Readable semi-automatic formal proofs of
Depth-First Search in graphs using Why3

Ran Chen and Jean-Jacques Lévy
State Key Laboratory for Computer Science,
Institute of Software, Chinese Academy of Sciences
& Inria

Abstract. Quite often formal proofs are not published in conferences
or journal articles, because formal proofs are usually too long. A typical
article states the ability of having implemented a formal proof, but the
proof itself is often sketched in terms of a natural language. At best,
some formal lemmas and definitions are stated. Can we do better 7 We
try here to publish the details of a formal proof of the white-paths the-
orem about depth-first search in graphs. We use Why3 as the proving
platform, because Why3 uses first-order logic augmented with inductive
definitions of predicates and because Why3 makes possible to delegate
bits of proofs to on-the-shelf automatic provers at same time as Why3
provides interfaces with interactive proof checkers such that Coq, PVS
or Isabelle. Algorithms on graphs are also a good testbed since graphs
are combinatorial structures whose algebraic properties are not fully ob-
vious. Depth-first search may look over-simple, but it is the first step of
the construction of a library of readable formal proofs for more complex
algorithms on graphs with more realistic data structures.

1 Introduction

Formal proofs of program correctness are a big challenge. They often comprise
a large number of cases, which makes them intractable on paper. Fortunately
proof-assistants and automatic provers can help. But the resulting proofs are
usually long listings of elementary steps which are almost impossible to read by
a normal human being. Even in the realm of mathematics where algebraic prop-
erties have been studied for a long time, formal libraries are hard to follow. Take
for instance the impressive Mathematical Components library, the Standard Coq
library or the Compcert certified compiler. It would be good to have readable
quasi-formal proofs for algorithms or easy mathematics. Our paper aims to work
in that direction.

We consider first-order logic with inductive definitions for predicates as such
implemented in the Why3 platform [10]. First-order logic lacks of abstraction.
For instance, we miss a calculus of relations which could be useful for graphs,
but first-order logic is easy to understand and allows mechanical proofs. Higher-
order logic allows conciseness, and with the help of the Coq proof-assistant,
one can use elegant notations for operators. But we refer the reader to the
proofs about finite graphs in the MathComp library [11], where one needs to

type wvertex

constant wertices: set vertex

function successors vertex: set vertex

axiom successors_vertices: Yx. mem x wvertices — subset (successors x) vertices

predicate edge (x y: verter) = mem x vertices A mem y (successors x)

Fig. 1. Definitions and axioms for finite graphs

understand higher-order logic, the difference between propositions and truth-
values, and small reflection. (And we did not mention the proofs with backward
chaining)

In a previous work, we considered basic programs with lists and arrays [16],
such as mergesort as implemented in Sedgewick’s book about algorithms [21].
There is also the fantastic gallery of programs on the Why3 webpage [9], which
enumerates many formal proofs of algorithms on arrays and algebraic structures.
But here we consider graphs with its most basic program, i.e. depth-first search
(dfs). We will treat three versions of dfs expressed in the ML Why language,
which here would not be much different from a functional language, although
ML Why also allows mutable data structures and imperative programming. The
interested reader is also referred to our webpage (jeanjacqueslevy.net/why3) for
more iterative versions of dfs, one of which corresponds exactly to the version in
Sedgewick’s book.

2 Representation of graphs

A graph is represented by a finite set of vertices and a successors function which
gives for any vertex the finite set of vertices directly reachable from it (figure 1).
The edge predicate states that there is an edge from its first argument to the
second argument. The mem predicate expresses membership to a set. The finite
set theory is presented in the Why3 standard library (located at URL why3.Iri.
fr/stdlib-0.86).

