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In the theory of sequential programming languages, Berry’s stability property is an

important step claiming that values have unique origins in their calculations. It

has been shown that Bohm trees are stable in the λ-calculus, meaning that there is

a unique minimum prefix of any lambda term which computes its Bohm tree.

Moreover this property is also true for finite prefixes of Bohm trees. The proof

relies on Curry’s standardization theorem as initially pointed out by Plotkin in his

famous article LCF considered as a programming language. In this paper we will

show that the stability property also holds for redexes. Namely for any redex

family, there is a unique minimum calculation and a unique redex which computes

this family. This property was already known in the study of optimal reductions,

but we stress here on stability and want to show that stability is inside the basic

objects of calculations. The proof will be based on nice commutations between

residuals and creations of new redexes. Our tool for proving this property will be

the labeled lambda calculus used in the study of optimal reductions.

1. Introduction

The theory of sequential programming languages relies on complex structures such

as Scott’s domains (Cadiou, 1972; Vuillemin, 1973; Plotkin, 1977; Berry, 1978),

Kahn-Plotkin concrete domains and CDS (Berry and Curien, 1982; Berry and

Curien, 1985), game semantics (Abramsky et al., 2000), etc. However, Berry’s sta-

bility property is a simple property of monotonic functions on lattices. The mono-

tonic function f is stable if whenever x and y are compatible, we have f(x u y) =

f(x)u f(y) where xu y is the greatest lower bound of x and y. By x and y compat-

ible, we meant that they have a common majorant. This implies on well-founded

lattices that there is a unique minimal minorant of any x producing the same value

as f(x). Therefore stability is a first approximation of sequentiality, since one cannot

compute a given value by two distinct minimal ways. The prototype of a non stable

function is the well-known parallel-or por such that por(⊥,⊥) =⊥, por(tt ,⊥) = tt ,

por(⊥, tt) = tt .

Stability does exist in the λ-calculus. Plotkin(Plotkin, 1977) proved that PCF

(a λ-calculus with conditional and arithmetic) is stable, thus por is not definable
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Fig. 1. “has a (head) normal form” is a stable predicate.

in PCF. In the pure λ-calculus, one can also prove that there is no context C[ , ]

such that C[Ω,Ω] has no normal form, but C[Ω, I] and C[I,Ω] have normal forms,

where ∆ = λx.xx, Ω = ∆∆ and I = λx.x. Indeed, with Curry’s standardization

theorem, we know that a normal form is always reached by the leftmost-outermost

reduction (normal reduction). Therefore either the normal reduction of C[M,N ]

ignores M and N and C[Ω,Ω] has a normal form; or the normal reduction starts by

M , and then C[Ω, I] cannot have a normal form; or it starts by N and then C[I,Ω]

has no normal form. The deterministic feature of the normal reduction enforces the

stability property of the predicate “has a normal form”.

This property is also true for head normal forms and for their finite and infinite

expansions, namely Bohm trees (Barendregt, 1984). For any λ-term M with a head

normal form, there is a unique minimum prefix M0 which has a head normal form,

see figure 1. To be more precise, we define prefixes in a λ-calculus augmented by a

constant and say that M is a prefix of N if N matches M except in occurrences

of this new constant. For instance M = (λf.fI(fΩ))(λx.I) has I as normal form.

Its minimum prefix is M0 = (λf.f (f ))(λx.I) which also reduces to I. Similarly,

for Bohm trees, if a is a finite approximation of the Bohm tree of M , there is a

unique minimum prefix M0 of M which also admits a as finite approximation of its

Bohm tree. Proofs of this property can be found in (Berry, 1978; Lévy, 1978).

The stability property relies on the standardization theorem which entails the

correctness of the normal reduction strategy. But a more precise cause could exist

inside redexes. This is the goal of this contribution. In section 2, we refresh notions

of labels, residuals and creation of redexes in the λ-calculus. We also introduce a

revised labeled λ-calculus. In sections 3 and 4 we review permutation equivalence

on reductions, historical redexes and redex families. In section 5 we state our aimed

stability properties on redexes. We conclude in section 6.

