An Asynchronous, Distributed
Implementation of Mobile Ambients

Cédric Fournet Jean-Jacques Lévy
fournet@microsoft.com Jean-Jacques.Levy@inria.fr
Microsoft Research INRIA Rocquencourt

Alan Schmitt
Alan.Schmitt@inria.fr

INRIA Rocquencourt
Preliminary Draft, March 2000

Abstract

We present a first distributed implementation of the Cardelli-Gordon’s am-
bient calculus. We use Jocaml as an implementation language and we present
a formal translation of Ambients in the distributed Join Calculus, the process
calculus associated with Jocaml. We prove the correctness of the translation.

The operational semantics of Ambients requires that complex migration
steps be performed atomically. As a result, direct implementations rely on
the serialization of migrations via a centralized control. In contrast, our im-
plementation is fully asynchronous and allows concurrent reduction steps. It
relies on a message-passing protocol between an ambient and its parent. Only
the actions involving an ambient migrating or being opened are blocked during
a reduction step.

The proof of correctness of this implementation is two staged. First, an
extended ambient calculus with a refined semantics is introduced, and the
two semantics are related using coupled-simulations. Then, a bisimulation is
shown to exist between processes in the extended ambient calculus and their
distributed join calculus translations. In combination, these results imply that
our translation does not affect a variety of global observation predicates. In
the final section, the actual implementation in Jocaml is discussed. As a whole,
our paper gives an insight in the implementability of ambients.

In the appendices, the semantics of ambients and the join calculus is re-
called, with an overview of both calculi.

Contents
1 Introduction

2 From ambients to the join calculus
2.1 An asynchronous algorithm
2.2 A simple translationo L
2.3 Dealing with other ambient constructs

Correctness of the translation
A calculus of Ambients extended with transient states

Coupled simulations and operational correspondence

5.1 Correctness of the asynchronous algorithm.
5.2 Operational correspondence.

Distributed Implementation

6.1 The implementation in Jocaml
6.2 Controlling distribution at run-time

Conclusions

Two notions of mobile computations

A.1 Operational semantics for ambients
A.2 Operational semantics for the join calculus.
A.3 Overview for Ambients
A.4 Overview of the join calculus

Proofs

B.1 Correctness of the synchronization algorithm (theorem 5.3)
B.2 Correctness of the extended translation (theorem 5.4)

10
12
12

13
13
14

15

18
18
21
21
22

1 Introduction

This paper presents a highly concurrent distributed implementation of the Carde-
lli-Gordons’s calculus of Mobile Ambients [5] in Jocaml [13]. The ambient calculus
is a simple and very esthetic model for distributed mobile computing. However,
until now, it did not have a distributed implementation. Such an implementation
may seem easy to build, especially with a language with distribution and strong
migration (Jocaml), but we encountered several difficulties and design choices.

Ambients are nested. Their dynamics is defined by three atomic steps: an ambient
may move into a sibling ambient (IN), it may move out of its parent ambient (OUT),
or it may open one of its child ambients (OPEN). Each atomic migration step
may involve several ambients, possibly on different sites. For instance, the source
and destination ambients participate to an IN-step; similarly the source and parent
ambients take part to an OUT-step; the target ambient participates to an OPEN-
step. Each atomic step of the ambients calculus can be decomposed in two parts:
checking whether the local structure of the ambient tree enables the step, and actually
performing the migration.

The first part imposes some distributed synchronization. One may use a global
synchronous primitive existing at the operating system or networking level, but such
a solution is not much portable, nor does exist in large scale networks. A first range of
solutions can be designed by considering locks and critical sections in order to serialize
the implementation of atomic steps. For instance, the two ambients participating to
a reduction step are temporary locked, and the locks are released at the end of the
step. However this solution cannot be symmetric, in the same way as there is no
symmetric distributed solution to the Dining Philosophers problem. Some ambients
have to be distinguished, for instance, one ambient could be the synchronizer of
all ambients. Naturally, the nested structure of ambients can be used, for instance
each ambient controls the synchronization of its direct subambients. In both cases,
one has to be careful to avoid deadlocks or too much serialization. This solution
would be similar to Cardelli’s centralized implementation of an earlier variant of the
ambient calculus in Java™ [2, 3]. One advantage of a serialized solution is the ease of
the correctness proof of the implementation. On the negative side, each attempt to
perform a step takes several locks higher up in the ambient hierarchy; these locks may
be located at remote sites, leading to long delays before these locks are released for
other local steps. Moreover, due to the mobility discipline of the ambient calculus,
an ambient that migrates from one point to another in the ambient hierarchy has
to travel through an ambient enclosing both the origin and the destination, thus
inducing global bottlenecks.

A different set of solutions is fully asynchronous. Atomic steps of ambients are
decomposed into several elementary steps, each involving only local synchronization.
In this approach, each ambient step is implemented as a run of a protocol involving
several messages. Concurrency is higher, as only the moving ambient might not be
available for other reduction steps. For instance, our solution never blocks steps
involving parents of a moving ambient. Our solution even allows ambients to move
out of a moving ambient; or to complete an IN-move towards a moving ambient; but it
does not allow ambients to initiate such IN-moves. The implementation of migration
towards a mobile target may be problematic, but can be handled independently of
the implementation of ambient synchronization, e.g., using a forwarding mechanism.
In our case, we simply rely on the strong migration primitive of Jocaml. On the
negative side, the correctness proof is more involved.

In this paper, we present an asynchronous distributed algorithm for implementing
ambients, we make it precise as a translation into the Join Calculus—the process cal-
culus which is a model of Jocaml[10], and we refine this translation into a distributed
implementation of ambients written in Jocaml. The algorithm provides an insight
into the implementability of ambients. The Jocaml prototype is a first, lightweight,
distributed implementation of ambients. The translation is proved correct in two
stages: first we use barbed coupled-similarity for the correctness of the algorithm,
then we use an hybrid barbed bisimulation for the actual translation to the join cal-
culus. Technically, the first stage is a first application of coupled-simulations [18] in
a reduction-based, asynchronous setting; it relies on the introduction of an auxiliary
ambient calculus extended with transient states; it does not depend of the target
language. The second stage is a challenging application of the decreasing diagram
technique [17]. In combination, these results imply that the translation does not
affect a variety of global observation predicates.

The paper is organized as follows. In section 2, we present the asynchronous
algorithm and we show a formal translation from ambient processes to join calculus
processes. In section 3, we discuss the correctness of the translation in terms of
observations. In section 4, we focus on the operational correspondence between a
process and its translation; to this end, we refine the ambient calculus to express
additional transient states induced by the translation. In section 5, we state our
main technical results and give an idea of their proofs. In section 6, we describe
more practical aspects of the Jocaml implementation. We conclude in section 7.

In appendix A, we recall the operational semantics of the distributed join calcu-
lus and of the calculus of Mobile Ambients, and we give an overview of both calculi.
(Additional motivations, details, and examples can be found in [10] and in [5], re-
spectively.) In appendices B.1 and B.2, we provide the proofs for section 5.

2 From ambients to the join calculus

We describe the asynchronous algorithm, then we specify it as a translation from
ambients to the join calculus. We begin with a fragment of the ambient calculus
given by the grammar P ::= a[P] | in a.P | out a.P | PP | 0. In a second
stage, we incorporate OPEN steps and other ambient constructs.

2.1 An asynchronous algorithm

The dynamic tree structure of ambients is represented by a doubly linked tree. Each
node in the tree implements an ambient: each node contains non-ambient processes
such as in b.P or out a.c[Q)] running in parallel; each node also hosts an ambient
manager that controls the steps performed in this ambient and in its direct subam-
bients. Different nodes may be running at different physical sites, so their ambient
managers should use only asynchronous messages to communicate with one another.
Since several ambients may have the same name, each node is also associated with a
unique identifier. (Informally, we still refer to ambients by name, rather than unique
identifier.)

Each ambient points to its subambients and to its parent ambient. The down
links are used for controlling subambients, the up link is used for proposing new
actions. The parent of the moving ambient for an IN-step knows the destination
ambient; the parent also knows the destination ambient—its own parent—for an

OurT-step; it controls the opened ambient for an OPEN-step. Hence, the decision to
perform a step will always be taken by the parent of the affected ambient.

Ambient moves of a in and out of b correspond to three successive steps, depicted
below. Single arrows represent current links; double arrows represent messages in
transit.

0 1 2 final
deleyate/ c relocate c c c
7N /N N N
IN a b a b regzster/ b b
/! i

a a

N\ N\ 70N | AN
delegate// b / b a b a b
Outr a a /

relocate

c C

We detail the dynamics of an IN-step, e.g., ¢[a[in b.Q] | b[0]] = ¢[b[a[@]]].

O-step: initially, a delegates the migration request IN b to its current parent (here
¢); to this end, it uses its current up link to send a message to ¢ saying that a
is willing to move into an ambient named b.

1-step: the enclosing ambient ¢ matches a’s request with a’s and b’s down links.
Atomically, a’s request and the down link to a are erased, and a relocation
message is sent to a; this message contains the address of b, so that a will be
able to relocate to b, and also a descriptor of a’s successful action, so that a
can complete this step by triggering its guarded process.

2-step: the moving ambient a receives ¢’s relocation message, relocates to b’s site,
and updates its up link to point to b. It also sends a message to b that eventually
registers a as a subambient of b.

The 1-step may preempt other actions delegated by a to its former parent ¢. Such
actions should now be delegated to its new parent b. For that purpose, a’s ambient
manager keeps a log of the pending actions delegated in 0-steps, and, as it completes
one of these action in a 2-step, it re-delegates all other actions towards its new parent.
The log cannot be maintained by the parent, because delegation messages may arrive
long after a’s departure. Moreover, in the case an ambient moves back into a former
parent, former delegation messages may still arrive, and should not be confused with
fresh ones. Such stale messages must be deleted. This is not directly possible in an
asynchronous world, but equivalently each migration results in a modification of the
unique identifier of the moving ambient, each delegation message is tagged with this
identifier, and the parent discards every message with an old identifier.