In this paper, we want to prove the white-paths theorem which often appears
in books about algorithms. Therefore we need a theory of paths in graphs. We
take paths as already defined in the graph theory of the Why3 standard library
(see figure 2). Thus path x | z states that there is a path [from vertex z to
vertex z in the graph. The path [is the list of intermediate vertices comprising
the first vertex x but not the last one z, except when x and z are the same vertex.
(We therefore use the polymorphic list library of Why3) We further define two
predicates reachable and access useful for our first proof of dfs. The first predicate
says there is a path between two vertices without precising the path, the second
one says that its second argument is reachable from the first set of vertices.

inductive path vertex (list verter) vertex =
| Path_empty : Vz : vertex. path x Nil x
| Path_cons :
Vry z: vertex, [:listvertex.
edge 'y — path ylz — path z (Cons x1) z

predicate reachable (x z : vertex) = 3. path z 1 z
lemma reachable_succ: Vx x'. edge x ' — reachable x x’
lemma reachable_trans: Yz y z. reachable x y — reachable y z — reachable x z

predicate access (r s: set vertexr) =
Vz. mem z s — Jx. mem xr A reachable x z

Fig. 2. Definitions and lemmas for Dfs with non-black-to-white assumption

3 Dfs with non-black-to-white assumption

Depth-first search is a naive recursive search on graphs which marks vertices to
prevent from looping. It starts from a set r of roots and provides as result the
set of vertices accessible from r. We use three types of marking: white, gray,
black. White vertices are not yet visited, gray vertices started to be explored,
black vertices are fully visited. As usual, dfs chooses randomly a vertex z in
roots, turns that node to gray and explores the successors of . Then dfs turns
x to black and continues with remaining roots (see figure 3). In our program,
the parameters of dfs are r, g, b standing for the sets of roots, gray vertices
and black vertices. The functions is_empty, choose, mem, union, add, remove
are standard functions of the set library in Why3. Notice that our program is
not fully effective since working on sets rather than lists, but this presentation
facilitates the correctness proof. (On our webpage there are proofs for more
efficiently implementable versions of dfs) Here dfs contains two recursive calls,
but the second call is tail recursive and we could have used a more iterative
version.

In this version of dfs, we show the no_black_to_white invariant which says that
an edge from a black vertex can only end into a non-white vertex, i.e. a black
or gray node. We also prove as post-conditions of dfs that all vertices in the
result are accessible from the initial sets of black and gray vertices, and further
that non-gray roots belong to the result. The intermediate assertions are self-
explainable (b1 is the resulting set of visited nodes after the recursive call on
successors of z; and b2 is same set with turned to black). These assertions and
post-conditions are proved automatically by Alt-Ergo [3], Eprover [20], Spass
[23] and Z3 [7]. The variant property states the termination of dfs (here with a
lexicographic ordering on the pair made of the number of non-gray nodes and
the number of roots)

predicate no_black_to_white (b g: set vertex) =
Vz z'. edge x ' — mem x b — mem z’ (union b g)

let rec dfs r g b
variant {(cardinal vertices — cardinal g), cardinal r} =
requires {subset r vertices}
requires {subset g vertices}
requires {no_black_to_white b g}
ensures {subset b result}
ensures {no_black_to_white result g}
ensures {Vz.mem zr — — mem x g — mem x result}
ensures {access (union br) result}

if is_empty r then b

else

let x = choose r in

let r’ = remove x r in

if mem x (union g b) then
dfs r’ g b

else begin
let bl = dfs (successors x) (add x g) b in
assert{access (add z b) bl};
assert{access (union rb) bl};
let b2 = add x bl in
assert{access (union r b) b2};
dfs r’ g (union b Db2)
end

Fig. 3. Dfs with non-black-to-white assumption (part I)

Now we want to prove that dfs results in the set of all nodes accessible from
the roots when we start with empty sets of gray and black nodes. That is all
vertices are white at the beginning of dfs (see figure 4). The post-conditions of
dfs_main function are expressed in terms of white paths and node flipping, since
we want to match this proof with following ones on other versions of dfs. The
first post-condition means that accessible vertices from roots are in the result,
the second post-condition is the other direction (all vertices in the result are
accessible from roots). A white path is white with respect to a set v of visited
vertices; the definition of whitepath uses the L.mem membership predicate on
lists, which is distinct from the mem predicate on sets.