2. The labeled λ-calculus, residuals and created redexes

We follow the notations used in (Lévy, 2009). The set Λ of λ-terms, ranged over

by M , N , . . . contains variables x, applications (MN) and abstractions (λx.M).

Beta-conversion is (λx.M)N → M{x := N}. Several steps (maybe none) of beta-

conversion are written →→ and called reductions. We give names ρ, σ, . . . to reduc-

tions and we write ρ : M →→ N to specify the initial and final terms of reduction
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ρ. The reduction graph R(M) of any lambda term M is the graph of reducts of M

connected by reduction steps. Paths in this graph are reductions between reducts

of M . The reductions ρ and σ are coinitial if they start from a same term M . They

are cofinal if they end on a same N . Let ρ ∈ R(M) be the following reduction from

M to N

ρ : M = M0
R1→M1

R2→M2 · · · Rn→ Mn = N

contracting redex Ri in Mi−1 at each step (1 ≤ i ≤ n). We may also write simply

ρ = R1R2 . . . Rn when M and N are clear from the context. When n = 0, then ρ is

the empty reduction oM or simply o. Redexes may be tracked over reductions. Let

R be a redex in M . We write R/ρ for the set of residuals of R in M by reduction

ρ ∈ R(M). For instance, if we underline R and its residuals, we have

ρ : ∆(Ix)→ (Ix) (Ix)

σ : ∆(Ix)→ ∆x

τ : ∆(Ix)→ (Ix)(Ix)

We refer to Curry&Feys (Curry and Feys, 1958), Barendregt (Barendregt, 1984),

or (Lévy, 1978) for a precise definition of residuals by use of the annoying notion

of occurrences. Notice that residuals could differ along two coinitial and cofinal

reductions. Take I(Ix) → Ix. Finally ρ creates R if there is no R′ such that R ∈
R′/ρ.

We now define the labeled λ-calculus, which was first introduced in the Rome

Symposium on λ-calculus and Computer Science Theory, 1975, organized by Cor-

rado Böhm (Lévy, 1975). The aim of this calculus is to give names to redexes

and subterms in order to track their origin. The set Λ` of labeled terms contains

the usual λ-terms but with every subterm equipped with a label. Beta-conversion

modifies labels on borders of contractums of redexes.

α, β, . . . ::= a, b, c, . . . | dαe | bαc | αβ labels

M,N, . . . ::= xα | (MN)α | (λx.M)α labeled terms

((λx.M)αN)β → ((M{x := Nbαc})dαe)β labeled beta-conversion

(Uα)β = Uαβ xα{x := N} = Nα U without external label

Atomic labels are letters a, b, c, . . . overlined label dαe and underlined label bαc.
Label αβ is composite. Substitution is defined as usual in the λ-calculus. The only

difference is when substituting a variable in which case the label is changed. Notice

also that we slightly modified the calculus of (Lévy, 1975) by taking mirror images

of previous labels. This new presentation seems more intuitive. Finally the name of

a redex is the label of its function part.

name(((λx.M)αN)β) = α

Proposition 2.1. S ∈ R/ρ implies name(R) = name(S).

Proposition 2.2. If R creates S, then name(R) is strictly contained in name(S).



J.-J. Lévy 4

Theorem 2.3. The labeled λ-calculus is confluent.

The proofs follow from the definitions and standard methods, see (Lévy, 1975).

The only interesting proposition is for the creation of redexes. There are only three

cases. First when a function is passed to the left of an application as in:

(λx. · · · (xβ N) · · ·)α (λy.M)γ → · · · ((λy.M)γbαcβN ′) · · ·

or when the curryfied function takes its first argument:

((λx.(λy.M)γ)αN)βP → (λy.M ′)γdαeβP

or when a function is applied to the identity at the left of an application:

((λx.xγ)α(λy.M)δ)βN → (λy.M)δbαcγdαeβN

In every case, the name α of the contracted redex becomes atomic in the name of

the new redex and is therefore strictly contained inside. The confluence property of

the labeled λ-calculus is also true when one restricts beta-conversion to a given set

of redex names, since residuals keep names. Moreover strong normalization holds

when this set of names is finite, see (Lévy, 1978).

