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Abstract

We want simple proofs for proving correctness of simple programs. We
want these proofs to be checked by computer. We also want to use current
interactive or automatic provers and not build new ones. Finally Hoare
logic is a good framework to avoid complex definitions of the operational
semantics of programming languages. In this short note, we take the exam-
ple of merge-sort as expressed in Sedgewick’s book about Algorithms and
demonstrate how to prove its correctness in Why3, a system developed at
Université de Paris-Sud, Cnrs and Inria. There are various computer sys-
tems which integrate proofs and programs, e.g. VCC, Spec#, F?, Frama-C,
etc. Why3 integrates a small imperative language (Why ML) and an ex-
tension of Hoare logic with recursive data types and inductive predicates.
It is interfaced with interactive systems (Coq, Isabelle/HOL, PVS) and au-
tomatic provers (Alt-Ergo, Z3, CVC3, CVC4, E-prover, Gappa, Simplify,
Spass, Yices, etc). Therefore Why3 can also be considered as a fantastic
back-end for other programming environments.

1 Introduction

Formal proofs of program safety are always a big challenge. Usually they comprise
a large number of cases, which make them intractable on paper. Fortunately
there are a few proof-assistants which guarantee the exactness of formal proofs,
but less many mixing programs and proofs. Moreover we believe that these
computer-checked proofs should be readable and simple when we have to prove
simple programs. In this note, we take Hoare logic as the basic formal setting
and we consider a simple Pascal-like imperative programming language (Why
ML) with an ML-like syntax. This logic is first-order with several extensions
to allow recursive data and inductively defined predicates. We hope that both
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syntax of the programs and logic are self-explainable. If not, the interested reader
is referred to the Why3 web site. We illustrate here the use of the Why3 system
through a proof of the merge-sort program. We consider two versions of it: on
lists and on arrays. The version on arrays is far more complex to prove correct.

2 Mergesort on lists

In Why ML, merge-sort on lists of integers is expressed in figure 1. Its correctness
proof is easy. Pre and post-conditions follow keywords requires and ensures in
the headers of functions. In post-conditions, result represents the value returned
by the function; sorted, permut, (++) are predicates and functions defined in
the theory of polymorphic lists in the Why3 standard library (located at URL
http://why3.lri.fr/stdlib-0.83). Part of this theory is visible in figure 2. The
verification conditions generated by Why3 can be proved automatically with Alt-
Ergo, CVC3 and Eprover 1-6. The longest proof is the one for the post-conditions
of merge (5.02 sec by CVC3) and split (2.05 sec by Eprover). These timings are
obtained on a regular dual-core notebook. The choice of the provers and of
the transformations to apply to goals (splitting conjunctions, inlining function
definitions) is manual, but easy to perform thanks to the Why3 graphic interface.

Moreover the assertions are natural and look minimal. Maybe the most mys-
terious part is the post-condition of merge, which states that the result is a per-
mutation of the concatenation `1 ++ `2 of the parameters `1 and `2 of merge. This
property is needed to prove the sorted post-condition since x1 (or x2) should
be ranked with respect to the result of the recursive calls of merge. In fact it is
sufficient to know that that result only contains elements of the lists `1 (or `2).
Now the proof of permut in the post-condition of merge is totally orthogonal and
is resumed in the second part of figure 1.

3 Mergesort on arrays

We now consider the program as written in Sedgewick and Wayne (2011). In this
version of mergesort there is a trick in organizing the area to merge as a bitonic
sequence, increasing first and decreasing afterwards (although not expressed in
that way in the book). It thus avoids multiple loops or tests as halting conditions
of loops. See the code on figure 3 in Why ML language where the second half of
a is copied into second half of b in reverse order. In pre and post-conditions, new
predicates or functions are used: sorted_sub and permut_sub mean sorted and
permut on subarrays between bounds lo (included) and hi (excluded); (old a)

means the array a before calling the function.
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l et rec split (l : list int ) (∗ f i r s t par t ∗)
= match l with
| Nil −> (Nil , Nil )
| Cons x Nil −> ( ( Cons x Nil ) , Nil )
| Cons x ( Cons y l ’ ) −> l et (xs , ys ) = split l ’ in

( ( Cons x xs ) , ( Cons y ys ) )
end

let rec merge l1 l2

requires { sorted l1 /\ sorted l2}
ensures { sorted result /\ permut result (l1 ++ l2 ) }