The two post-conditions of dfs_main are proved by Alt-Ergo, CVC3 [1] and
Eprover, once lemma no_black_to_white_nopath is proved. This lemma states that
there is no path from a black vertex to a white vertex, when the no_black_to_white
condition holds. We then are forced to go through a gray node. This lemma needs
an induction on the length of the path, which is difficult to get with SMT-solvers
or even theorem provers. The keyword ¢ ‘induction’’ may be used to hint an
induction on the preceding variable, but in our case it did not work and Coq has

predicate white_verter (x : vertex) (v: set verter) = - (mem x v)

predicate nodeflip (x : verter) (vl v2: set vertex) =
white_verter x vl A — (white_verter x v2)

predicate whitepath (x : vertex) (I : list vertex) (z : vertex) (v : set vertex) =
path x 1z N (Vy. L.mem yl — white_vertex y v) A white_verter z v

predicate whiteaccess (r: set vertex) (z : vertex) (v : set verter) =
dx l. mem xr A whitepath x 1 z v

predicate nodeflip-whitepath (r vl v2: set vertex) =
Vz.nodeflip z vl v2 — whiteaccess r z vl

predicate whitepath-nodeflip (r vl v2: set vertex) =
Vrlz.mem xr — whitepath x 1 z vl — nodeflip z v1 v2

lemma no-black_to_white_nopath :
Vg b. no_black_to_white b g —
Vz | "induction" z. path x 1 z — mem x b — —mem z (unton bg) —
Jdy. L.mem yl N mem y g

let dfs_main r : =
requires {subset r vertices}
ensures {whitepath-nodeflip r empty result}
ensures {nodeflip-whitepath r empty result}
dfs r empty empty

Fig. 4. Dfs with non-black-to-white assumption (part IT)

to be used (see our webpage). We use Coq with the Ssreflect package, although
not yet fully compatible with the Why3 Coq driver. The Coq proof is then quite
easy, since the argument is obvious; but it is Coq stylish.

4 Random search stepwise

The previous proof does not match the standard proofs for dfs which states a
finer property known as the white-paths theorem [6]. Whatever is the initial
marking of vertices, this theorem states that a vertex has its color flipped if and
only if it is accessible from the roots by a white path. We first consider that
property with one step of random search in a graph, as suggested to us by a
note of Dowek quoting a proof by Munoz [18,8]. In the rest of this paper, we
only use two colors as marks of vertices: white and black.

The random step search picks any white node x in the set of roots and replace
it by its successors after marking = to black. We thus continue with the union
of these successors of z and the set of roots minus x. If the picked vertex z is
non-white, we remove it from the set of roots. When no more roots, we give the

let rec searchl r v
variant {(cardinal vertices — cardinal v), cardinal r} =
requires {subset r vertices}
requires {subset v vertices}
ensures {subset v result}
ensures {nodeflip_whitepath v v result}
if is_empty r then

v
else
let x = choose r in
let r’ = remove x r in

if mem x v then
searchl r’ v

else
let b = searchl (union r’ (successors x)) (add x v) in
(+ —————— nodeflip_whitepath ——— x)

assert{Vz.nodeflip zvb — z=2x V nodeflip z(add x v)b};
(*+ case 1.1: nodeflip zvb AN z=2x *)
assert {whitepath © Nil x v};
(x+ case 1.2: nodeflip zvb N z#z *)
assert{Vz. nodeflip z (add z v) b — whiteaccess v’ z (add x v)
V whiteaccess (successors x) z (add z v) };
assert{Vz'l z. whitepath z' | z (add x v) — whitepath 2’1z v};
assert{Vz z'l.edge x ¥’ — whitepath =’ | z v — whitepath x (Cons x 1) z v };
assert{Vz.nodeflip z (add x v) b — whiteaccess r zv};
b

Fig. 5. Random search step (part I)

marked nodes as the result. This search step is compatible with various searching
strategies (depth-first, breadth-first). It is also interesting to notice that this
proof is generic of the further dfs proof that we will later consider. There is
here an interesting analogy with the Lamport’s way of proving quicksort with
an iterative algorithm working on quicksort step (see Meyer’s Lampsort [17]).
We consider two independent proofs.

We first prove the nodeflip_whitepath post-condition (see figure 5) with Alt-
Ergo and CVC3. This simple proof considers the case the flipped node z is the
picked white vertex x or distinct from it. If z is x, then the empty Nil path is
white at the beginning of the search step. If z is not x, then it is flipped by the
recursive call with again two cases: the node is accessible from the successors of
x or the rest of roots r’. In both case, we conclude to the existence of an initial
white path by monotony on the last argument of whitepath.