Let INIT(M) be true when all labels in M are distinct letters. Then names of

created redexes cannot be simple letters, which gives the following easy corollary.

Corollary 2.4. If INIT(M) and ρ : M →→ N , then S ∈ R/ρ iff name(R) = name(S).

3. Parallel reductions, permutations of reductions

Parallel beta-conversion
F→ of a set F of redexes is defined as a finite development

of F where finite developments follow this theorem.

Theorem 3.1 (Finite developments). Let F be a set of redexes in M , consider

relative reductions which contract only residuals of redexes in F . Then:

(i) there is no infinite reduction relative to F ;

(ii) the developments of F (maximal relative reductions) end all at the same term;

(iii) the residuals of any redex R in M are the same by all developments of F .

The theorem is due to Curry. Its proof is quite simple by using confluency and

strong normalization of the labeled λ-calculus as in (Lévy, 1978). Parallel moves

and the cube lemma are two corollaries.

Corollary 3.2 (Parallel moves). Let F1 and F2 be two sets of redexes in M . If

M1
F1←M

F2→M2, then there is a term N such that M1
G2→ N

G1←M2 with G1 = F1/F2

and G2 = F2/F1.

Let F1 t F2 = F1(F2/F1). An alternative statement of this lemma would be

that F1 t F2 and F2 t F1 are cofinal. The proof is obvious by considering two

developments of F1 ∪ F2, one starting by contracting F1 and then F2/F1, the

second contracting F2 and then F1/F2.
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Fig. 2. (a) Parallel moves; (b) Cube lemma.

Corollary 3.3 (Cube lemma). Let F1, F2 and F3 be three sets of redexes in M .

Then F3/(F1 t F2) = F3/(F2 t F1).

Two reductions are equivalent by permutations when they differ by several uses

of the lemma of parallel moves and erasures of empty steps.

Definition 3.4. The permutation equivalence ∼ on reductions in R(M) is induc-

tively defined by:

(i) F1 t F2 ∼ F2 t F1

(ii) ∅ ∼ o and o ∼ ∅
(iii) ρ ∼ σ implies τρ ∼ τσ
(iv) ρ ∼ σ implies ρτ ∼ στ
(v) ρ ∼ σ ∼ τ implies ρ ∼ τ .

Alternative definitions of this equivalence can be found in (van Oostrom and

de Vrijer, 2002; van Oostrom and de Vrijer, 2003). This relation is defined on parallel

reductions, but it also relates regular reductions since their elementary steps can

be considered as contractions of singleton sets of redexes. Residuals of reductions

can also be defined inductively as follows (see figure 3).

Definition 3.5. Let ρ and σ be two reductions starting at M . The residual ρ/σ of

reduction ρ by reduction σ is inductively defined by:

(i) if ρ = F and σ = G, then ρ/σ = F/G
(ii) ρ/(σ1σ2) = (ρ/σ1)/σ2
(iii) (ρ1ρ2)/σ = (ρ1/σ)(ρ2/(σ/ρ1)

When ρ and σ are two coinitial reductions, we pose ρtσ = ρ(σ/ρ), and write ∅k
for k steps of empty-set contractions (k ≥ 0). The following properties hold for the

permutation equivalence.

Proposition 3.6. Let ρ and σ be two coinitial reductions (ρ, σ ∈ R(M)) :

(i) ρ t σ ∼ σ t ρ
(ii) ρ ∼ σ iff ∀τ ∈ R(M) τ/ρ = τ/σ

(iii) ρ ∼ σ iff ρ/σ = ∅k and σ/ρ = ∅`
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ρ σ

⇢/��/⇢

Fig. 3. ρ/σ is residual of reduction ρ by reduction σ.

