hence, a U b is defined and a similar proof, based on an induction on the
size |a U b ||, shows that a Ub is in (M), [

Proposition 3.3. Forany ain (M) there is a minimal A -expression N, such that:
i MSN,;
(i) ¢(N)=a;
(iii) for any N such that M N and a < $(N), N, = N.

Proof. Follows by induction on the size of a. There are three cases.
(1) a =Q. Then ¢(M)=Q=a and N, = M.

(2) a = Ax - a.. Then if M5 N and a< ¢ (N), we have N = Ax - N, ¢p(N)=
Ax - ¢(N1), and a; < ¢(Ny). By Proposition 2.1, there is a minimum abstraction

form Ax - M, of M. Hence M0—> Nl and by induction there is an N,, minimal for a,

and reducible from M,. Hence, it N, =Ax - N,,, we have

M5 Ax - MyS N, = Ax - N, S5 Ax - Ny = N,

and ¢(N,)=Ax - d(N,)=Ax - a:= a.
(3) a = xa.a;- - - a.. The proof is as in (2), but we now need Proposition 2.2. (]

Hence, generalizing Propositions 2.1 and 2.2, we have a minimal expression N,
for any approximation a. We reach it by head reductions (leftmost outer-most
reductions) until a head normal form (if necessary) is reached and repeating this
process on arguments of the head normal form (when necessary). We notice also

that if a, b are in some (M), then a < b iff for any N’ such that M5 N’ and

¢ (N')= b, there is an N such that Mi;N, &(N)=a and NS N

4. The interpretation domain

In the set A, some A-expressions have a finite set of approximations; we call them
expressions of finite information. The other expressions are of infinite information
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and, in order to be able to speak of their value, we will complete the set N of w-B
normal forms by adding infinite points. Let A" be the set of all directed subsets of

N:
N ={S: § directed, S CN}.

We can extend the relation < to & by defining for § and S’ in ¥
ScS' it vae S, IbeS' . st.a<b
In order to keep an ordering, we define a quotient set
F=Fi=,
where
S=§'ift SCS'CS
Hence, if we denote by [S] the equivalence class of S in N, we have in A

[S]C[S'Tiff SCS'".

Proposition 4.1. The set N is a semi<lattice where every directed subset is a lattice.

More precisely,
(1) N has a minimal element [{Q}],
(2) any pair of elements [S], [S'] in N has a greatest lower bound [S]N[S],
(3) any pair of elements [S], [S'] in N which is dominated by a common upper

bound has a least upper bound [S]N[S’].

The proof is obvious and the definitions of N and U in N are given by
[SIN[S1=H{anbla€S bEST,
[SJu[ST1=[{aUbla€ES bEST.

But A has a richer structure. Using Scott’s terminology (see for instance [11]), we
have:

Proposition 4.2. The domain N is
(1) complete for directed subsets of A,
(2) algebraic, since N admits a denumerable basis of isolated elements [{a}] where

a€WnN.

This means that every directed subset X of A has a least upper bound U X and
that each element of A is the least upper bound of the finite information points
[{a}] (where a € &) which are below it. The proof follows from the construction of
A and we skip it. The method we use for the completion of N is equivalent to the

one of Vuillemin [13].

5. Interpretation of A-expressions

We associate with any expression ‘M an element A by the following equation
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F(M)=[4(M)),

and we can thus induce a partial preorder on A defined by [M C M’ iff $(M)C
F(M").] By the definition of ¥, we have

MCM iff VN st. M—>N,3N’ s.t. M5 N’ and ¢(N)< ¢(N"),

We write M= M’ for M C M'C M and we expect the usual properties for our
interpretation $. Moreover, if X is a directed subset of A -expressions, U X means

U #(X).