The whitepath_nodeflip post-condition needs more work (see figure 6). Assume
we have a white path from the picked white vertex x to another vertex z. The
case z = x is easily solved by the first post-condition proving that x belongs
to the result b. When z and z are distinct, we rely on the important lemma
whitepath_whitepath_fst_not_twice (see figure 9). We know then that there is a

let rec searchl r v
variant {(cardinal vertices — cardinal v), cardinal r} =
requires {subset r vertices}
requires {subset v vertices}
ensures {subset v result}
ensures {whitepath-nodeflip v v result}
if is_empty r then

v
else
let x = choose r in
let r’ = remove x r in

if mem x v then
searchl r’ v

else
let b = searchl (union r’ (successors x)) (add x v) in
(* whitepath_nodeflip *)

(x+ case 1: whitepath xlzv N =2 *)
assert {mem zb};

(*+ case 2: whitepath xlz N ©# 2z *)
(*+ using lemma whitepath-whitepath_fst_not_twice)
assert {VIz. whitepath xlzv — = #z
— 32’ . edge o' A whitepath x' I' z (add z v) };
assert {VIz. whitepath xlzv — x# 2z — nodeflip z (add x v) b};
assert {VIz.whitepath zlzv — nodeflip zvb};

(x case 3: whiteaccess v’ zv *)
(x case 3.1: whitepath ' lz A (Lmem zl V z=2) %)
assert {Vyl z. whitepath ylzv — (L.mem zl V z = 2)
— 3. whitepath z 1" z v };
(¥ goto cases 1.2 x)
(x case 3.2: whitepath r' 1z A ~(L.-mem zl V z=2) x)
assert {Vylz.mem yr' — whitepath ylzv — —(L.mem zl V z=2)
— whitepath y 1 z (add x v) };

Fig. 6. Random search step (part II)

white path from z to z not containing x. Therefore by the recursive call we
knows that z has been flipped. Now if the white path was starting not from x
but from another vertex in the set of remaining roots r’. If that path contains
x, it is no longer white when starting the recursive call. But that means that
there was a white path from z to z and we go back to the case of white paths
issued from z. If that path from 7’ does not contains z, it is still white at the
recursive call and inductively the node z at end of the path is flipped. That
proof is automatic with Alt-Ergo, CVC3 and Eprover. The lemmas can also be

let rec dfs r v
variant {(cardinal vertices — cardinal v), cardinal r} =
requires {subset r vertices}
requires {subset v vertices}
ensures {subset v result}
ensures {subset result vertices}
ensures {nodeflip_whitepath v v result}
ensures {whitepath_nodeflip v v result}
if is_empty r then

v

else

let x = choose r in

let r’ = remove x r in

if mem x v then
dfs r’ v

else

let b = dfs (successors x) (add x v) in

let b” = dfs r’ b in

(* ——————— nodeflip_whitepath *)
assert{Vz. nodeflip zv b — nodeflip zvb V nodeflip 2bb'};
(¥ ——— case 1 ———— %)

assert{Vz.nodeflip zvb — z=2x V nodeflip z (add zv) b};

(+ case 1.1: nodeflip zvb AN z=2x x)
assert{whitepath © Nil x v};

(* case 1.2: nodeflip zvb N z#x %)
assert{Vz.nodeflip z (add x v) b — whiteaccess (successors x) z (add x v)
assert{Vz' [z. whitepath z' | z (add x v) — whitepath 'l zv};
assert{Vz 2’ l. edge x 2’ — whitepath 2’ | 2 v — whitepath z (Cons z 1) 2 v};
assert{Vz. nodeflip z (add x v) b — whiteaccess r zv};

(* —— case 2 —— %)
assert{Vz. nodeflip zbb — whiteaccess 7’ 2 b};
assert{Vz 2’ l. whitepath ' |l zb — whitepath ' | z v };

Fig. 7. Depth-First search (part I)

proved automatically, but we will discuss about the proof of these lemmas in
later section.

Notice that we can prove exactly in the same way the iterative dfs algorithm
with a stack, or breadth-first search with a queue (see our webpage) One just
needs to add two assertions about the state of the stack or queue. It is frustrating
that the recursive version of dfs is a bit longer to be proved!