(iv) ρσ ∼ ρτ iff σ ∼ τ

Standard reductions work from left to right. A redex is to the left of another

redex if the first is to the left or contains the second redex. The following reduction

ρ : M0
R1→M1

R2→M2 · · · Rn→ Mn

is standard iff for all i,j such that 0 < i < j ≤ n, redex Rj is not residual of R′j to

the left of Ri in Mi−1 along ρ.

Proposition 3.7. For any ρ, there is a unique σ standard such that ρ ∼ σ.

The proof follows from the usual proof of Curry’s standardization theorem. The

uniqueness is easy to prove, see (Lévy, 1978). Therefore an equivalence class of

reductions is characterized by its unique standard reduction. Finally let ρ be a

prefix of coinitial reduction σ iff ρτ ∼ σ for some τ . We then write ρ ≤ σ. This

prefix ordering gives the lattice of reductions for a given R(M) reduction graph.

The interested reader is refered to (Lévy, 1978; Barendregt, 1984; Berry and Lévy,

1979; Huet and Lévy, 1991).

4. Histories and redex families

An historical redex (hredex in short) is a pair 〈ρ,R〉 where ρ : M →→ N and R

is a redex in N . Redex R in M is hredex 〈o,R〉 where o is the empty reduction.

Intuitively, history of redexes has to be consistent with permutations of reduction

steps. The contractions of two independent redexes are insensitive in the creation

history of a redex. For instance we have (λx.xy)(II) →→ Iy by contractions of two

distinct redexes. Redex Iy is created by these two redexes independently of the order

in which they are contracted. But when we have ρ : Ω → Ω and σ : Ω → Ω → Ω,

then o 6∼ ρ 6∼ σ. Therefore 〈o,Ω〉, 〈ρ,Ω〉 and 〈σ,Ω〉 are distinct hredexes. A third
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Fig. 4. Hredexes and permutations of reductions.

example considers M = I((λy.Ix)z) with its three redexes R = I((λy.Ix)z), S = Ix

and K = (λy.Ix)z. The reduction graph has no lattice structure, but the structure

induced by the prefix ordering is indeed a lattice. Let ρ : I((λy.Ix)z)→ (λy.Ix)z →
Ix and σ : I((λy.Ix)z)→ I((λy.x)z)→ Ix, the hredex 〈ρ, Ix〉 is a residual of 〈o, S〉,
but 〈σ, Ix〉 is a residual of 〈o,R〉. This disambiguates the residual relations induced

on terms, see figure 4.

We now define formally the residual relation on hredexes by taking care of the

histories of hredexes.

Definition 4.1. We say that hredex 〈σ, S〉 is a residual of hredex 〈ρ,R〉 when there

is τ such that ρτ ∼ σ and S ∈ R/τ . We then write 〈ρ,R〉 6 〈σ, S〉.

Proposition 4.2. Let ρ and σ be coinitial reductions:

(i) 〈ρ,R〉 6 〈σ, S〉 iff ρ ≤ σ and S ∈ R/(σ/ρ).

(ii) ρ ∼ σ and R = S iff 〈ρ,R〉 6 〈σ, S〉 6 〈ρ,R〉
(iii) 〈ρ,R〉 6 〈σ, S〉 6 〈τ, T 〉 implies 〈ρ,R〉 6 〈τ, T 〉
(iv) 〈ρ,R〉 6 〈τ, T 〉 and 〈σ, S〉 6 〈τ, T 〉 implies there is T ′ (unique) such that

〈ρ,R〉 6 〈ρ t σ, T ′〉, 〈σ, S〉 6 〈ρ t σ, T ′〉 and 〈ρ t σ, T ′〉 6 〈τ, T 〉.