Theorem 5.1. The B-rule of conversion is valid in $, i.e., if‘M—*—> M' thenM =M’

Proof. Since M — M’ we have A(M")C (M), and then M’ C M. Now suppose
M 5 N, then as M 5 M’ we know, by the Church-Rosser Theorem, that there
exists an N’ such that N % N’ and M'—> N’, and hence ¢ (N) < $(N"). So we have
MCcM. O

We extend the pure A-calculus by adding a constant (1 and closing under
abstraction and application, and we let A be the set of terms of the extended
language. We consider not only B-reductions but also an w-tule of conversion
defined by replacing any subexpression of the form QM by . We write this kind of

reduction N —:} N'. Let €[] denote any context (see [9]), i.e., a A-{} expression with

one subexpression missing, and let €[ M] be the corresponding expression where M
stands in the position of the previously missing subexpression.

Proposition 5.2. €[Q)C €[M] for any context M and any expression M.
Proof. The set of expressions reducible from €[Q] is isomorphic to a subset of the

one reducible from %[M]. Moreover, ¢(N[x\Q])< ¢(N[x\M]) for any A-Q
expressions M, N. Hence, €[Q] C €[M] by definition of C. I

Theorem 5.3. The w-rule of conversion is validin ¢, i.e., if M % M’ thenM=M'.

Proof. By the above proposition, we already know that M'C M. Now suppose
MSN : we can easily show (by an induction on the pair (I, I’), if [ and [" are the

length of the reductions M 5N and M %)M ") the existence of an N’ such that

i |
N%}N’ and M’\—*>N’. Hence ¢(N)= ¢(N") and then M C M'. []
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We turn now to the main point of this paper, i.e., we show that for any context
€[] we have €[M]C 6[M’] if M C M'. So, using the definition of C, we need to
show that if ‘é[M];N, then there is an N’ such that %[M’]i N’ and ¢(N) <

¢ (N"). But all we know is that for any approximation of M we can have a better
one for M'. Therefore, in order to compare €[M] and $[M'] we try to point out
the approximation of M needed by any reduction from ¢[M] to some N. That is
Welch’s conjecture about inside-out reductions ([15]), which we prove later. Using

Welch’s notations, let <€[M]—*>N designate any reduction
M

G[M]=M—=5>M,-5M, =5 ... 25 M, = N,
where, for all i (1<i =< n), the redex R, contracted between M;_, and M, is not a
residual of a redex internal to the subexpression M in My. Similarly, if % is a set of

redexes in M,, we write MO—;> M, if none of the R, is a residual of a redex of %

Hence, if & is the set of all redexes of M, we have €[M]—> N iff €[M]—> N.

Moreover, let M[#\Q] denote the substitution in M of all redexes of & by the
constant {). Now we can state what we want. (The proof is postponed until the next
section).

Proposition 5.4. For any context €[] and any expression M, if €[M ]~*—>N, then

there are expressions M' and N’ such that MLM’, NS N', and %[M’]%N'"

. g - . g . * . g .
Lemma 5.5. Given a set of redexes & in an expression M, if M—;—> M’ and if ' is

the set of residuals of the redexes of ¥ in M', then M[gf*\.Q]i)M’[.af’\Q].

Proof. Follows by induction on the length of the reduction from M to M’, which is
of the form M — Ml§> M', where the redex R, first contracted, is not one of the

redexes of # and %, is the set of residuals of the redexes of % in M,. Then,
depending on the relative position of R and % we obviously have

M[F\Q] 5 M[F0\Q). O

Lemma 5.6. If a, b are in the set N of w-B normal forms and such that a < b, then
€lal C €1b] for any context €[].

Proof. The lemma is a corollary of Proposition 5.2, since if a < b, then a matches
b except for some Q’s [J




AN ALGEBRAIC INTERPRETATION OF THE ABK-CALCULUS 105

Lemma 5.7. For any context €[] and expression M
¢[M]=U{%[a]: a € 4(M)}.
Proof. Let X ={%[a]: a € 4(M)}. By Lemma5.6,as o (M) is a directed set, X is
also directed and U X exists since & is complete for directed subsets.
First, if a is in &/ (M) there is an expression N such that M5>Nanda = ¢ (N).
So we have, by Proposition 5.2 €[a] C €[N] since a matches N except in some
s. But as M — N we have, too, ‘6[M]—*—> €[N] and ¥[M]= %¢[N] by Theorem