5 Depth-first search

The program is now making the standard recursive call on the successors of the
picked white vertex x and another tail-recursive call on the remaining set r’ of

(¥ ——————— whitepath_nodeflip *)
(* case 1: z=2 %)
assert{mem x b};
(x+ case 2: Fl.whitepath xlzv N ©# 2z *)
(*+ using lemma whitepath-whitepath_fst_not_twice x)
assert{V! z. whitepath x lzv — z# 2z —
whiteaccess (successors x) z (add x v) };
assert{V! z. whitepath x l zv — x # 2z — nodeflip z (add z v) b};
assert{V! z. whitepath © 1 zv — nodeflip zvb};
(x case 3: whiteaccess ' zv *)
(x case 3.1: —whiteaccess v’ zb x)
assert{Vz' [z. whitepath ' | zv — — whitepath 'l zb —
Jy.(L.mem yl V y=2) A nodeflip yvb};
assert{Vz' [z. whitepath ' | zv — — whitepath 'l zb —
Jy.(L.mem yl V y=2z) A (y =1z V whiteaccess (successors z) y (add x v))};
assert{Vy. whiteaccess (successors x) y (add x v) —
3. whitepath z ' y v };
assert{Vz' [z. whitepath ' | zv — — whitepath 'l zb —
Jyl'.(L.-mem yl V y=2) A whitepath zl' yv};
assert{Vz' [z. whitepath ' | zv — — whitepath 'l zb —
3. whitepath 1" z v };
(* goto cases 1—2 x)
assert{Vz' [z. whitepath ' |l zv — — whitepath ' | zb — nodeflip zv b };
(¥ case 38.2: whiteaccess v’ z bx)
assert{Vz' |l z.mem z’' ' — whitepath ' 1 zb — nodeflip zv ' };
b7

Fig. 8. Depth-First search (part IT)

roots with the already visited vertices augmented by the set of nodes visited
by the call on the successors of x. As the already visited nodes are part of the
result, one has just to consider the result b of this recursive call. We again split
the proof in two proofs with respect to the direction of post-conditions.

The proof of nodeflip_whitepath is quite similar to the one of the random
search step (see figure 7). There is an extra case when the node is flipped during
the tail-recursive call, which is just proved inductively by the post-condition of
that call.

The proof of whitepath_nodeflip is more subtle. The difference comes from
the larger set of nodes which are flipped by the recursive call. In random search
step, we knew that only the picked node x was flipped before the tail-recursive
call. Here the whole set produced by the dfs call on successors of x is flipped.
So we start as in the random search step by considering a white path from z to
any vertex z. If the path starts from x, the proof is similar to the one of random
search step. But if the path starts from a vertex in 7/, the proof is a bit more
complex. If the path keeps white after the recursive call on successors of z (case
3.2 in the proof in figure 8), then the post-condition of the tail-recursive call

states that z is flipped. If the path is no longer white after the recursive call
on successors of x (case 3.1 in the proof), then there is a node y which flipped
on that path after the first recursive call. That node y is either z or is flipped
with respect to add = v. Then by using the nodeflip_whitepath, we know that y
is connected by a white path from x or one of its successors. In both cases, there
is a white path starting from x and leading to y. Therefore there is a path from
x to z by using lemma whitepath_Y. We thus notice that these two proofs of the
post-conditions of dfs are not independent.

We now discuss definitions and lemmas needed by these dfs proofs. We
first use the whitepath_fst_not_twice predicate. Notice we need not use simple
paths, i.e. paths with no vertex repetitions. Eliminating repetition of the ini-
tial node is sufficient. (Mufioz’s note is using simple paths) We can also prove
automatically the lemma following lemma path_suffiz_fst_not_twice with the use-
ful ¢ “induction’’ keyword, hinting induction to be done on previous variable,
which Eprover can follow. All lemmas are proved automatically (see the stats in
figure 10). Lemma whitepath_Y looks strange, but is quite useful when a white
path has an intermediate node which is flipped.

predicate path_fst_not_twice (x : vertex) (I : list vertex) (z : vertex) =
path x 1z A
match [with
| Nil — true
| Cons _ ! — x#z AN -Lmemzl
end

lemma path_suffix_fst_not_twice :
Vr z 1 7induction”. path xlz — J1112. [=11 ++ [2 A path_fst_not_twice x [2 z

lemma path_path_fst_not_twice :
Vo zl.path x1 z —
3l'. path_fst_not_twice x 1" z N subset (E. elements I') (E. elements 1)

predicate whitepath_fst_not_twice (x : vertez) (I : list vertex) (z : vertex)
(v : setvertex) = whitepath x 1l zv A path_fst_not_twice x l z

lemma whitepath_whitepath_fst_not_twice:
Vo z [v. whitepath x 1 zv — 31'. whitepath_fst_not_twice x 1’ z v

lemma whitepath_trans:
Vx Il yl2 z v. whitepath x 11 yv — whitepath y 12 zv —
whitepath x (11 ++ 12) z v

lemma whitepath_Y:
Ve lzyz' U v. whitepath xlzv — (Lmem yl V y=2z2) —
whitepath ' I' yv — 310. whitepath x' 10 z v