An Out-step of a out of b corresponds to the same series of three steps. The
main different is in step 1, as the enclosing ambient b matches a’s request with a’s
down link and its own name b, and passes its own up link to ¢ in the relocation
message sent back to a.

2.2 A simple translation

The compositional translation [-], appears in Figure 1. It uses a (meta) function
AM, () implementing the ambient manager. Overall, the tree of nested ambients

[a[P]], = def AM,(P)in0
[in a.P], = def k()>[P], in e.in(a, k)
[out a.P], = def &()>[P], in e.out(a, k)
[71Ql. = [Pl [Q.
HO]]C = 0

where the ambient manager AM , .(P) is defined as:

le
]

e

Dy = s(a,i,el) | in(b,k) >s(a,i,e,lU{IN b k}) | e.subi,(i,b, k)
A s(a,i,e,l) | out(b, k)>s(a,i,e,l U{OUT b k}) | e.subous (i, b, K)
D, = s(a,i,e,l) | amb(j>b7 eb) | amb(kaca eC) | subin(k‘7b7l€)l>
s(a,i,e,1) | amb(j,b,ep) | ec.reloc(ep, k)
A s(a,i,e,l) | amb(jaba eb) | Subout(ja a, K)Ds(aaiaeal) | eb.reloc(e,n)

Dy, = s(a,i,el) | reloc(e,k)>go(e.here); (Ine, e | 6() | Flush(l,in,out, k))
D = DyAD;AD,

Ije,e = defuidiins(a,i,e,0)]|e.amb(i,a,en)
AMoo(P) = here[D : Ioe,.|[P],,]

. . aet [here = here, amb = amb, sub;,, = sub;
with the record notation e;, =) 2o J
Suboyus = Suboyt, reloc = reloc,in = in, out = out

Figure 1: Translation from IN/OUT ambient processes to the join calculus

is mapped to an isomorphic tree of nested locations. Each ambient is mapped to a
join calculus location containing the definition of the channel names that form the
ambient interface, and containing processes that represent the ambient state. The
definition D is composed of three groups of rules Dy, D1, and D- that respectively
implement 0, 1, and 2-steps of the algorithm.

To represent the data structure used in the algorithm of section 2.1, an ambient
is represented by an interface e, which is a record that contains fields here, amb,
subin, suboyt, reloc, in, and out. The here-field is the name of the location hosting
the ambient, whereas the other fields are channel names used to interact with this
ambient. The translation is parameterized by the interface e of the current enclosing
ambient. A down link to a subambient named b with interface e; and unique identifier
(uid) j is represented as a message amb(j, b,ep). For every ambient, the up link to
its parent ambient is represented by the parent interface e, which is stored in the
state message s(a,i,e,l). In addition, the state message contains the name a and
the current uid ¢ of the ambient, and the log [of IN and OuT actions that have been
delegated to the parent ambient using e.

We resume our study of an IN-action, considering the role of each message in the
translation of ¢[a[in b.QQ] | b[0]]. Initially, the translation defines a continuation
k for @ and issues a message in(b, k) in a, which is a subjective migration request
into an ambient named b.

The first step consists of delegating the request to the parent ambient. Using the
first rule of a’s Dy, the messages s(a, i, e,1) and in(b, k) are consumed, the request is

[opena.P], = def &()>[P], in e.open(a, k)
[(n)], = e.snd(n)
[(n).P], = def k(n)v[P], in e.rcv(k)
['P], = def k()p[P], | () in &(
[va.P], = def fresha in [P],

with additional rules in the definition of AM, (P):

D) = s(a,i,e,l) | amb(j,b,ep) | open(b, k) > s(a,i,e,l) | ep.opening(k)
Dy = s(a,i,el) | opening(k)v f(e) | k() | Flush(l, e.in, e.out, k)
Do = s(a,i,el) | rev(k) | snd(n) v s(a,i,e,l) | k(n)
Dr = f(e) |in(b,k)v f(e) | e.in(b, k)
A f(e) | out(b,k)> f(e) | e.out(b, k)
A f(e) | open(b,k) > f(e) | e.open(b, k)
A f(e) | amb(j,b,ep) > f(e) | e.amb(j, b, ep)
A f(e) | subin(k,b,k)> f(e) | e.subin(k,b, k)
A f(e) | subout(k,b, k) > f(€) | e.subous(k,b, k)
A f(e) | rev(k) > f(e) | e.rcv(k)
A f(e) | snd(b)> f(e) | e.snd(b)
D = DyAD, AD)ANDyADyADgADp

with the extended record notation

e X { here = here, amb = amb, sub;, = sub;,, Subyys = subyyi, open = open, }

- reloc = reloc,in = in, out = out, opening = opening, rcv = rcv, snd = snd
Figure 2: Additional clauses for the full translation

recorded in a’s log as an entry IN b k, and the request is forwarded to the enclosing
ambient ¢ described by the interface e. The ambient a remains active, with new
state s(a,i,e,l U {IN b k}). In parallel, the message e.sub;, (i, b, k) is a subambient
move request sent to ¢, with the explicit identifier ¢ of the requester a.

The second step is performed by ¢’s ambient manager. The message sub;y, (i, b, k)
may be consumed using the first rule of D;. The rule also requires that both the
ambient that issued the request and another destination ambient with name b be
actually present. This step removes the down link for the moving ambient—the
message amb(i, a, e,)—, thus blocking other actions competing for the same message,
whereas the destination ambient remains available for concurrent steps. A relocation
message e,.reloc(ep, k) is emitted, signalling to the requesting ambient a that it must
migrate to the ambient with interface ep, with continuation «.

The third step, using a’s rule D,, consumes the message on reloc and the current
state message, performs a join calculus migration to the location of the destination
ambient, then resumes its activities using the new interface e;. To this end, the
process I, ¢, ., restores an active state: it generates a fresh uid i’, issues a local
state message s(a,i’,ep,) representing the up link, and sends to the new parent
a message ep.amb(i’,a,e,) representing the down link. (Since no down link will

ever mention the previous uid i, previous delegation messages mentionning ¢ will
never match a rule of D;. In our implementation, these stale messages are actually
discarded.) In addition, the message () trigger the continuation. Finally, the process
Flush(lU {IN b k}), in, out, k) restarts any preempted actions appearing in the log.
As defined in appendix A, this process emits a message in(d, ') or out(d,x') in a
for every entry IN d &' or OUT d &' appearing the log I. These entries correspond to
actions preempted by the migration; they will be delegated to a new parent through
other iterations of 0-steps of the algorithm.

Similarly, an OuT-step is performed according to the algorithm by using the
second rule of Dy of the moving ambient, the second rule of D; of the enclosing
ambient, and finally the rule D2 of the moving ambient.

2.3 Dealing with other ambient constructs

The translation of Figure 2 generalizes the translation above to the full ambient
calculus. For each additional construct, we add a clause to the compositional trans-
lation [- J,. We also upgrade AM, .(-), and use a larger environment e with extra
fields for open, opening, rcv, and snd. New constructs to consider are:

Values and Scopes. Ambient names are mapped to identical names in the join
calculus. The two calculi rely on similar lexical scope disciplines, with scope
extrusion performed by structural equivalence (rule SCOPE in join, rules R1
and R2 in ambients). Thus, it suffices to translate the creation of local ambient
names va.P into the creation of binders fresh a in join-calculus definitions.

Communication. Ambient communication is implemented by supplementing every
ambient manager with a rule Do that binds two channels snd and rcv and
synchronizes message outputs and message requests. This encoding is much
like the encoding of pi-calculus channels into the join calculus (see [8]).

Replication. Each replicated process ! P is coded using a standard recursive encod-
ing of infinite loops in the join calculus.

Open. Ambient processes may dissolve ambient boundaries using the open a capa-
bilities. In contrast, join calculus names are statically bound to their defining
location, and location boundaries never disappear. We thus lose the one-to-one
mapping from ambients to locations, and distinguish two states for each AM
location: either the ambient is still running—and the message s is present,
or it has been opened—and henceforth messages sent to its interface are for-
warded to the ambient that performed the open. The indirection is achieved
through the use of message f. This leads to complications in the proofs, as
one must prove that these opened locations do not interfere with the rest of
the translation.

3 Correctness of the translation

The distributed synchronization algorithm significantly departs from the operational
semantics of ambients; besides, the translation of nested ambients may yield arbi-
trarily large terms with numerous instances of the algorithm running in parallel.
This makes the correctness of the distributed implementation problematic. On the
other hand, both calculi have a reduction-based semantics, which can be equipped

with standard notions of observables. This provides a precise setting for establishing
correctness on the translation, rather than on an abstraction of the algorithm. (Of
course, there are still minor discrepancies between the translation and the actual
code in Jocaml; see section 6.)

We first define a syntactic notion of observation. For each calculus, we use a
family of predicates on processes indexed by names, written P |;.

e In the ambient calculus, P |, when b is free in P and P = v0.b[Q] | R.
¢ In the join calculus, P |, when b is free in P and P = o[D' : b(v) | P'] A D.

Next, we express the correctness of the translation in terms of the following predi-
cates, for both ambient and join processes:

e A process P has a weak barb on b (written P {3) when P —* P’ |;.
e A process P diverges (written P {}) when P has an infinite series of steps.

e A process P has a fair-must barb on b (written 0P |}) when for all P’ such
that P —* P, we have P’ |Js.

In combination, these predicates give a precise contents to the informal notion of cor-
rectness: “the translation should neither suppress existing behaviors, nor introduce
additional behaviors.” The minimal notion of correctness for an implementation
is the reflection of weak barbs, which rules out spurious behaviors; the converse
direction states that the implementation does not discard potential behaviors; for
instance, it rules out deadlocks, or even an empty translation. The preservation
of convergence is of pragmatic importance. In addition, correctness for fair-must
tests relates infinite computations, and rules out implementations with restrictive
scheduling policies.