5.1. Hence, we get €[a] C €[M] for any a in & (M). Therefore €[M] is an upper
bound of X and U X C ¢[M].

Conversely, if €[M] i>‘N, there are M’ and N’ such that M - M, NS N’, and
%[M’]—%‘N’ (by Proposition 5.4). Let F be the set of all redexes of M'; we have

%[M’]% N’. By Lemma 5.5, if %' is the set of the residuals of the redexes of & in

N’, we have €[M’] [@\Q]LN’[?’\Q].. Moreover, €[M’] [F/"\Q]L €[ (M")] and
since @ and B-conversions are valid we get

d(N)< ¢(N') = ¢(N'[F\Q]) C N'[F\Q] = ¢[M'][F\Q] = €[$(M")].
Then for any N such that <€[M]i>jN there is an M’ such that MM’ and
H(N)C €[dp(M")]. Since 4[M]=U/{a: a € A(¥[M])}, we have €[M]C
Ux O
Theorem 5.8. If M C M', then €[M]C %4[M’] for any context €[].
Proof. Since M C M’, for any a in o (M) there isa b in 4 (M’) such that a <b.
Hence, by Lemma 5.6, €[a] C €[b]. Since /' is complete, we get

U{¢[a): a € A(M)}CU{4[b]: b & AL (M)}
ind, by Lemma 5.7, €[M]C ¢[M']. O

6. Inside-out reductions

In order to show Proposition 5.4, we follow Welch [15] and define an inside-out
reduction as any reduction:
M=M-5M5M"5. - S5M, =M

where, for all i,j such that i<j and 1<is<n-—1, 2<j=<n, the redex R,
(contracted between M;_; and M) is not a residual of a redex internal to R: in M;_..

Let M 1—:> M’ be a notation for any such inside-out reduction from M to M'. Welch
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- . . . . 0 *
conjectured the completeness of inside-out reductions, i.e., if M — N, then there

exists N’ such that N-—> N’ and M —— N'. So, as pointed out by Welch:
Proposition 6.1. If inside-out reductions are complete, then Proposition 9 is true.

Proof. Let ‘6[M]‘—'=>N1, there is N such that N;— N and %[M]%)N, as
inside-out reductions are complete. Let us prove, by induction on the size of the
context €[], that if %[M]%)N, there is an M’ such that M— M’ and
€[M']—> N.

1) If €[] =[], then €[M]=M and M’ = €[M'] = N.
2) If 4[] = Ax - %.[], the induction works easily.

3) If €[]=M:%,[], as the reduction <6[M]—%—> N is inside-out, we have
Mli*—0> M;j, ‘61[M]—E—> N’ and MiN’—i—) N. Hence, by induction there is an M’
such that M= M’ and €. [M'] iM> N'. Thus Ml—*>|M’ and €[M’'] = M, €.[M’] %‘N.

4) If 4[] = €.[]M:, we have the same proof. []

7. A labelled A -calculus

The problem is now to keep track of the redexes contracted in some reduction

M5N in order to be able to reorder them in an inside-out way, and to show the
inside-out completeness. We do this by introducing a new set of A-expressions (A')
defined on a set of labels £ as follows. Let %, ={a, b, ¢ - - -} be an infinite set of
letters. We consider the set £ of all strings of characters formed on %, with any
level of overlining and underlining. So expressions of £ are:

a ifa€e
aB if a,BEZL
a ifa€e?
a fa€YX

and expressions of A’ are:

x“ f a€¥ and x €V
(\x-M)  if a€Z and|MEN
(MN)* if €% and M,NEA’