These properties are easy consequences of the previous definition. Residuals of

hredexes are consistent with permutations of reductions. They form a nice pre-order

with equivalence by permutations and equality of redex occurrences as associated

equivalence. It also has a conditional upper semi-lattice structure and uniqueness

of the least upper bound is due to the functionality of the inverse of the residual

relation, since a redex is at most residual of a single redex for any given reduction.

The last step of our construction is to consider created redexes and the family

relations between them. Our favourite example is the one of figure 5. Two redexes

are initially in M . A third one Ix is created in the reduction graph. We observe that

we only can connect its occurrences by zigzagging with residuals of hredexes. For

instance Ix in (Ix)(IIx) is connected to Ix in (IIx)(Ix) by a zigzag of residuals

through ∆(Ix). We therefore define families of hredexes as the symmetric and

transitive closures of the residual relation on hredexes.

Definition 4.3. Hredexes 〈ρ,R〉 and 〈σ, S〉 are family-related, written 〈ρ,R〉 ≈
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∆(Ix)

∆x

xx

x(Ix)

x(IIx)

(IIx)(IIx)

(IIx)(Ix)

(Ix)(Ix)

(Ix)(IIx)

(IIx)x

(Ix)x

M = ∆(IIx)

Fig. 5. An example of redex families.

S

∼

ρ σ

R

Fig. 6. 〈ρ,R〉 ≈ 〈σ, S〉 : the hredexes 〈ρ,R〉 and 〈σ, S〉 are family-related.

〈σ, S〉, iff 〈ρ,R〉 6 〈σ, S〉 or 〈σ, S〉 6 〈ρ,R〉 or 〈ρ,R〉 ≈ 〈τ, T 〉 ≈ 〈σ, S〉 for some

〈τ, T 〉. (see figure 6)

5. Stability of redexes

We now study the origins of hredexes and show that they have a unique origin

in each redex family, ensuring a stability property for redexes as stated in the

introduction of this article. First consider redexes with no history. Let R and S be

redexes in M and ρ : M →→ N where ρ = R t S. We also have σ : M →→ N with

σ = S tR. Let T be a redex in N . There are several cases: either T already exists

in M , either T is created by both R and S, either T is created by one of them. But,

in the last case, the origin is unique, T is exclusively created by R or exclusively

created by S. To be more precise, we have the two following properties.
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Fig. 7. Stability of redexes

Proposition 5.1. Let R 6= S. Then T ∈ T1/(S/R) and T ∈ T2/(R/S) implies

T ∈ T ′/(R t S) for some T ′. (see figure 7)

Corollary 5.2. Let R 6= S. If T ∈ T1/(S/R) and R creates T1, then there exists

R′ in R/S such that R′ creates T .

This last property can be seen as a nice commutation between creation and

residuals. The proof of the proposition again uses the labeled λ-calculus. Assume

that INIT(M) is true. Let a and b be names of R and S (a 6= b since R 6= S).

By proposition 1, redexes T , T1, T2 have the same name α. If T1 is residual of T ′

in M . Then T ∈ T ′/(R t S). If T1 is created by R, then a is strictly contained

in α by proposition 2. As R is the only contracted redex in M , the name b of S

cannot be underlined or overlined in α. So b is not stricly inside α. This makes

impossible the creation of T2 by S. Therefore T2 ∈ T ′/S for some redex T ′ in M .

Thus T ∈ T ′/(S t R) = T ′/(R t S). The corollary is a logical consequence of the

proposition. The only difficulty is to prove that only one redex in R/S creates T .

Since R/S is a set of disjoint redexes, only one of them can create a new redex. (Only

nested redexes can cooperate in the creation of new redexes.) Finally the stability

property is also true for parallel steps. Again if two sets of redexes are disjoint, then

there is the stability property. The proof is similar and uses the labeled λ-calculus.

Proposition 5.3. Let F ∩ G = ∅. Then T ∈ T1/(G/F) and T ∈ T2/(F/G) implies

T ∈ T ′/(F t G) for some T ′.

Corollary 5.4. If F ∩ G = ∅, T ∈ T1/(G/F) and F creates T1, then F/G creates

T .