Since top-level ambients are not translated into messages on free names, the obser-
vation of translated ambients requires some special care. To this end, we supplement
the top-level translation with a mechanism that can test for a particular barb |} in
the source calculus. For a given ambient interface e, we let D and () be defined by
[a[0]], = def here[D : Q] in 0, and let ey be the record obtained by substituting
the empty word for eg.here in the interface e defined by D. We use the definition
Dy = s(a,i,e,l) | amb(j,b, es) | t(b) > s(a,i,e,1) | amb(j,b,es) | yes() and write [-]°
for the translation that maps every process P to the process [DAD; : @ | t(b) | [P].,]-
Without loss of generality, we always assume that the names in a, ¢, e, yes do not
clash with free names of P, and that the location and channel names of the transla-
tion do not clash with any name of P.

We are now ready to state that all the derived observations discussed above are
preserved and reflected by the translation:

Theorem 3.1 For every ambient process P and name b, we have
1. P Uy if and only if [P]° Uyes;
2. P 1 if and only if [P]" 1;
3. OP Uy if and only if O[P]" Uyes.

While correctness is naturally expressed in terms of observables along the reduc-
tion traces of processes, its proof is challenging. In particular, a direct approach
clearly leads to intractable inductions on both the syntax of the source process and
on the series of reductions. The next two sections present our proof strategy; a proof
of theorem 3.1 appears at the end of appendix B.2.

4 A calculus of Ambients extended with transient
states

In order to prove theorem 3.1, we introduce an intermediate calculus of ambients with
constructs that materialize the key transient states of the algorithm of section 2.1,
and we equip this calculus with a reduction semantics in direct correspondence with
the algorithm. For instance, atomic IN steps are decomposed into series of 1- and
2-steps. (However, 0-steps are not represented, inasmuch as requests are always even-
tually delegated to the current parent.) In the next section, we rely on the extended
calculus to establish correctness as the composition of two equivalences. First, we
will use coupled simulations [18] to relate the two semantics for ambients; then, we
will use bisimulations to relate ambients equipped with the extended semantics to
their join calculus translations.

The grammar for the extended calculus appears in Figure 3. It has new processes
representing ambients which are committed to move or to be opened, as the result of
their father’s 1-step—we call such transient ambients stubs—and also new processes
marking the future position of migrating ambients—we call such precursors scions.
Pairs of stubs and scions are syntactically connected by a marker i.

The extended operational semantics appears in Figure 4. (The term X=a[P]
stands for either Xa[P] or a[P].) It is a reduction-based semantics with auxiliary
labels for stubs and scions. Each of the reduction steps IN, OUT, and OPEN is
decomposed in two steps, as depicted below. Initial steps —; introduce stubs and
scions; completion steps —o consume them.

m[P] | n[in m.Q | R] m[n[Q | R] | P]

vi.m[i| P] | {Q}n

m[P | n[out m.Q | R]] n[Q | R] | m[P]

Ny

vi.i| m[P| i{Q}n[R]]

OPEN

openn.Q) | n[R]

o{@}-n[R

P = extended ambient process
all the constructors of Figure 5 on page 19

| Xa[P] stub
| 4 scion
| wvi.P marker restriction
X u= state extension
{P}- the stub is committed to move to i
| ofP}- the stub is being opened

Well-formed conditions: stubs and scions may occur only in extended evaluation
contexts; restricted markers ¢ must be used linearly (exactly one stub and one scion).

Figure 3: Syntax for an ambient calculus extended with transient states

Ezxtended evaluation contexts E(-) are defined by the grammar
E() == - | P|E() | E()|P | X~a[E()] | va.E(-) | vi.E(+)

Structural equivalence = is the smallest equivalence relation on processes that is
closed by application of extended evaluation contexts and by a-conversion, and that
satisfies the axioms PO, P1, P2, C0, C1, R1, R2 of figure 6 and:

a#n anot freein X

2X
R Xn[va.P] = va.Xn[P]

Labeled transitions — is the smallest family of relations closed by application of
restriction-free extended evaluation contexts and such that

P3P not free in a

STUuB 7{Q}-n[R] QR Scion 5 p SCOPE —
vv.P — vv. P’

Reduction steps — are defined as in Figure 6 with extended evaluation contexts.
Initial steps —1, Completion steps —o, and Other steps —¢ are the smallest relations
closed by structural equivalence, by application of extended evaluation contexts, and
such that:

m[P] | n[in m.Q | R] X=m[nfout m.Q | R] | P]

—1 vi.m[i | P]| {Q}n[R] =1 vi.i| X m[i{Q}n[R] | P]
PP Q¢
vi.(P| Q) =2 P'| Q'
OPEN 1 openn.Q) | n[R] =1 o{@}n[R] OPEN 2 o{Q}n[R]—=2Q|R

IN 1 Our 1

MOVE 2

Recv (a) | (z).P =¢c P{Y:} REpL !P —¢ P |IP

Figure 4: Semantics for an ambient calculus extended with transient states

The reduction rules for RECV and REPL are those of the original semantics, except
that we write —¢ instead of —. Overall, we obtain a reduction system for extended
ambient processes with steps —12¢ E —1 U =9 U =¢. For the sake of comparison,
we also extend the original reduction semantics and the observation predicates from
ambients to extended ambients. The definition of observation remains unchanged,
that is, the predicates | is insensitive to extended constructs.

Initially, stubs and scions are neighbors, but they may drift apart as the result of
other steps before performing the matching completion step, so an auxiliary labeled
transition system is used to match stubs and scions. The completion of a deferred
migration is thus rendered as a global communication step between processes residing
in two different ambient contexts, and syntactically linked by the names 7 and 4. This
may seem difficult to implement, but actually scions ¢ have no operational contents;
they represent the passive target for a strong migration. (In conjunction with labeled
transitions, rule MOVE 2 demands that all scope extrusions be performed before
completion.)

To illustrate the extended calculus, we give below the reductions for a process P
with a critical pair. In P, either a is opened first, and b retains its out a action
(P — Py), or b exits a first, and b is left empty (P —— Ps).

The first diagram represents the steps for the original semantics; the second
diagram represents the steps for the extended semantics. Processes P, Py, Ps, P;
are regular ambient processes; processes @), Q1, 2 are transient processes reflecting
intermediate states of our algorithm.

P = opena | af b[out a]]

OP% &

Pldzefb[outa] P2d£f°Pena|a[]|b[]

%

P; = b[]

P = opena | af b[out a]]o

‘OPEN/I uT 1
Q1= o-a[bloutal] Q2 = opena | vi.(a[7-8[]] |i)
oo “< Tt
OPEN 2 Q = vi.(o—a[7b[]] |9) Move 2
P % blout a] Movs 2 P, = opena| a[] | b[]
PTG

5 Coupled simulations and operational correspon-
dence
We continue our study of correctness in terms of equivalences based upon weak barbs.

These equivalences are essential to obtain a modular proof. As a side benefit, they
also provide a finer account of correctness. (See [7] for a discussion of equivalences

10

and encodings in process calculi.) Instead of equivalences, we actually often use
relations ranging over different domains, equipped with different notions of reduction
steps and observations.

Definition 5.1 (Barbed Bisimulations) A relation R € P X P’ is a weak barbed
simulation when, for all PR @, we have

1. if P —»* P', then there exists Q' such that Q =* Q' and P' R Q';
2. if Py, then Q Jp-

R is a barbed bisimulation when R and its converse R~ are barbed simulations.

Bisimulations come with effective proof techniques that consider only a few steps
at a time, rather than whole execution traces. Unfortunately, barbed bisimilarity
~—the largest barbed bisimulation closed by application of evaluation contexts—is
too discriminating for our protocol. Transient processes such as J; in the example
above account for a partially-committed internal choice: J; may reduce to P, and
P;, but not to P». In fact, Py, P>, and P; are separated by =~ (P, % P; is easily
established using the simple context (-) | a[¢[]]), hence the extended process (1 is
not bisimilar to any P, P; of the example. (Conversely, we have here 2 ~ P, and
Q@ = P3, but for other processes with reductions within stubs, this may not be the
case.)

To address this issue of gradual commitment, Parrow and Sjédin proposed coarser
relations called coupled simulations [18, 16]. We liberally adapt their definition to
ambients:

Definition 5.2 (Coupled simulations) The relations < € PxP' and € € P'xP
form a pair of barbed coupled simulations when < and € are barbed simulations that
meet the coupling conditions:

1. if P < Q, then for some Q' we have Q —* Q' and Q' €
2. if Q € P, then for some P' we have P —* P' and P' £

P;
Q.
In the initial definition of coupled simulations of [18], coupling conditions are required
only for pairs of stable processes. As in [7], our definition is actually the barbed
counterpart of the weakly-coupled simulations considered in [19)].

In the proofs, we will rely on diagrams for representing properties of related
processes. As usual, edges in the diagrams represent relations among processes: solid
edges stand for universally-quantified relations (the premises); dotted edges stand
for existentially-quantified relations (the conclusions). For instance, the definition
above can be restated using four diagrams:

T i P T

7 CpL '+ .. SIM -+ CPL

The discrepancy between < and > is most useful for handling transient states
such as (J1- The coupling conditions guarantee that every transient state can be
mapped both to a less advanced state and to a more advanced one. In our case, we
would have Q1 € P and P; < 1 fori =1, 3.

11

5.1 Correctness of the asynchronous algorithm.

The first stage of our correctness argument is expressed as a coupled-simulation
between ambient processes equipped with the original and the extended semantics.
In the statement below, related processes have the same syntax, but live in different
calculi, equipped with different reduction semantics.

Theorem 5.3 Let < be the union of <N> for all barbed coupled simulations between
ambient and extended ambient processes that are closed by application of evaluation
contexts.

For all ambient processes P, we have P < P.

The proof is detailed in Appendix B.1; it makes apparent some subtleties of our
algorithm due to additional concurrency. After a first series of results on partial
commutation properties for extended steps, the key lemmas establish that, for any
ambient process P and extended process @, if P —7,- @, then (1) for some ambient
process P' we have () =7, P’ and (2) for any such process P', we also have P —* P’
in the original semantics.