Thus, the labelled A-expressions are like usual A-expressions except that every
subexpression has an arbitrary label. This A-calculus is a generalization of one of
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Wadsworth since, instead of considering integers as exponents, we have strings o
characters. For any label o and expression M of A', we define o - M as:

a-xf =x*

a(Ax-MP =(Ax - M)~

a - (MN)? = (MN)*
and the substitution operétion is defined by:

x*[x\N] = qyN

y“[x\N] =y*

(Ay - M)*{x\N] = (Ay - M[x\N])*

(MM')*[x\N] = (M[x\N]M'[x\N])*

where we forget the difficulties due to a-conversion. Then the B-rule is defined (by
monotony) from:

((Ax - M)*N)* — Ba - M[x\g - N]

- abcdefdhbij
kfdhbig Ifdhbig
z z

Fig. 1. Reductions from ((Ax - (Ay - (y'z%) )x ") )" (Au - (u*u'y))

(We do not care for the precedences between the - and substitution operators
because they commute). Furthermore we will allow this reduction iff some
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predicate P{(a, B8) is verified. So, for instance, using a graph notation for A-
expressions (see Morris [9] where nodes A and y corresponds to abstraction and
application), we have figure 1 if we suppose P («, B) always true. In fact, we can
restrict our attention to A-expressions labelled by a set £’ of labels defined as

containing:

a if a€e%

aBy if a,B,yEZL

aBy if a,B,vEZL
and it is clear that expressions labelled by £’ keep their labels in £’ after some
B-reductions. We remark too that other A-calculus languages are obtainable from
this one by some homomorphism: for instance Wadsworth’s typed A -calculus and
Morris’ definition of descendants. Let the height h(«) of a label a of £ be defined
by:

hia) =0 fa€

h(aB)=[h(a).h(B)] if ,BEZL

hie) =1+h(a) if a€E

and let the degree of a redex be the label of its abstraction part. Hence, we have
degree (((Ax - M)*N)?) = a.

Proposition 7.1. The residuals of a redex R have the same degree as R.

Proof. Suppose M -5 N and R is a redex, in M, of the form R = ((Ax - P)*Q)?. If
S = ((Ay - TY'U)® is another redex of M, we show by cases that residual(s) of S in N
have the same degree y than S in M.

1) If R and S are 2 disjoint expressions, it is obvious.

2) If S isin R, then S is in P or Q and the contraction of R may have only an

effect on the external label 8 of S.
3) If Risin S, then R isin T or U and the contraction of R has no effect on the

degree y of S. [J

Proposition 7.2. If P{a, B) implies P(a, yB) for any labels a, B,y of £, then the
B-rule of the labelled calculus is Church-Rosser.

Proposition 7.3, If

1) P(a, B) implies P(a, yB) for any labels a, B,y of ¥

2) the set {h(a)|P(a, B) is true} is bounded then any labelled A-expression
strongly normalizes (i.e., any reduction in this labelled calculus has a finite length).

The proofs of these Propositions are given in the appendix, by the usual techniques.
We go back to the inside-out completeness and we will use letters as M, N to
designate expressions of A and U, V for labelled A-expressions of A’
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Theorem 7.4. If MLN, then there is an expression N' such that Mi> N' and
NSN.

Proof. Let U be the labelled A -expression obtained from M by labelling all the
subexpressions of M with a different letter of %,. We can associate to the reduction

P% . . . * . . .
M — N, an isomorphic labelled reduction U — V. More precisely, this reduction
can be written:

U=U>U,>20,5... 2y =-v
Let us now consider the predicate %(a, B) defined on labels by:
P(a, B) is true iff a = degree (R;) for some i (1<i=<n)

The two assumptions of Proposition 3’ are verified and, hence, U strongly
normalizes. Let V'’ be the normal form of U, then V— V’, because the
Church-Rosser assumption is true and for instance, any innermost reduction
reaches the normal form V’. Let