Fig. 9. Definitions and lemmas for dfs

6 Conclusion

We hope to have met our goal of producing readable formal proofs (checked by
computer) for depth-first search in graphs. There are surely other formal proofs
such as the ones by Neuman (180 lines of Isabelle) [14] or Pottier (in Coq) [19].
Depth-first search can also be implemented with more concrete data structures.
We proved a version with arrays and lists as in algorithms textbooks. We can also
easily design one with lists for sets as the sequences in the Mathcomp library.
One longer term objective is to get readable proofs for other algorithms on
graphs. We do have proofs of test for acyclicity, strongly connected components
with various techniques and minimum spanning tree. Readable versions of these
programs proofs have to be soon inserted on our webpage.

The engineering of readable long proofs is less clear. Why3 is a fabulous
system for interfacing many provers and interactive proof systems. But making
these proofs is often unstable. An interactive proof assistant where all elemen-
tary steps are explicit (as long as implicit names are not permitted such as in
MathComp) is more robust to modifications. Again a better system of nota-
tions (as in the Coq system) would help for the readability of proofs. Finally we
did not use ghost variables in the proofs presented in this article, but these are
quite useful in many proofs of algorithms. Ghost propositions would also help
to maintain a set of valid hypotheses in the proof environments.

7 Acknowledgements

We thank Jean-Christophe Filliatre and the Why3 team for their precious ad-
vices. We are grateful to Gilles Dowek for pointing us his note with Cesar Mufoz.
J.-J. Lévy deeply thanks Huimin Lin and ISCAS for hosting this research.

References

1. C. Barrett and C. Tinelli. CVC4, the smt solver. New-York University - University
of Towa, 2011. http://cvcéd.cs.nyu.edu.

2. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

3. F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and A. Mebsout.
The alt-ergo automated theorem prover, 2008. http://alt-ergo.lri.fr/.

4. F. Bobot, J.-C. Filliatre, C. Marché, and A. Paskevich. Why3: Shepherd your
herd of provers. In Boogie 2011: First International Workshop on Intermediate
Verification Languages, pages 53-64, Wroctaw, Poland, August 2011.

5. Coq Development Team. The coq 8.5 standard library. Technical report, Inria,
2015. http://coq.inria.fr/distrib/current/stdlib.

6. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2nd edition, 2001.

7. L. de Moura and N. Bjorner. Z3, an efficient smt solver. Microsoft Research, 2008.
http://z3.codeplex.com.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

G. Dowek et al. Informatique et sciences du numérique- Spécialité ISN en terminale
S. Eyrolles, 2012.

J.-C. Filliatre et al. The why3 gallery of verified programs. Technical report,
CNRS, Inria, U. Paris-Sud, 2015. http://toccata.lri.fr/gallery/why3.en.html.

J.-C. Filliatre and A. Paskevich. Why3 — where programs meet provers. In
M. Felleisen and P. Gardner, editors, Proceedings of the 22nd European Symposium
on Programming, volume 7792 of Lecture Notes in Computer Science, pages 125—
128. Springer, Mar. 2013.

G. Gonthier et al. Finite graphs in mathematical components, 2012. Available
at http://ssr.msr-inria.inria.fr/~jenkins/current /Ssreflect.fingraph.html, The full li-
brary is available at http://www.msr-inria.fr/projects/mathematical-components-2/.
G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, and L. Théry. A modular for-
malisation of finite group theory. In Theorem Proving in Higher-Order Logics
(TPHOLS’07), volume 4732 of Lecture Notes in Computer Science, pages 86-101,
2007.

G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension for
the Coq system. Rapport de recherche RR-6455, INRIA, 2008.