This is corollary 5.2 for the case of redex families, although the proofs are more

difficult, see (Asperti and Laneve, 1995; Lévy, 1978). There is still a lack of an easy

proof for it. The usual one goes through the labeled λ-calculus and an extraction

process for creation of hredexes. The statement of the property is as follows.
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Fig. 8. Stability of redex families

Theorem 5.5. In each redex family class, there is a unique hredex 〈τ, T 〉 with τ

standard reduction of minimum length.

In the theory of optimal reductions, we called this hredex the canonical repre-

sentative of its family. Intuitively every step in τ is necessary to create T . Philo-

sophically, this representative represents the unique origin τ of its family. There is

no alternative way to create it. Therefore the stability property is also valid inside

redex families.

In the rest of this section we sketch the proof of this theorem.

First the canonical representative is defined by eliminating every redex S useless

in the creation of any hredex 〈ρ1Sρ2, R〉. This happens when there is 〈ρ′2, R′〉 such

that 〈ρ1Sρ2, R〉 6 〈ρ1(S t ρ′2), R′′〉 > 〈ρ1ρ′2, R′〉 and S not used in ρ′2. It only

makes sense when ρ1Sρ2 is a standard reduction. Therefore following (Asperti and

Laneve, 1995), we define an extraction relation when ρ1Sρ2R (including last step

R) is standard.

Definition 5.6. The extraction relation B is defined by one of the following cases:

(i) S t ρB ρ if ρ is fully in a subterm disjoint from redex S = (λx.A)B.

(ii) S t ρB ρ if ρ is in the function body A of S.

(iii) Sρ B ρ′ if ρ is in the i-th instance of the argument B of S and ρ‖S = ρ′/S
where ρ ‖ S is reduction ρ done simultaneously in all instances of B.

(iv) σρB σρ′ if ρB ρ′

Definition 5.7. Hredex 〈ρ,R〉 is canonical if ρR is standard and normal form of

B.

One can show that the extraction relation is confluent (although not necessary

in the overall proof). Clearly extraction keeps hredexes in the same family, namely

〈σ, S〉 ≈ 〈ρ,R〉 when σSB ρR. Notice also that when σ is standard and σB ρ, then

ρ is also a standard reduction with strictly smaller length. It remains to show that

the canonical hredex is unique in each redex family. This is the difficult part of the
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proof and it relies on the labeled λ-calculus. We begin with a remark about labeled

standard reductions.

Proposition 5.8. Let ρ : M →→ N . If R = ((λx.A)αB)β is a redex in N and ρR is

standard, then (λx.A)a (where α = aα′) and any subterm Q in N to the right of

(λx.A)a is of the form Q = P{x1 := P bγ1c1 } · · · {xn := P
bγnc
n } where P is a subterm

of M .

This proposition is immediate along standard reductions since subterms to the

right of (or equal to) the function part of the contracted redex come from subterms

already to the right of the previously contracted redex. At most their free variables

can be instantiated. As corollary, when INIT(M), at any step of every standard

reduction starting from M , in any abstraction to the right of (or equal to) the

function part of the contracted redex, the paths from binders to occurrences of

bound variables are exactly the paths in M and therefore labeled with atomic

letters. Another corollary is that there are no overlined labels at right of (λx.A)a.

Proposition 5.9. Let INIT(M) and ρ, σ ∈ R(M). If 〈ρ,R〉 and 〈σ, S〉 are canonical

hredexes, then name(R) = name(S) implies 〈ρ,R〉 = 〈σ, S〉.

In (Asperti and Laneve, 1995), this uniqueness proof uses paths in M constructed

from the structure of name(R). In (Lévy, 1978), subcontexts (i.e. prefixes of labeled

subterms) are used. A full theory of subcontext families is also developed as for

redexes. Although illuminating, this theory is not fully needed. Here we only use

proposition 5.8 and generators of redexes.