A sketch of the proof for (2) is as follows: by induction on the number of extended
steps, we use partial commutation properties of 1- and 2-steps to bring forward a
pair of matching steps —;—2, which can trivially be replaced with —. We rely
on an iterative procedure for selecting an adequate pair of steps. When the series
begin with a 1-step, we partition the following steps into external steps (steps that
involve ambients that are external to the stub created by the first step), entering
steps (MOVE 2-steps traversing this stub), and internal steps. If there are internal
1-steps, we show that the first one commutes with previous steps and can be brought
forward at the beginning of the series. We repeat the procedure for this new 1-step.
Eventually, we obtain a 1-step followed by external steps only, followed by a matching
— step, and we conclude by showing that this —5 can be brought in second position.

5.2 Operational correspondence.

The second stage of the proof relates ambients equipped with the extended semantics
to their join calculus translations. It is simpler than the first one, in principle, but
its proof is complicated because the translation makes explicit many details of the
implementation that are inessential to the algorithm.

In order to express the correspondence of observations across the translation, we
supplement the top-level translation |[]]b of theorem 3.1 with an external choice
of the ambient barb to be tested. With the same notations, we write [-]* for the
translation that maps every process P to the process [D A Dy : Q | p(t) | [P],,]- As
before, we assume that names in a, e, p, t, and yes do not clash with names free in P.
At any point, we can use the evaluation context Tjy(-) = hr[p(t)>t(b) : 0] A (-) to
test a translated ambient barb on b by testing the plain join calculus barb Tp(-) {yes.

(We have [P]’ ~ Ty([P]") in the join calculus.)

Theorem 5.4 (Correctness of the translation) Let ~% be the largest bisimu-
lation between extended ambient processes with reductions —12¢c and join processes
such that Q ~* R implies Q s iff Ty(R) Yyes-

For all ambient processes P, we have P ~* [P]".

Theorem 5.4 is a corollary of theorem B.31 proved in the appendices. This latter
theorem is stated as a strong bisimulation up to bookkeeping for the translations

12

of all reachable extended ambient processes. Since every significant transient state
induced by the translation has been lifted to the extended ambient calculus, its proof
essentially amounts to an operational correspondence between the two calculi. We
partition reductions in the join calculus according to the static rule of the translation
being used. For instance, we let —; steps in the join calculus be the steps using a
rule of a definition Dy A Dj of figure 2; these steps create a reloc or an opening
message, and are in direct operational correspondence with source —; steps. We
obtain two main classes of join calculus steps: steps —12¢ that can be traced back
to extended ambient steps, and “bookkeeping” steps — p, which are auxiliary steps
used to trigger continuations, manage the logs, or unfold new ambient managers.

The main lemmas describe dynamic simplifications of derivatives of the transla-
tion, which are required to obtain translations of derivatives in the extended source
calculus. These lemmas are expressed as elementary commutation diagrams be-
tween simplification relations and some families of reduction steps. For instance, one
lemma states that “stale messages” can be discarded; another, more complex lemma
states that locations and ambient managers representing opened ambients can be
eliminated, effectively merging the contents of opened ambients with the contents
of their previously-enclosing ambient. To conclude, we exhibit a bisimulation rela-
tion between extended ambients equipped with steps —12¢ and global translations
of these extended ambients equipped with steps -+5—12c—5- The whole proof is
structured using the decreasing diagram technique of [17], whose conditions guaran-
tee that every weak simulation diagram in the final proof can be obtained by gluing
previously-established diagrams.

6 Distributed Implementation

In this section, we briefly describe the actual implementation, and we discuss the
distribution of ambient programs at run-time. We refer to [11] for the source code,
setup instructions, and examples.

6.1 The implementation in Jocaml

Our implementation closely follows the translation given in figures 1 and 2. Since
Jocaml already provides support for mobility, local synchronization, and run-time
distribution, our code is very compact—Iless than 400 lines for the interpreter, less
than 40k in bytecode for the object files. The main differences between the formal
translation and the code are given below:

e Messages in the implementation may pass names, but also arbitrary chains of
capabilities, as in (in a.out b) |!(z).z.{z) (cf. [5]).

e The implementation is an interpreter, rather than a global translation. Accord-
ingly, it maintains an environment for local variables, and it performs dynamic
type checking when a value is used either as a name or as a capability.

e The translation relies on non-linear join-patterns, which are not available in
Jocaml. More explicitly, the implementation relies on hash tables to cache some
messages: when a new message arrives on sub;;,, subyyt, Or open, the interpreter
attempts to perform a step at once, in combination with previously-cached amb
messages. Otherwise, the message is queued. Similarly, when a new message

13

arrives on amb, it is added to the cache, and the queue of deferred messages is
scanned for enabled steps.

e The formal translation of replication always yields a diverging computation.
More reasonably, the interpreter unfolds replication on demand: since every
ambient reduction involves at most two copies of a replicated process, it suffices
to initially unfold two copies, then to unfold an additional copy whenever a
fresh copy is used or modified. Hence, !a[] does not diverge, while la[in a]
still does.

6.2 Controlling distribution at run-time

While ambients and locations have the same hierarchical structure, their interpreta-
tion in terms of physical distribution are significantly different.

By design, the join calculus induces a mostly “horizontal” model of distribution
at run-time. Every site executing a Jocaml runtime implements a site-as-location,
with its own tree of sublocations. Due to transparency, every pair of locations can
interact as if they were simply running in parallel, independently of their host site.
Practically, every migration also guarantees that the moving location and the new
parent location are running on the same site, until the moving location migrates
again.

The ambient calculus does not explicitly account for distribution, but intuitively
ambients representing firewalls, administrative domains, or routers would be run-
ning at different sites, and their contents would also be mapped to different sites.
Besides, the rich synchronization model within each ambient leads to a centralized
implementation for every ambient manager, hence the use of remote subambients to
decompose a computation into more asynchronous fragments. Overall, the ambient
calculus induces a mostly “vertical” model of physical distribution.

In order to describe the distribution of an ambient computation, it is natural
to annotate every process with a “site” label, but some delicate design decisions
arise for the dynamics of distribution. Indeed, for most reduction steps there are
several ways to relabel the processes affected by the step. For instance, consider
the process a[P] | b[in a.QQ | R], and assume that a and b run at different sites
named s, and sp. After the IN-step, b can run either at site s, or sp; in the case
it runs at s,, the same question arises for every subambient of b. Consider now the
process c[a[P | b[out a.Q | R]]]. After the OUT-step, b can run at either s, or
Sa, OF Sc. Similarly, b[open a.P | a[@]] may lead to a process @ running at either
Sq or sp. Such choices define the dynamics of distribution. Inasmuch as every
rearrangement of the ambient-as-location tree is enabled, our implementation can in
principle accommodate any such choice by interleaving go statements and message
passing. This does not alleviate the need for constructs in the ambient calculus to
control these choices.

We arrive at the following model of distribution for our implementation. A global
tree of running ambients is partitioned into several trees of locations running at dif-
ferent sites. Except for the location representing the top-level ambient, each top-level
location in Jocaml is logically attached to a parent ambient running at another site.
Within a given configuration, the execution of ambient reductions may involve mes-
sages coming from several sites, and may cause locations representing the affected
ambients to migrate from one site to another, in accordance to the partition. Inde-
pendently, the distributed configuration can be expanded by starting new ambient

14

interpreters at other sites. To this end, each interpreter is given an ambient process
P to execute, and a pointer to an existing ambient at which P is logically started.

For instance, writing x: //jam code & for the command that starts an interpreter
at site x running the ambient process code, and using integers as site identifiers,
consider the computation initiated by the commands

2://jam "public a[0] " &
1://jam "b[0]" -amb a &
3://jam "c[m[out c.in b] 1" -amb a &

In the first command, the keyword public registers ambient a as an entry point
for other interpreters; in other commands, —amb a refers to this entry point. The
distributed computation proceeds as follows:

site 1 site 2 site 3
a[B[P 0] | Da g | [P m[P™ out c.in b]]]
~ qf B[P 0] | Pro | m[Pminb] [[Pe0]]
= a| WP mPminb]] | P | o[P¢ 0]]

where, for each translated ambient a, b, ¢, and m we represent its Jocaml ambi-
ent manager as D,, Dy, D., and D,,. (We omit the Jocaml name-server used to
bootstrap remote communications.)

During an initial registration stage, sites 1 and 3 receive the parent interface of a
and, since a is distributed, patch this interface so that its apparent location is the
local site. In particular, the ambient managers for b and ¢ each send a message to
D, that manifest their presence as a subambient of a, while the code within b and
¢ is run locally. For instance, the m ambient within ¢ can perform its out action
without synchronizing with a. As a result of the migration, two new messages are
sent to D,, a amb message and a sub;,, request. At D,, the synchronization occurs,
and D,, is sent back the interface of b. Later, a location of site 3 will migrate toward
a location of site 1, without involving site 2 anymore.

7 Conclusions

We translated Mobile Ambients into the join calculus, and gave a first, asynchronous,
distributed implementation of the ambient calculus in Jocaml, with a high level
of concurrency. The synchronization mechanisms of Ambients turned out to be
challenging first to implement, then to prove correct. This provides an insight into
the ambient calculus as a model of concurrency. At the same time, this shows
how Jocaml and its formal model can be used to tackle distributed and mobile
implementations. For instance, the translation takes full advantage of join patterns
to describe complex local synchronization steps, while a more traditional language
would decompose these steps into explicit series of reads and updates protected by
locks.

In order to get a safer and more efficient implementation, one should care about
typing information for passed values and mobility capabilities [6, 4]. Our implemen-
tation insures dynamic type-checking on values, whereas it would be preferable to
use the static type-checking discipline of Jocaml. Similarly, static knowledge of the

15

actions that can appear in a given ambient can lead to more efficient, specialized
ambient managers.