= match l1 , l2 with
| Nil , _ −> l2

| _ , Nil −> l1

| Cons x1 r1 , Cons x2 r2 −>
i f x1 <= x2 then Cons x1 ( merge r1 l2 )

else Cons x2 ( merge l1 r2 )
end

let rec mergesort l

ensures { sorted result }
= match l with
| Nil | Cons _ Nil −> l

| _ −> l et l1 , l2 = split l in merge ( mergesort l1 ) ( mergesort l2 )
end

(∗ second par t ∗)
l et rec split (l : list int )
ensures { l et (l1 , l2 ) = result in permut l (l1 ++ l2 )} = . . .

l et rec merge l1 l2

ensures { permut result (l1 ++ l2 )} = . . .

l et rec mergesort l

ensures { permut result l} = . . .

Figure 1: Mergesort on lists

The proof of sorted in post-condition of mergesort needs several add-ons to
the theory of arrays in the Why3 standard library as shown in figure 4. An
array is represented by a record with two fields: an integer length and a total
map elts from integers to values. The functions get and set reads and writes
a value from or into an element of an array (or map). Thus we define the pred-
icates array_eq_sub_rev_offset, dsorted_sub and bitonic_sub both on arrays
and maps. (Why3 translates predicates over arrays into predicates over maps,
where the solvers are mainly acting). The first predicate is a technical abbrevia-
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function (++) (l1 l2 : list ’a ) : list ’a = match l1 with
| Nil −> l2

| Cons x1 r1 −> Cons x1 (r1 ++ l2 )
end

inductive sorted (l : list t ) =
| Sorted_Nil :

sorted Nil

| Sorted_One :
forall x : t . sorted ( Cons x Nil )

| Sorted_Two :
forall x y : t , l : list t .
le x y −> sorted ( Cons y l ) −> sorted ( Cons x ( Cons y l ) )

function num_occ (x : ’a ) (l : list ’a ) : int =
match l with
| Nil −> 0
| Cons y r −> ( i f x = y then 1 else 0) + num_occ x r

end

predicate permut (l1 : list ’a ) (l2 : list ’a ) =
forall x : ’a . num_occ x l1 = num_occ x l2

Figure 2: Theory of lists

tion to test for equality after reversing and adding an offset to a subarray. The
two last predicates mean down-sorted or bitonic on sub-arrays (and sub-maps).
We finally add two lemmas about weakening the interval of a bitonic subarray.

To prove the first part (sorted_sub) of the post-condition of mergesort1, we
add several assertions and invariants in its body as shown on figure 5. We use a
new operator (at a ’L) in formulas meaning the value of array a at label L. The
proof of the 161 verification conditions is fully automatic with the Alt-Ergo prover
and quasi online. But this happened after many attempts and reformulations of
assertions and invariants and use other provers. Retries are favourised by the
incremental dependency analysis (stored in a so-called why3session.xml file) of
Why3 which only recomputes the modified goals.

To summarize the logic of this function, there are two recursive calls on both
halves of array a; the first half is copied into the first half of array b; the second
half is copied in reverse order into the second half of array b; finally the merge
of the two halves of b is returned in a. Notice that during the merge phase, the
index j can go over the half m of the array b. Therefore the assertion m <= !j is
not true since the index j can go up to lo when all elements are equal in b.

The second part (permut_sub) of the post-condition of mergesort1 follows the
same lines and is exhibited at URL http://jeanjacqueslevy.net/why3/sorting/.

4



Permutations on arrays are defined by counting the number of occurrences for
each value. Therefore the proof demands several properties of occurrences of
values in sub-arrays. The proof is very natural except for a couple of redun-
dant assertions, which ease the behaviours of automatic provers. In fact, many
provers are involved in that second part, namely Alt-Ergo, Yices, CVC4 and Z3,
thoroughly chosen thanks to the graphical interface of Why3. Moreover several
manual transformations were needed, such as inlining and splitting of conjunc-
tions.

The two lemmas about weakening the interval of map_bitonic are proved by 30
lines of easy and readable Coq (with ss-reflect package). It needs 4 extra lemmas
(each with 7-line long Coq proof) sorted_sub_weakening, dsorted_sub_weakening,
sorted_sub_empty and dsorted_sub_empty which states the weakening of inter-
vals for (d)sorted subarrays and the (d)sorted status of empty subarrays. In fact
these lemmas could also be proved by automatic provers, but there is a trade-off
between expressing abstract properties and a detailed computable presentation.
For instance, bitonic is defined with an existential connector, which is quasi
equivalent to the end of automatic first-order provers. A more precise presenta-
tion with parameterizing the index at peak of the bitonic sequence would have
reactivated the automatic methods. In fact, this trade-off is a big advantage of
Why3. For instance, a verification condition can also be first attempted in Coq,
and later proved automatically after simplifications.