Prefixes of terms were described in section 1. A term M is a prefix of N , written

M � N when N matches M except for some or several and let M |u be the

subterm of M at occurrence u (occurrences are sequences of 1 and 2 indicating the

path from the root of term M to its subterm M |u). Let ρ be a labeled reduction

starting from M , the generator gen(ρ,R) of hredex 〈ρ,R〉 is the smallest prefix P

of the smallest subterm M |u (u maximum) such that P →→ Q and Q contains

R, in fact its top redex prefix ((λx. )α ) which is sufficient to characterize R. A

step-by-step definition of this generator can be effectively given.

Definition 5.10. Let M
R→ N be a reduction step contracting R = ((λx.A)αB)b =

M |u, redex at occurrence u in M . Let (v,Q) be subcontext Q at occurrence v in

N (Q � N|v). The generator gen(R, (v,Q)) of (v,Q) is the following subcontext in

M :

(i) when (v,Q) does not overlap boundaries of the contractum of R, the definition

follows the definition of residuals of redexes. Thus gen(R, (v,Q)) = (v′, Q)

where (v,Q) ∈ (v′, Q)/R.

(ii) when (v,Q) overlaps the top boundary of the contractum, then Q|u′ = Q
dαeb
1

and u = vu′, Q1 � A. Then gen(R, (v,Q)) = (v,Q{u′ := ((λx.Q1)α )b}).
(iii) when (v,Q) overlaps the bottom boundary of the contractum, then v = uv′,

A|v′ = Q1 and Q � Q1{x := Q
bαc
2 } for some Q2 prefix of B (Q2 � B). We
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take Q2 minimum. Then gen(R, (v,Q)) = (u, (λx. v′ ◦Q1)αQ2)b where v′ ◦Q1

is the minimum prefix of A containing Q1.

(iv) when (v,Q) overlaps both top and bottom boundaries of the contractum, this

case is the union of the two previous ones.

When ρ is standard, this definition of generator corresponds to the canonical

reduction. A reduction is canonical for 〈ρ,R〉 iff it is canonical for its generator at

any step. The rest of the reduction is contained in the generator. Moreover when

INIT(M), it is possible to backward reconstruct the canonical hredex 〈ρ′, R′〉 of

〈ρ,R〉 by considering the generators of R. Thanks to proposition 5.8, we iterate

on generators. The last step of the canonical reduction is defined by the rightmost

overlined label in the generator which can be expanded in its previous-step gener-

ator. When there is no more overlined label, one considers innermost underlined

labels. Proposition 5.8 says that paths from the binder of the last contracted redex

are labeled by atomic letters. As INIT(M) is true, one can find the innermost binder

in the initial term corresponding to the function part of the last contracted redex.

Again one can compute the previous-step generator and proceed backwards in the

reduction. Hence the canonical reduction only depends on the name of the hredex

〈ρ,R〉.
This concludes the proof of theorem 5.5.

6. Conclusion

Stability is everywhere in the λ-calculus, on sequential models, on Bohm trees, on

redex families, on redexes. Stability means a unique deterministic origin of com-

puted values or of computing objects. Sequentiality is a more elaborated concept,

more interested by the prospective of calculus. Several interpretations of the λ-

calculus are also sequential, for instance Bohm trees (Berry, 1978). It seems harder

to define sequentiality for computing agents such as redexes or hredexes, but it

would be interesting to get such a notion.

As said in the introduction, stability is also present in many other sequential

languages, such as Plotkin’s PCF, Kahn-Macqueen networks, or more realistic

programming languages as we did for incremental computations of makefiles in

Vesta (Abadi et al., 1996). Clearly the theory developed in this paper for the λ-

calculus also applies to these cases.

Finally, this theory also applies to formalisms with critical pairs or with non-

determinist features, but we have then to restrict to each compatible subclasses, in

order to avoid conflicts, as described in event structures (Winskel, 1983; Laneve,

1994; Boudol, 1985).
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Lévy, J.-J. (1975). An algebraic interpretation of the λβ-calculus and a labeled λ-
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