Finally, little is known about actual programming in ambient, or the relevant
abstractions to build a high-level language on top of the ambient calculus. While
we did not consider changing the source language, we believe that our implementa-
tion provides an adequate platform for experimenting with ambient-based language
design. For instance, our translation would easily accomodate the co-capabilities
proposed in [14].

Acknowledgments. This work benefited from discussions with Luca Cardelli,
Fabrice Le Fessant, and Luc Maranget.

References

[1] G. Boudol. Asynchrony and the w-calculus (note). Technical Report 1702,
INRIA Sophia-Antipolis, May 1992.

[2] L. Cardelli. Ambit, 1997. Available from http://www.luca.demon.co.uk/
Ambit/Ambit.html.

[3] L. Cardelli. Mobile ambient synchronization. Technical note 1997-013, Digital
Systems Research Center, July 1997.

[4] L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile ambients.
In ICALP’99, LNCS, 1999.

[5] L. Cardelli and A. Gordon. Mobile ambients. In FoSSaCS 98, volume 1378 of
LNCS, pages 140-155, 1998.

[6] L. Cardelli and A. D. Gordon. Types for mobile ambients. In POPL’99, pages
79-92. ACM, Jan. 1999.

[7] C.Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Palaiseau, Nov. 1998. INRIA, TU-0556.

[8] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In POPL 96, pages 372-385. ACM, Jan. 1996.

[9] C. Fournet and G. Gonthier. Weak bisimulations by decreasing diagrams. Draft,
March 1999.

[10] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In CONCUR ’96, volume 1119 of LNCS, pages 406421, Aug.
1996.

[11] C. Fournet and A. Schmitt. An implementation of Ambients in JOCAML. Soft-
ware available from http://join.inria.fr/ambients.html, 1999.

[12] A. D. Gordon and L. Cardelli. Equational properties of mobile ambients. In
Fo0S55aCS5’99, volume 1578 of LNCS, pages 212-226, 1999.

[13] F. Le Fessant. The JoOCAML system prototype. Software and documentation
available from http://join.inria.fr/jocaml, 1998.

16

[14] F. Levi and D. Sangiorgi. Controlling interference in ambients. In POPL’00.
ACM, Jan. 2000.

[15] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I
and II. Information and Computation, 100:1-40 and 41-77, Sept. 1992.

[16] U. Nestmann and B. C. Pierce. Decoding choice encodings. In CONCUR ’96,
volume 1119 of LNCS, pages 179-194, Aug. 1996. Revised full version as report
ERCIM-10/97-R051, 1997.

[17] V. Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126:259-280, 1994.

[18] J. Parrow and P. Sjodin. Multiway synchronization verified with coupled simu-
lation. In CONCUR ’92, volume 630 of LNCS, pages 518-533, 1992.

[19] J. Parrow and P. Sjédin. The complete axiomatization of cs-congruence. In
STACS ’94, volume 775 of LNCS, pages 557-568, 1994.

17

A Two notions of mobile computations

We relate two models of distributed mobile programming, the distributed join cal-
culus [8, 10] and the ambient calculus [5]. These two models consist of name-passing
process calculi in the spirit of the w-calculus. They make explicit the spatial struc-
ture of the computation by distributing processes over a tree of nested locations
(a.k.a. ambients) that stand for both sites and agents. They provide mechanisms
to rearrange the location tree as part of the computation, thereby describing agent
migration. But these two models address different aspects of wide-area distributed
computations, and yield different interpretations of locality.

In the join calculus, locality is transparent; it may affect performances, and even
behavior in case of partial failure, but it does not affect communication and migration
capabilities. Much as in a distributed object system, locations can inter-communicate
as soon as they have access to names of their interfaces, independently of their re-
spective positions in the location tree. To retain a realistic programming model,
interaction between locations is restricted to the asynchronous sending of messages
or sub-locations toward a given location. Practically, location transparency is im-
plemented by a silent routing mechanism toward the site that hosts the receiving
location. Interaction is local, since synchronization always occurs within a single
location, independently of its sub-locations. Overall, locations in the join calculus
are adequate for high-level programming with asynchronous messages and agents.
Several distributed implementations are available, e.g., Jocaml [13].

In the ambient calculus, locality and control are tightly connected; each ambient is
an opaque box, and interactions occur only between processes in adjacent ambients.
The routing from one ambient to another is explicit, and moving ambients must be
aware of paths in the ambient tree; if an intermediate ambient decides to block the
migration, or if the path evolves during the migration, ambients may get stuck or
lost. Interaction is thus local, but the synchronization between these processes may
be complex. Overall, ambients are good at expressing administrative domains, highly
dynamic environments, and controlled migration in wide-area networks [5]. Cardelli
implemented an earlier variant of the ambient calculus in Java [2]. In this centralized
implementation, each ambient process is mapped to a Java thread that repeatedly
attempts to acquire a lock for every ambient potentially involved in a reduction
step (usually three locks) [3]. However this global serialization is inadequate in a
distributed setting.

A.1 Operational semantics for ambients

Our syntax and semantics of the calculus of ambients are given in figures 5 and 6.

This presentation slightly differs from Cardelli and Gordon’s [5] on several counts.
The structural equivalence is more restrictive here; it does not introduce or remove
vz binders; it operates only in evaluation contexts. The operational semantics of
ambients represents the unfolding of replication as a silent reduction step rather than
a structural law. Also, communicated values are just ambient names, rather than
both names and chains of capabilities. (Chains of capabilities are fully supported in
the Jocaml implementation, but their encoding is heavy.) In spirit, our semantics is
actually closer to the harness semantics of [12].

18

P = ambient process

a[P] ambient
| P|P parallel composition
| C.P guarded process
| wva.P name restriction
| (a) asynchronous message
| (x).P message reception
| P replication
| 0 inert process
Cc == capability
ina ingoing migration
| outa outgoing migration
| opena ambient dissolution

Figure 5: Syntax for the ambient calculus

Evaluation contexts E(-) are defined by the grammar
EQ):=- | PIEC) | BEQIP | aBO)] | vaE()

Structural equivalence = is the smallest equivalence relation closed by application of
evaluation contexts, by a-conversion, and such that

a not free in P

PO P|0O=P —
Pl P|P' =P |P P|va.Q =va.(P|Q)
P2 (P|P)|P"=P|(P'|P") R2 aFn

a[vn.P] = vn.a[P]

Ambient reduction — is the smallest relation closed by structural equivalence, by
application of evaluation contexts, and such that

m[P] | n[inm.Q | R]

m[nfout m.R| R'] | Q]
— m[P|n[Q|R]]

OUT L, m[Q]| n[R|R]

IN

OPEN openn.QQ | n[R] - Q| R

REecv (a) | (z).P — P{%} REepL P — P |IP

Figure 6: Operational semantics for the ambient calculus

19

P = join calculus process

0 inert process
| P|P parallel composition
| z(®) asynchronous message
| go(a); P migration request
| defDinP local definition
D := join calculus definition
T void definition
| DAD composition
| JoP reaction rule
| a[D:P] sub-location (named a, running D and P)
| a[D: P top-level location (with path «, running D and P)
J = join pattern
z(Y) message pattern
| J|J synchronization

Figure 7: Syntax for the distributed join calculus

Structural equivalence = (on both processes and definitions) is the smallest equiva-
lence relation closed by application of contexts -A-, - | - and @[- : -], by a-conversion
on bound names, and such that:

PO P|O=P DO DAT=D
Pl P|P' =P |P D1 DAD'=D'AD
P2 (P|P)|P'"=P|(P'|P") D2 (DAD)AD"=DA(D'AD")

ala[D': P'IAD : P] Scopp DA defined in D’ are fresh
= aalD': PlAa[D : P a[D : P |def D' in P']

= a[DAD':P| P

TREE

Join calculus reduction — is the smallest relation on configurations that is closed by
structural equivalence and such that:

z is defined in D' o operates on message contents of J
ComMmm — JoIN
ENa[D:P|z(v)]ABD" : P EANa[DAJ>Q: P | Jo]
— EAa[D:PIABD' : P'| z(v)] — EANa[DAJ>Q:P|Qo]
a frozen
Go

EABDD : PlAa.alD : P |go(b);Q]
—~ EABHD : P]ABbalD:P|Q]

Figure 8: Operational semantics for the distributed join calculus

20

A.2 Operational semantics for the join calculus

Our syntax and semantics for the join calculus are given in figures 7 and 8.

A path « is a string of location names a, b, Active locations are locations
not under a def. They can be nested. The path of an active sublocation a[D : P] is
a.a, where « is the path of its enclosing location. A configuration is a conjunction of
top-level locations such that every location has a unique name, such that the set of
paths for all active locations is prefix-closed (i.e. active locations form a tree whose
nodes are indexed by active location names), and such that every channel is defined
in at most one location. In a configuration, a location with path a.a is frozen when
it is the only top-level location whose path contains a.

Names can be bound either as parameters ¢ in a message pattern z(y) or as names
defined in D by def D in P. The definition a[D' : P] defines a and names defined
in D'. A definition containing a rule with message pattern z(¥y) also defines z.

To simplify the translation of section 2, we supplement the join calculus with
some convenient extensions, which are easily encoded in the plain join calculus. We
supplement definitions with new constructs uid ¢ and fresh a that bind names ¢ and
a, which we use to generate unique identifiers—we could use instead dummy rules
such as 7() >0. We also use a record notation as a shortcut for tuples of names passed
in a consistent order, and an algebraic notation IN b k, OUT b & for log entries with
tags IN, OuT and names b, k. We use finite sets of log entries, interpreted in the
standard mathematical sense.

Rather than making explicit a standard encoding of set iterators for implementing
the process Flush(l,in,out, k), we supplement the operational semantics of the join
calculus with a rule for flushing logs of messages:

FrusH Flush(l,in,out, k) — H in(d,&') | H out(d, k')
IN d k'el|r#r! OUT d w'el|rn#w!