U=V, V-3 v, Iy — v
be such an innermost reduction. (We then have, for all i, degree (S:) = degree (R))
for some j between 1 and n). We claim that this reduction is inside-out. Suppose
i <j for some i, j between 1 and m and suppose S, is a residual of a redex S}
internal to S; in Vi_,. By Proposition 1', we have degree (S}) = degree (S;) and then,
as the predicate 2 is true for S, 2 is also true for S/. The reduction from U to V' is
thus not an innermost reduction and we have a contradiction. Let N’ be the
A-expression obtained by erasing the labels of V'. As an isomorphic reduction of A

corresponds to any labelled reduction, we have N—>N' and M %],)N", 0

In fact, with the same method, if M M'and M5 M’  we have an N such that
M"_i) N and M”—:é' N. In the above proof, we do not need the strong normalization

property, but only the normalization of innermost reductions which is easier to
prove. But the strong normalization property shows that we can extract arbitrarily
large finite Church-Rosser subsets in the set of all reductions of a given expression.
The inside-out way is just a particular order in such a subset.

Conclusion

The interpretation (£, &), although strongly inspired by Scott’s theory of computa-
tion, is purely algebraic. Here, we do not have a definition of application as in Scott
[11; 12] or Welch [16]. But with the help of labelled calculus, any expression can be
considered as the limit of expressions having a normal form. If we think of
A-expressions as programs, the interpretation (¥, Ay seems to be the minimal one
to consider. Thus we expect that (&, A') is some kind of free interpretation. This
interpretation is weaker than the one of Hyland [4] and Welch [16] because we do
not identify the expressions ) and Ax - . This choice has to be justified, maybe by
adding constants and new conversion rules to them, but it is clear that we could
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have equated ) and Ax - in the whole paper with minor modifications of the
different proofs (see [6]). We remark too that there exist two different ways of
proving the congruence induced by the interpretation: 1) using the completeness of
the inside-out reductions as suggested by Welch [15]; 2) using a characterization a la
Bohm of the order defined by the interpretation as done by Hyland [4]. Here we
use the first method and we show a ‘“‘strong” completeness of the inside-out
reductions; but it would have been sufficient for the congruence to satisfy the

following “weak” property: for any expressions M, N such that M 5 N, there is an

expression N'such that M i> N'and ¢ (N) < ¢(N') (see Wadsworth [17]). Another

question is to take into account extensionality and build an algebraic interpretation
where the %-rule is valid. This is done by Hyland [4]. Finally, the labelled
A-calculus seems interesting in itself [7], since we can capture the history of any
reduction in the labels.
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Appendix 1.
The Church-Rosser property in the labelled calculus (by the Tait-Martin Lof

method).
Let €(M) be defined by:
€(x") =x“
E((Ax - M)*) =(Ax - €(M))"
E(((Ax - M)*N)?) = Ba - € (M) [x\g - €(N)] if P(a,B)
E{MN)*) =(6(M)E(N))* otherwise

Let M — M’ denote a parallel step of reduction and be defined by the following
inference rules and axiom:

-I- x*—>x*

M-M
Ax - M)* —(Ax - M’y
M—->M,N—>N
(MN)" = (M'N')"

-1I-

~I1I-

M>M',N—>N'
((Ax - M)*N)* — Ba - M'[x\a - N']

Morever, we suppose P{a, B) implies ?(«, yB) for any labels «, B8, v.
First, we notice that the associativity of concatenation implies:

_Iv- it P(a, B)
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o (B . M) = aB . M
Lemma 1. «  (M[x\N])=(a - M)[x\N]

Proof. By cases on M. The only problem is when M = x*®. Then the associativity
of concatenation gives the answer. []
Lemma 2. If x#y and x is not free in N', then:

M[x\N][y\N']= M[y\N'T[x\N[y\N']]

Proof. By induction on the size of M. The only problem is when M = x* Then we
apply Lemma 1. [J

Lemma 3. IfM—>M' thena M—a-M'

Proof. By cases on the rule or axiom used for M — M’. The only interesting case
is when:

M = ((Ax - My)’M,)? — M’ = By - Mi[x\y - M}]
with M;— M1, M,— M; and P (v, ). Then:

a M= (Ax - M\)’M,)*® and a -M'=a - (By - Mi[x\y - M}])
As P (v, B) implies ?(y, aB), we have by rule IV:

a M = ((Ax - My)’M,)** — aBy - Mi[x\y - M}]

and by the associativity of concatenation a« - M —>a - M'. []
Lemma 4. If M—> M’ and N— N’, then M[x\N]— M'[x\N']

Proof. By induction of the size of M.
1) M is a variable:
a) M =x"= M' Then we use Lemma 3.
b) M = y® = M'. Then obvious by axiom I
2) M is not a variable and we have several cases according to the rule used for
n— M'. The only interesting one is when:

M = ((Ay - M\)°M,)? — M’ = Ba - Mi[y\a - M}]

with M,— M{, M,— M} and %?(«, ). Then, ignoring a-conversions, we have:

M[x\N]= ((Ay - Mi[x\N])*Ma[x\N])*
M'[x\N'] = (B& - Mi[y\a - M:])[x\N'])
= Ba - (Mi[y\a - M3][x\N'] (by Lemma 1)

= Ba - (Mi[x\N'][y\(e - M3)[x\N']])) (by Lemma 2)
= Ba - (Mi[x\N'][y\e - (M;[x\N'D] . (by Lemma 1)
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By induction, we know that M;[x\N]— Mi[x\N'] and M,[x\N]— M[x\N'], and
using rule IV, we have M[x\N]— M'[x\N’]. O

Lemma 5. If M— M/, then M'— € (M).

Proof. By induction on the size of M. There are two interesting cases:
1) When:
M = ((Ax - M\)*M,)? - M’ = (M; M3)?
with (Ax - My)* — M}, M>,— M} and P (e, B). Then it is clear that M5 = (Ax - M1)*
and M, — M. Hence we have by induction M{— 4(M,) and M;— €(M.). Then,
using rule IV:

M’ = ((Ax - M)*M3)? — Ba - €(My)[x\g - €(M2)] = €(M)
2) When:
M = ((Ax - My)*M,)? —> M' = Ba - Mi[x\a - M3]
with M, — M}, M,— M} and 2 (a, 8). Then we have by induction M;— € (M)
and M,— €(M.). Hence, by Lemma 3: @ - M;— g * 4(M.), and by Lemma 4 and

3:
M'— Ba - €(M)[x\a  €(M)]=%6(M). O

Lemma 6. If M—>M' and M — M", then there is an N such that M'— N and
M”éN.

Proof. We take N = €(M) and use Lemma 5. [

Proposition. If M35 M and MS M?", then there is an N such that M'S N and
*
M/Ié N

Prpgf. By induction on the sum of length of the reductions MM and
M->M" [

Appendix 2.

Strong normalization in the labelled A -calculus by a method due to D. van Daalen.
We suppose:

(1) ?(a, B) implies P(a, vB)

(2) {h(a)|P(a, B) is true} is bounded
Hence, we have the Church-Rosser property. Let us write 7(N) for the external
label of N. So 7(x*)=7((Ax - M)*) = 7((MN)*) = a and we call ¥V the set of
strongly normalizable labelled A-expressions.

Lemma 1. If (-« ((MN,)"1N;)%- - N,) -:(/\x - N)*, then we have h(r(M))<
h(a).
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Proof. By induction on n. If n = 0, this is clearly true. Otherwise, we must have:

(- (MN)ANa - NoPrs> Ay - P’
and:

((Ay - PY'N,YP»— B.7 - P[y\y - Nu]=> (Ax - N)°

Hence, we get h(r(M))< h(y) by induction. We also have:
h(y)<h(y)<h(r(Bsy Ply\y -N.D)<h(a). O

Lemma 2. If M[x\N]—*—>()ty - P)*, we only have two cases:

1) M5 (Ay - M) and M'[x\N]-> P
or
2) M5 M= (- (M) M) - - - M, and M'[x\N]>>(Ay - P)"

Proof. Application of Propositions 2.1 and 2.2. [
Lemma 3. If M,N are in $N, then M[x\N] is in SN.