4 Conclusion

The mergesort example demonstrates the versatility of the Why3 system. One
can nicely mix automatic and interactive proofs. The multiplicity of solvers (SMT
solvers and theorem provers) give high confidence before attacking an interactive
proof, which is then reserved for conceptual parts. It is even possible to call back
automatic provers from the interactive parts (not in the mergesort example, but
it did happen in a version of quicksort to avoid a long Coq proof with numerous
cases), but it requires to solve several technical typing subtleties. The system
demands some training since it is a bit complex to manipulate numerous solvers
and interactive proof-assistants. The WhyML memory model is rather naive
since variables and arrays only allow single assignments. New variables or new
arrays are created after every modification of their contents. Moreover arrays are
immediately expanded to maps. Therefore it would be interesting to understand
how far one can go with this memory model. It did not prevent from already
building a gallery of small verified programs existing in the Why3 public release.
The Frama-C project uses Why3 among other analyzers to build a verification
environment for C programs written for small run-times or embedded systems.
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l et rec mergesort1 (a b : array int ) (lo hi : int ) =
requires {Array . length a = Array . length b /\

0 <= lo <= ( Array . length a ) /\ 0 <= hi <= ( Array . length a ) }
ensures { sorted_sub a lo hi /\ permut_sub ( old a ) a lo hi }

i f lo + 1 < hi then
let m = div (lo+hi ) 2 in
mergesort1 a b lo m ;
mergesort1 a b m hi ;
for i = lo to m−1 do

b [ i ] <− a [ i ]
done ;

for j = m to hi−1 do
b [ j ] <− a [ m + hi − 1 − j ]
done ;

l et i = ref lo in
let j = ref hi in
for k = lo to hi−1 do

i f b [ ! i ] < b [ ! j − 1 ] then
begin a [ k ] <− b [ ! i ] ; i := ! i + 1 end

else
begin j := ! j − 1 ; a [ k ] <− b [ ! j ] end

done

let mergesort (a : array int ) =
ensures { sorted a /\ permut ( old a ) a }

l et n = Array . length a in
let b = Array . make n 0 in

mergesort1 a b 0 n

Figure 3: Mergesort on arrays

Finally it is interesting to notice how robust and intuitive is Hoare logic.
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l et rec mergesort1 (a b : array int ) (lo hi : int ) =
requires {Array . length a = Array . length b /\

0 <= lo <= ( Array . length a ) /\ 0 <= hi <= ( Array . length a ) }
ensures { sorted_sub a lo hi /\ modified_inside ( old a ) a lo hi }

i f lo + 1 < hi then
let m = div (lo+hi ) 2 in

assert{ lo < m < hi } ;
mergesort1 a b lo m ;

’L2 : mergesort1 a b m hi ;
assert { array_eq_sub (at a ’L2 ) a lo m } ;
for i = lo to m−1 do

invariant { array_eq_sub b a lo i}
b [ i ] <− a [ i ]
done ;

assert{ array_eq_sub a b lo m } ;
assert{ sorted_sub b lo m } ;
for j = m to hi−1 do

invariant { array_eq_sub_rev_offset b a m j (hi − j )}
invariant { array_eq_sub a b lo m}
b [ j ] <− a [ m + hi − 1 − j ]
done ;

assert{ array_eq_sub a b lo m } ;
assert{ sorted_sub b lo m } ;
assert{ array_eq_sub_rev_offset b a m hi 0} ;
assert{ dsorted_sub b m hi } ;

’L4 : l et i = ref lo in
let j = ref hi in
for k = lo to hi−1 do

invariant{ lo <= ! i < hi /\ lo <= ! j <= hi}
invariant{ k = ! i + hi − ! j}
invariant{ sorted_sub a lo k }
invariant{ forall k1 k2 : int . lo <= k1 < k −>

! i <= k2 < ! j −> a [ k1 ] <= b [ k2 ] }
invariant{ bitonic b ! i ! j }
invariant{ modified_inside a (at a ’L4 ) lo hi }
assert { ! i < ! j } ;
i f b [ ! i ] < b [ ! j − 1 ] then

begin a [ k ] <− b [ ! i ] ; i := ! i + 1 end
else

begin j := ! j − 1 ; a [ k ] <− b [ ! j ] end
done

Figure 5: Proof of mergesort on arrays
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