A.3 Overview for Ambients

The calculus of ambients [5] describes movements of processes through administrative
domains. An ambient process P may be either the inert process 0, or a composed
process P | P', or a replicated process !P, or an ambient n[P] with name n,
or a process va.P with local name a, or a process C.P guarded by C, or a message
reception (z).P, or an asynchronous emission {(a) of name a. Capabilities C represent
potential IN/OuT/OPEN actions.

A message {a) is communicated locally inside the current ambient, where any
receptor (z).P can catch it. In order to send a message to a receptor in a remote
ambient, the message needs to be wrapped in an ambient which moves to and is
opened by the receiving ambient. As in the join calculus, ambients have a tree
structure. The (invisible) root represents the network. Deeper subambients are
physical or logical mobile entities. Movements are local; they depend on the local
tree structure. An ambient may move to the position of its parent sibling, or of
a child of its sibling ambients. It can also open a sibling ambient. An ambient
migrating to a remote ambient needs to be aware of the current tree structure to
perform elementary moves toward the target ambient.

As an example, consider process) = (4) which sends 4 to a secure printer
P =l(z).Print, (assume Print, is a built-in process printing any value assigned to
x). Take the following protocol derived from the firewall example in [5]

21

(vw.w[k[out w.in k".inw | | open k'.P]) | k'[open k.Q)]

The firewall sends the subambient of name k to @) to check its key. Then the
subambient comes back into the firewall with) and allows the interaction between
P and Q.

As in the m-calculus, the structural equivalence allows scope extrusion for bound
ambient names. The equivalence has also commutative and monoidal rules for |.

vw.w[k[out w.in k".inw] | open k'.P] | k'[open k.Q)]

(1)
— vw.w[openk'.P] | k[ink'.inw] | k'[open k.Q] (2)
— vw.w[openk'.P] | K'[k[inw] | open k.Q] (3)
- vw.w[openk'.P] | K[inw|Q] 4)
- vw.w[open k'.P | K'[Q]]
- vw.w[P | Q]
- vw.w[P | (z).Print, | {4)] (5)
- vw.w[P | Print;] (6)

The previous process is equivalent to (1). The k-subambient moves out of the firewall,
and the process OuT-reduces to (2). Now the k-ambient can move into the k'-
ambient by an IN-reduction (3). Finally the k-ambient is opened (4). The calculation
continues with IN/OPEN/REPL-reductions (5). Now P and @ are inside the same
w-ambient and can exchange values (6).

Hence, ambient movements are sequences of IN/OuT/OPEN reductions, which
modify the tree structure of ambients. As in the join calculus, an ambient moves with
all its subambients. Each IN/OuT reduction moves a subtree of the tree of ambients,
but an open reduction removes a single node, and attach sons of the canceled node
to their grandparent. Communication with the RECV rule is a communication on an
anonymous channel inside the current ambient.

A.4 Overview of the join calculus

The join calculus [8] is a variant of the asynchronous 7-calculus [15, 1] with a dis-
tributed implementation and a uniform treatment of local and remote communication
channels [13]. In this paper, we consider only the distributed join calculus without
failures (named join calculus thereafter) [10, 7].

Join-terms are either processes or definitions. A process P can be either the
inert process 0, or a composed process P; | P, or the asynchronous sending z(y)
of message ¥ onto channel z, or a migration request go(a); @ to move the current
location to location a and then do @, or the process @ with local definition D, written
def D in Q.

Definitions of channels give the receptive behavior of new channels. A definition D
may be either the void definition T, or a composed definition D; A D, or a reaction
J > P consuming messages that match the pattern J and producing P instead, or
a location a[D : P] with path «, active definition D, and running process P. Join-
patterns express reception and synchronization of messages. Namely, the join-pattern
z(y) waits for the reception of any message ¥ on channel z. Similarly J | J' waits
for passing J and J'.

For instance, a counter allocator is expressed as the following join calculus process:

22

def counter (x, k) D>
def count(n) | inc(k') > count(n+1l) | &'()
A count(n) | get(x') > count(n) | &'(n)
in count(x) | x(get, inc)

in P

The definition of channels get, inc, and count is local to the definition of counter.
In P, access to counter is permitted, and one may pass to it an initial value z, and
a continuation k. A possible value for P is

def k; (g, i) >
def k2 () > 0 in i(ky) | i(kg) | g(print)
in counter(3, k;) | counter(10, &;)

where print is a built-in channel printing its parameter on a terminal. Two counters
are created with initial values 3 and 10, and two values n € {3,4,5} and n' €
{10,11,12} are printed in any order. (Abbreviations for avoiding intensive use of
continuations are possible, but will not be considered in this paper.)

Our counter may be localized and mobile. In

def counter (user, x, k) D>
def a [count(n) | inc(k') > count(n+1) | x'Q)
A count(n) | get(x') > count(n) | k'(n)
: go(user); count(x) | k(get, inc)] in O

in Q

local channels get, inc, and count are now bundled on a new location a and will
move with it. Here the target destination user is a new parameter of counter.

Locations are organized as a tree. Intuitively, the root location is the Internet;
first level sub-locations are IP addresses; deeper sub-locations are logical entities
ready to move. Here, location a is a sub-location of the current location of counter,
but will become a sub-location of user after moving with go(user) and before exe-
cuting count(x) | k(get, inc).

To explore the dynamics of our example, rewrite the localized-mobile counter
above as def D, in @, where D, is of the form

counter (user, x, k) D>
def a [D;, : go(user); count(x) | x(get, inc)] in O

and where D; , consists of the two rules defining count, inc, and get. Suppose our
example is located at the anonymous root location and that () contains a first-level
location u running the process P.

[T : def D, in def u[T : P] in 0]

By erasing the def binder (rule SCOPE), this definition is equivalent to
[D, : def u[T : P] in 0]

which again by erasing the def binders of u, then &, is equivalent to
[D. AulD,, , : counter(u,3,k;) | counter(u,10,x;) 1 : 0]

which by considering the tree-structure (rule TREE) is also equivalent to

23

[D. : 01 AulDy, , : counter(u,3,k;) | counter(u,10,k;)]

These steps are part of the structural equivalence defined on join-terms. It requires
some subtleties in the treatment of bound variables introduced by the def construct,
which binds all definitions and locations appearing in it. The structural equivalence
takes also into account the monoidal laws of | in processes and A in definitions, and
the tree structure of locations.

There are also three reduction rules. The first one (COMM) moves a message on
some channel to the (unique) location of its receptor. In our example, the previous
definition reduces to

[D. : counter(u,3,k1)] A ulDy, s, : counter(u,10,x;)]

The second rule (JOIN) replaces a join-pattern by its definition body. The example
definition now reduces to

[D. : def alD;y : go(u); count(3) | ki(get, inc)] in 0]
A ulDy, s, : counter(u,10,x1)]

which is structurally equivalent to (by rules SCOPE and TREE)

[D, : 0]
A alD;y : go(u); count(3) | k;(get, inc)]
A ulD,, x, : counter(u,10,x1)]

The third rule (G0) is a subjective move of the location containing the go operator
to a sub-location (with same name) of the target location. The example definition
reduces to

[D. : 0]
Au.alD;, : count(3) | ky(get, inc)]
AulDy, 4, : counter(u,10,x1)]

which is structurally equivalent to

[D, : 0]
ANulDy, w, N alD;y : count(3) | ki(get, inc)] : counter(u,10, x1)]

At this point, we see that our counter definition D, is still at the Internet level, but
an instance of the counter is at sub-location a of location u. The calculation proceeds
in parallel with the second counter, or by executing continuation x;.

The previous three reduction rules express the full dynamics of the join calculus.
It is important to notice that mobility affects the locality of terms, but not their
functionality, since bindings are preserved through the reduction rules. Another
important remark is about the linearity condition of receptors and locations. In any
localized definition a[D : P], channel names are defined in a single location and there
should be a single definition of each sub-location. This is essential in a distributed
implementation, since one always knows where to send any message. The calculus
has been implemented in a language named Jocaml [13].

24

B Proofs

B.1 Correctness of the synchronization algorithm (theorem 5.3)

In this section, we let P, P’ range over ambient processes and @, @', R, R' range over
extended ambient processes. Assuming i € Z, we write Z \ ¢ for the tuple obtained
by deletion of i in Z.

We first give the proof technique that we use to establish theorem 5.3; in a second
stage, we will establish each of its requirements in a series of lemmas. (The lemma,
is stated is specialized for ambients, but the proof technique applies to any coupled-
simulation proof for identical processes equipped with different reduction relations.)

Lemma B.1 To establish theorem 5.3: for all ambient process P, we have (P,—
) S (P, —12¢), it suffices to check that

1. For all processes P and extended processes Q, if P =1, @, then there is a
process P' such that Q —3 P'.

2. For all processes P and P', we have P —* P' iff P =%, P'.

3. For all extended processes Q and Q', if Q Lo and Q —2 Q', then Q' l,.

Proof: We define relations between processes and extended processes as follows: we
let > = {(P,Q)|P =}, Q} and < = {(P,Q)|P +3 Q}. We prove that (Z,<) are
coupled simulations that preserve weak barbs and that are closed by application of
evaluation contexts, and thus obtain > N < C <. We conclude by composing this
inclusion with {(P,P)} C >N <.

Since the reduction relations —1, —2, and —¢ are closed by application of eval-
uation contexts, this is also the case for > and < .

We show that > and < satisfy the four diagrams of Definition 5.2. For the
relation >, the first simulation diagram SiMm holds with no step on the left, and with
the composition of the two universal edges =7, at the bottom. The first coupling
diagram CPL is a combination of hypotheses 1 and 2. For the relation <, the second
coupling diagram holds with identity instead of < at the bottom, and with the —9
steps appearing in the top < relation as reduction steps on the right. To establish
the second SiMm diagram, we close the diagram with identical processes at the bottom
by assembling a series of reduction steps on the right that contains the —» appearing
in the top < relation, followed by one or two steps —+12¢ for each step — on the left.