Proof. Let m be the upper bound of the set {h(a)| P (a, B) is true}, which exists
by assumption (2), and prof (M) be the maximal length of reductions starting from
M in $N. We do an induction on the triple: '

(h(z(N))— m, prof (M), | M |})

where | M|| is the size of M.
The only interesting case is when:

M = (M;M,)* and Miy[x\N]=> (Ay - P))™

We know by induction that M;[x\N] and Mz[X\N ] are in &N, but we wonder if
((Ay - P))M,[x\N])* is in N, ie., it M'= aa:- Piy\a:- M,[x\N]]is in ¥A. Then
Lemma 2 tells us there are two subcases:

1) Mi% (Ay - Mi and Mi{[x\N]>>P,. Then by Lemmas 2, 3, 4 of the

Church-Rosser proof, we get:
aa; - Mi[y\a: - Ma] [x\N] = aa: - Mi[x\N][y\e: - Me[x\N]]

5 aa,- Pi[y\a:- Mz[x\N]] =M’

But M = (M. M,)* —*>'(()\y s MD)SM,)* — aa; - Mi[x\a: - M]. Hence:
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prof (aa; - Mi[x\a: - My]) < prof (M)
and by induction M’ is in FA.
2) Mi'5 Q.= (- (x*N)N»)% - N,)* and Ql[x\N]—*-> (Ay - P)™.  As

Mi[x\N] is in ¥4 and M;[x\N]— Q:[x\N], we have P, in SN. Moreover:

Qu[x\NJ= (- - (((B - N)ND)PN3z)®%- - - Ny
where N;= N;[x\N] for all i. Hence, using Lemma 1:
h(r(N))<h(7(B - N))< h(an) < h(a1) < h(r(a: - Mo[x\N}))
and by induction M’ is in ¥N. []

Proposition. If P verifies assumptions (1) and (2), every expression M strongly
normalizes.

Proof. By induction on the size of M and application of Lemma 3. []

References

[1] H.P. Barendregt, Some extensional term models for combinatory logics and lambda-calculi, Ph.D.
Thesis, Utrecht (1971).
[2] A. Church, The Calculi of Lambda Conversion, Annals of Math. Studies 6 (Am. Math. Soc.,
Princeton, N. J., 1941).
[3] H. B. Curry and R. Feys, Combinatory Logic, Vol. 1 (North-Holland, Amsterdam, 1958).
[4] M. Hyland, to appear in the Proc. of the Rome conference (1975).
[5] M. Hyland, A syntactic characterization of the equality in some models for the lambda calculus, J.
London Math. Soc., to appear.
[6] J~J. Lévy, Réductions sures dans le lambda calcul, 3° cycle, Univ. of Paris 7 (1974).
[7] J.-J. Lévy, Réductions sures et optimales dans le lambda calcul, to appear.
[8] R. Milner, Processes; A model of computing agents, Univ. of Edinburgh, Internal report (1973).
[9] J. H. Morris, Lambda calculus models of programming languages, Ph.D. Thesis, MIT, Cambridge
(1968).
[10}] M. Nivat, Langages algébriques sue le magma libre et sémantique des schémas de programme, in:
Automata, Languages and Programming (M. Nivat, ed.) (North-Holland, Amsterdam, 1972).
[11] D. Scott, Continuous lattices, Technical monograph, PRG-7, Oxford, (1971).
[12] D. Scott, Data Types as Lattices, to appear in Springer Lecture Notes.
[13] J. Vuillemin, Syntaxe, sémantique et axiomatique d’un langage de programmation simple, These
d’état, Univ. Paris 7 (1974).
[14] C.P. Wadsworth, Semantics and pragmatics of the lambda calculus, Ph.D . Thesis, Oxford (1971).
[15] P. Welch, Another problem of the lambda calculus, Univ. of Kent, Private communication (1973).
[16] P. Welch, to appear in the Proc. of the Rome conference (1975).
[17] C. P. Wadsworth, Approximate reduction and A-calculus models, SIAM J,, to appear.