P. Lammich and R. Neumann. A framework for verifying depth-first search algo-
rithms. In Proceedings of the 2015 Conference on Certified Programs and Proofs,
CPP ’15, pages 137-146, New York, NY, USA, 2015. ACM.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
2009. http://compcert.inria.fr.

J.-J. Lévy. Essays for the Luca Cardelli Fest, chapter Simple proofs of simple
programs in Why3. Microsoft Research Cambridge, MSR-TR-2014-104, 2014.

B. Meyer. Lampsort. Technical report, ETHZ, 2014. http://bertrandmeyer.com/
2014/12/07 /lampsort.

C. Munoz, V. Carrefio, and G. Dowek. Formal analysis of the operational concept
for the Small Aircraft Transportation System. In Rigorous Engineering of Fault-
Tolerant Systems, volume 4157 of Lecture Notes in Computer Science, pages 306—
325, 2006.

F. Pottier. Depth-first search and strong connectivity in Coq. In Journées Fran-
cophones des Langages Applicatifs (JFLA 2015), Jan. 2015.

S. Schulz. System Description: E 1.8. In K. McMillan, A. Middeldorp, and
A. Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312 of LNCS.
Springer, 2013.

R. Sedgewick and K. Wayne. Algorithms, 4th Edition. Addison-Wesley, 2011.

A. Tafat and C. Marché. Binary heaps formally verified in Why3. Research Report
7780, INRIA, Oct. 2011. http://hal.inria.fr/inria-00636083/en/.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski.
Spass version 3.5. In 22nd International Conference on Automated Deduction,
CADE 2009, number 5663 in LNCS, pages pp. 140-145, 2009.

~ ~
o 3
1B <}
| 72| @
5 0 5| 8 32| 2
= > a, a o ® @
Proof obligations < 0 H] 0 N N
path_suffix_fst_not_twice (15s) | (15s) [11.47[19.09] (15s) |(15s)
path_path-fst.not-twice (15s) | (15s) 0.05 | 0.02
whitepath.decomposition (15s) | 0.65 (15s)
whitepath-mem.decompositionr (45s) | (45s) (45s)| 4.03 No run
whitepath_whitepath fst_not_twice (15s) | (65s) [(65s) 0.02 | (65s)
o [0.02
path_cons.inv 0.04 | 0.09 (15s)
whitepath_cons_inv (15s) | (15s) 0.88
whitepath_cons_fst_not_twice_inv (15s) [(15s) (15s) | (15s) (15s)
1. [T] 0.07
whitepath-fst_not_twice_inv (15s) | (15s) | 0.04 | 0.18 | (15s) [(15s)
whitepath_trans 0.06 (15s)
whitepath.Y (45s) 4.30
VC for dfs 1. postcond 0.03
2. postcond [[] 0.03
3. postcond ||| 0.03
4. postcond [[]| 0.03
5. variant [[| 0.05
6. precond [[] 0.03
7. precond [T] 0.02
8. postcond ||| 0.03
9. postcond ||| 0.03
10. postcond ||| 0.97
11. postcond [[] 0.04
12. variant [[] 0.05
13. precond [[] 0.04
14. precond [[] 0.04
15. variant [[] 0.08
16. precond [[] 0.03
17. precond [T] 0.03
18. assertion|[[] 0.03 | 0.06 0.07 0.02
19. assertion[[] 0.05
20. assertion|[|| 0.03
21. assertion|] | 0.05
22. assertion|[||14.87
23. assertion|[[| 0.17 (35s)
24. assertion|] | 0.04
25. assertion|] | 0.10
26. assertion|] | 0.08
27. assertion[[]| 0.05
28. assertion|| | 1.15
29. assertion[[|11.26| 0.80
30. assertion[|| 0.31 [No run No run
31. assertion|] | 0.42
32. assertion|| 0.90
33. assertion|] | 6.32
34. assertion|] | 1.31
35. assertion[[|(15s)| (15s) (45s) | (45s) 0.05
36. assertion|] | No run 0.08
37. assertion|] | 0.25
38. postcond [| 4.85 No run No run
39. postcond ||| 0.03 0.09 No run No run
40. postcond || 4.61 No run
41. postcond || BB
VC for dfsmain 1. precond 0.02
2. precond ||| 0.03

Fig. 10. Stats of the Depth-first search proof on 2.93 GHz Intel Core 2 Duo