We finally show that < and > preserve all barbs. If P > @ and @ {,, then also
Q =1y Q' with P> Q' |4, by coupling P —»* P' <5 @', by hypothesis 3 we have
P’ |,, and thus P {,. Asregards <, if P |}, and P <3} @, then P —»* P' |,, by
weak simulation @ —7,- Q' with P' +3 @', hence Q {,. O

Intuitively, extended ambients evolve as follows. Every —; step transforms an
ambient in evaluation context into a stub, and also introduces a scion when it is an
IN 1 or an OuT 1 step. Every OPEN 2 step deletes a stub. Every MOVE 2 step
deletes a stub and substitute an ambient for the corresponding scion. Other steps do
not affect stubs and scions. By definition, there cannot be any stub under a guard.
Moreover, some extended processes such as 7{@}-n[i] (to which MOVE 2 does not
apply) are not reachable from regular ambient processes.

The next lemma makes these claims formal, in the shape of an invariant, and
details the residuals of 2-step redexes along reduction steps.

25

Lemma B.2 Let P be a process and () be an extended process such that P —7,~ Q.
There is a tuple of names T and an extended process R such that:

1. Q@ =vz.R and R does not contain restrictions vx. T in evaluation context.

2. For every stub in R, either R is of the form E(i)(#{P;}—n[R;]) for some i
in T and two-hole extended evaluation context E(-)(-), or R is of the form
E(o{P,}n[R,]) for some extended evaluation context E(-).

3. Let < be the relation on extended ambients defined as j < i when there are eval-
uation contexts E(-) and F(-) such that R = E(i{P;}-n[F(j)])—informally,
j < i when the scion j is within the stub i.

The relation < is cycle-free, i.e. we never have i <* i.

4. Every step Q —12c Q' has one of the following effects on each stub of R. For
every stub of the first form, with R = E(i)({P;}-n[R;]):

(o) Q" =vz \i.E(n[P;| R;])(0) (Completion step).

(b) Q' =vy.E'(i)(H{P;} n[R;]) for some tuple § and extended evaluation
context E'(-)(-) whose holes are not restricted and such that (External
step):

i. y=2 and E(-)(+) =12¢ E'(-)(-), or
i. y=x,7 and E(-)(-) =1 vj.E'(-)(-) for some fresh name j, or
. y=2\j and vj.E(-)(-) =2 E'(-)(+) for some j €%\ i.

(c) Q' =vy.E(G@)(H{P;}n[R;]) for some tuple § and extended process R;

such that (Internal step):
i. Yy =2 and R; >12¢ R}, or
“. y=12\J and vj.R; =2 R} for some j € T\ i.

(d) Q' =vz,j.E(@)(j | {{P;}n[R}]) for some extended process R} and fresh
name j such that i{P;}-n[R;] =1 vj.j | i{Pi}n[R}] (Outgoing OUT 1
step).

(e) Q" =vZ\ j.F(i)(:{P;} n[G(0)])(m[P; | R;]) and beforehand we had
R =F(@)({Pi} n[G(H{F;} m[R;])])(j) (Outgoing MOVE 2 step).

(f) Q' =vz\ j.F@i)(H{P}n[G(m[P; | R;])])(0) and beforehand we had
R = F(i)({P}-n[G(j) 1) (G{P;}-m[R,)) (Entering MOVE 2 step).

For every stub of the second form, with R = E(o{P,}-n[R,]):

(o) Q' =vz.E(P, | R,) (Completion step).
(b) Q' =vy.E'(o{P,}n[R,]) for some tuple y and evaluation context E'(-)(-),
with the same subcases as above (External step).

(c) Q =vy.E(o{P,}n[R.]) for some tuple y and extended process R., with
the same subcases as above (Internal step).

(d) Q' =vz,j.E(j| o{P,}n[R]]) for some extended process R, and fresh
name j such that o{Py}n[R,]| —1 vj.j | o{P,}n[R.,] (Outgoing OUT
1 step).

(e) Q' =vx\ jF(o{P,}n[G(0)])(m[P; | Rj]) and beforehand we had
R = F(o{ P} n[G({F;}-m[R;])]))(4) (Outgoing MOVE 2 step).

26

(f) Q' =vz\ j.F(o{P,} n[G(m[P; | R;])])(0) and beforehand we had
R = F(o{P,} n[G(j)])(G{P;} m[R;]) (Entering MOVE 2 step).

Proof: We establish the invariant by a global induction on the length of the deriva-
tion P =7, @ for the first three properties of the lemma, and by checking the
fourth property as part of the induction step.

Properties 1-3 clearly hold for P = @Q: the form vZ.R is obtained by lifting all
restrictions at top-level after a-conversion; by definition, there is no stub in R.

Assume that these properties hold for a derivation P —7,~ @, and let Q —12¢ Q'
We establish properties 1-8 at rank n+ 1 and property 4 at rank n by a case analysis
on the rule being used for the additional —12¢ step. In each case, we describe an
extended process R’ obtained from R such that Q' = vy.R’', we classify this reduction
with regards to every stub of R, and we study its impact on the relation <.

IN 1: A stub is created, of the first form. Let ¢ be a fresh name. For some evaluation
context E(-) whose two holes are in the same parallel composition, we have

R

QI
For every stub that encloses the holes of E(-)(-), this is an internal step (4c,i)
followed by a scope extrusion for i. For every other stub of R, this is an external
step (4b,ii).
As regards <, let J be the set of names attached to enclosing stubs of the first
form, and let K be the set of scions appearing in R;. The relation < is left
unchanged on previously existing scions. The relation < is extended with k < ¢
for k € K and i < j for j € J. This extension cannot create any new cycle: if
a cycle appears in R', it contains k < i < j for some k,j € K x J and, since
k < j in R, we had a shorter cycle in R, in contradiction with the induction
hypothesis 3.

E(m[Q:])(n[inm.P; | Ri])
vivi-B(m[i| Q:])(H{Pi}-n[R:])

Ovurt 1: Similarly, a stub of the first form is created. Let ¢ be a fresh name. Up to
the rearrangement of the parallel composition within the parent ambient, for
some evaluation context E(-) and extended processes R; and R}, we have

R = E(X~m[n[outm.P;|R;] | R.])
Q' vEVi.E(i | X=m[i{P;}n[R;] | R}])

Depending on X =, the parent ambient may be either a regular ambient, or a
stub of the first form with marker [/, or a stub of the second form.

If the parent ambient is a stub, this is an outgoing step (4d). For every other
enclosing stub, this is an internal step (4c,4) followed by scope extrusion. For
every other stub, this is an external step (4b,i).

As regards <, the situation is similar to the previous case. With the same
definitions for J and K, new relations k < i and ¢ < j appear for k € K and
j € J, but they do not introduce cycles. Besides, if the parent is a stub of the
first form with marker [, all relations k < [for £ € K disappear.

MovVE 2: The stub being consumed is a subprocess of R of the first form. Let ¢
be the scion also consumed in this step; by hypothesis 3., this scion is out-
side of the consumed stub. Explicitly, for some extended evaluation contexts

27

Ao(-), A1(-), and A5 (-) whose hole is not in parallel composition with another
process, and some extended processes Rg, Ry, R2, and R;, we have

R = Ao(Ro|Ai(Ry|i)| As(Ry | {P}n[R;]))
Q' vZ \i.Ao(Ro | Ai(Ry | n[P; | Ri]) | A2(Ry))

For the consumed stub, this is a completion step of the first form (4a). For every
enclosing stub of Ag(-), this is an internal step (4c,#). For every enclosing
stub of A;(-), this is an ingoing MOVE 2 step (4f). For every enclosing stub
of As(-), this is an outgoing MOVE 2 step (4e). For all other stub, this is an
external step (4b,4i).

Let K be the set of scions appearing in R;, J; and Jy be the set of names of
enclosing ambients of the first form in A;(-) and Ay(-), respectively. The re-
lation < evolves as follows: all pairs containing the reacting scion i are deleted.
Pairs k < j are also deleted for all k,j € K x Jy. Conversely, pairs k < j are
created for all k,j € K x Ji; since we already had k < i < 7, this cannot create
cycles.

OPEN 1: A stub of the second form is created. For every other stub, this is either
an external or an internal step. The relation < is not affected.

OPEN 2: A stub of the second form is consumed. For this stub, this is a completion
step. For all others, this is either an external or an internal step. The relation
< is not affected.

REPL, RECV: These steps may produce new processes, but they do not affect the
extensions. For every existing stub, it is either an internal step or an external
step.

In any case, we obtain a new process R that meets all the conditions of the lemma
after lifting all restrictions that appeared in evaluation context to the top level (up
to a-conversion). m|

For every stub described in Lemma B.2, a completion step (4a.) is enabled, hence
this stub can always be discarded in a single 2-step. By iterating these steps, we
prove the corollary:

Lemma B.3 (Completion) For all processes P and extended processes @Q such
that P —%,- Q, there is a process P' such that Q —% P'.

We can now compare successive —; and —r, steps that operate on the same
extension to the original — step of the ambient calculus:

Lemma B.4 (Refinement) For all reqular processes P and P', we have P — P’
if and only if either P —1—o P' or P —¢ P'.

Proof: This is a direct consequence of lemma B.2 for series of two reductions
P —1—9 P'. The first step is enabled if and only if the corresponding initial step
of the ambient calculus is enabled, and since P’ contains no extension, the second
step must be the matching completion step. We obtain the commutative reduction
diagrams of section 4. O

28

Relying on Lemma B.2, we use the markers 4, j, k introduced by 1-steps to keep
track of stubs and scions, and to match these 1-steps with the 2-steps eliminating
these stubs and scions. By extension, we also use fresh markers for matching OPEN 1
and OPEN 2 steps. (More formally, we may refine the extended semantics to produce
and consume a vi. binder and use extensions o(z).P instead of 0.P.)

We will use the following commutation properties of the extended reductions.

Lemma B.5 Let P be a process and () be an extended process such that P —7,~ Q.
We have the following commutation properties:

o) =i —>{ Q' implies Q —>{ —1 Q' when the —!-step is not a IN 1-step towards
an ambient consumed by the following —7 step on the left-hand-side;

e Q —i) Q' implies Q =) —i Q' when i # j and the —{-step is not a OUT
1-step from a stub consumed by the following —%-step on the left-hand-side;

e Q =i Q' implies Q —>Jl—>’2 Q' when the —% step does not create a subterm
used by the the following —7 step on the left-hand-side;

e () =2—¢c Q' implies Q —-c—2 Q' when the —c-step does not use a subterm
created by the —o-step on the left-hand-side;

e Q —c—2 Q' implies Q —2—¢c Q';
Q 21—¢ Q' implies Q —»c—1 Q'
Q —4—3 Q' implies Q —5—% Q.

In particular, we always have Q —i—7 Q' implies Q —9 1 Q' when the second
steps is internal with regards to i, and Q —4%—2 Q' implies Q —3—% Q' when i # j
and the first step is not an outgoing step with regards to j.

Proof: For each commutation property, we apply lemma B.2 to P —7,- @, unfold-
ing twice clause (4.) for the two reduction steps being considered, and we check that
these two steps also apply in the converse order.

For —{—7, in the case —¢ uses rule IN 1, this first step can we written

VEF(m[Q;])(n[in m.P; | Ri)) —i v, i.F(m[Q; | i])(i{P}-n[R:])

where F(m[Q; | (-)])(-) is the evaluation context E(-)(-) of lemma B.2(2). The
second step is either an external step (4b,i) or (4b,ii), or an internal step (4c,i),
or an outgoing step (4d). We detail only the case (4b,iii) when it creates a stub
of the first form, of name j, in a step E(-)(-) =7 vj.E'(-)(+). (Other cases are
much simpler.) We further distinguish three subcases according to the position of
the ambient being extended by —7: an ambient in F'(-)(-), or a sub-ambient in Q;,
or the target ambient m[Q;].

In the first subcase, the step E(-)(-) —1 vj.E'(-)(-) can also be written more
explicitly as F(m[Q; | (-)])(-) =1 vi.F'(m[Q; | (-)])(-), and we also have

vE.F(m[Q])(n[inm.P; | R;]) —1 vEwjF' (m[Qi))(n[in m.P; | R;))
=1 vEwj i F' (m[Q; | i) (H{Pi}n[Ri])

In the second subcase, the step E(-)(-) —1 vj.E'(-)(-) can also be written
Fm[Q: | ()]D(-) =21 viF(Qi | m[@Y|(-)])(-) in which @} is either 0 for an

29

internal step or j for an outgoing step, and we also have

vE. F(m[Q:))(n[in m.P; | Ri]) —1 vEvjF'(Q}| m[Q}])(n[in m.P; | Ry])
=t vzwy, i . F'(Q) | m[QY | i) (H{P}-n[R;])

In the third subcase, however, the target ambient m[Q;] can be used in rule IN 1
only before it gets extended, so that two steps do not commute. O

Next, we establish a key lemma stating that the extended semantics does not
introduce more reductions between regular ambient processes than those of the stan-
dard semantics.

Lemma B.6 (Correctness) For all processes P and P', if P =%, P', then P —*
P,

Proof: We establish the property above by induction on the length n of the series
P =7, P'. For a given pair (P, P'), every rewriting step of the proof will preserve
the length of the series from P to P’; accordingly, we leave the lengths of intermediate
series implicit.

The property trivially holds for an empty series. Otherwise, the first reduction
step is either —¢ or =1 (not —2, because by hypothesis there is no stub in P).

If P »¢c Q =7y P', then @ is a regular process and we apply the induction
hypothesis on Q =7, P'.

If P -1 Q =%y P, then the series of reductions contains a 2-step —» that
consumes this stub. Writing —% and —{ to emphasize these matching steps, we can
decompose the series into

P =1 Q =10 Q =5 Q" =1y P

The stub created by —¢ is preserved by every step between Q and Q'. We rely
on lemma B.2 to partition reduction steps between) and Q' into external steps,
internal steps, outgoing steps, and entering steps according to their relation with
this first stub.

We are interested in the steps that precede the first outgoing step, if any. (These
steps do not contain any entering step, which are enabled only after at least one
outgoing step carrying a stub.) We distinguish the following cases:

1. There is no outgoing step. By Lemma B.5, every step between @ and Q' thus
commutes with =%, and we have P —¢ Q —i Rrext*P' for some extended
process R. By Lemma B.4, we obtain that R is a regular process such that
P — R, and we conclude by induction hypothesis on Rrext*P'.

2. There is at least one outgoing step. In this case, some of the steps between
—% and —% may not commute with —%. We select another initial reduction
as follows: assume P —¢ @ (rext®**)* —J Rrext*P' in which (rext®*!)* is a
series of external steps and —7 is the first internal or outgoing step. This step
—7J is either a —¢ step or a —+; step. By Lemma B.5, this step commutes with
every preceding external step, and also with the initial —% step. We obtain
P =38 (rext®®)* Rrext* P', or simply P —J rext* P'.

(a) In the case —7 is a —¢ step, we conclude as above.

30

(b) Otherwise, we iterate the case analysis with —7 as initial reduction instead
of —%. Since the nesting of ambients is preserved by all —; steps, since
every ambient process has a finite depth, and since case 2. above always
selects a new —; step strictly deeper than the previous one, we eventually
end up with an initial reduction that can be eliminated by case I. O

The proof of the main correctness theorem easily follows:
Proof of Theorem 5.3: We check all the conditions of Lemma B.1.
(1) is Lemma B.3
(2 =) is Lemma B.4 for 1- and 2-steps, and is obvious for RECv and REPL steps.
(2 <) is Lemma B.6

(3) follows from our definition of barbs: —2 steps delete only stubs that do not
contribute to the strong barbs of any process. a

B.2 Correctness of the extended translation (theorem 5.4)

Despite our factorization of the proof, the correctness proof for the translation re-
mains complicated. In every stage of the translation, there is a large variety of
reduction steps to consider. Also, the translation does not commute with reduction
and some additional relations are required. To reduce the number of cases to deal
with, we restrict the shape of the terms we manipulate, and prove that they are
invariant by reductions and include the translation of any extended ambient process.
To simplify the proof, we use a decreasing diagram proof technique [17, 9], and prove
simpler diagrams which are then used to tile the bisimulation diagram we want to
establish.

After some definitions, we start by defining translation states which give the gen-
eral shape of the join terms we manipulate, and we partition the reductions enabled
on these translation states between steps in direct correspondence with source am-
bient steps and other auxiliary steps, which we name bookkeeping steps. Then, we
establish simple commutation diagrams, or tiles, that deal with each simplification
relation, and finally assemble these diagrams to obtain a weak bisimulation result
for the translation.

Next, we define an auxiliary translation [-]]ﬁ from extended ambient processes
to join calculus configurations. This translation extends the translation of figure 2
for extended ambient processes.

In the following, we use the auxiliary translation on configurations which are
a-renamed such that bound names be pairwise distinct.

In order to avoid name clashes during structural rearrangements in the join cal-
culusconfigurations, we perform preventive a-conversions on the names defined in
each ambient manager. We write D™, D7, and R™ for the definitions D A D', D, and
processes R obtained by substituting z™ for every name z defined in D A D' and h"
for here . Finally, we abbreviate reloc and opening with r and o, respectively.

31

Definition B.7 (Auxiliary translation) We translate extended ambients into join
calculus configurations as follow:

[PQLE £ [PIE[QI

[Va.P]]i Z def fresha in |[P]]£
wiPle = [PL
L = o

[a[P1] € H™(s"(a,i%e,0) | amb(i", a,e™))
[H{Q}-alP]) £ H"(def £()>[Q],n in s"(a,i",e,0) | r™(e?, k)
[o{Q}-a[P]]} ¥ H"(s"(a,i",e,0) | def £()>[Q],. in 0" (x))

[[P]]ﬁ = [P], for all other ambient constructs

where n is the index of the translated ambient, where p is the index of the ambient
in which the scion i appears, and where we use the context

H"(-) % def h"[D" Auidi":[P]’. |-]in 0

The auxiliary translation makes it clear that 4 is used solely as a passive target
for migration, as its translation is the empty process.

As in section 4, we also define a top-level variant for the auxiliary translation.
With the same notations, after renaming D, Dy, and @ to D°, D?, and Q° respec-
tively, we write [-]]tﬁ for the translation that maps every extended ambient process
P to the join configuration [D° A D? : Q° | p(t) | [[P]]ﬁo], for some names a, e, p, t,
and yes that do not occur in P.

We now restrict the class of join-terms that we consider. The next definition
makes explicit the general shape of translated processes.

Definition B.8 (Translation state) A join configuration P is a translation state,
written P € T, when:
1. The structure of P can be decomposed as follows:
P = [D°AE°ARAD]:p(t)|sa,i®e0) | MIA [\ a"h"[D" AE":S™|M"]
neNt

E" = /\nng’i()DﬂQK]]e"

A Aver 5@ [Q.0

A Nierr £OP[Q%en [£0)
R = N\, cpfresha

AN Nigruidi

for some index set N with a distinguished label 0 € N, some strings of names
a™ € {h" | n € Nt}* for everyn € Nt (Nt £ N\ {0}), and some disjoint
sets of names {a,i°}, fu(e), F, L, I, and dv(D™), K, K, K" for each
neN.

In the following, we use the additional notations K7 = K} U K[, K, =
Unen K2y Ke =Upen K25 and K = Ky UK. a9 and K0 are undefined, but
for uniformity we extend our notations with a®h® Ze.

32

2. The process M° is a parallel composition of messages sent on names in
{amb®, open®, reill, snd®, sub?, , subl,,} U K°. For every message snd’(a), we
have a € F'U L.

3. For everyn € N7, the process M™ is a parallel composition of messages sent on
names in {amb™,in™, out™, open™, rcv”, snd", sub,, subl,,, 0", r"} U K™. For
every message snd"(a), we have a € F U L.

4. For everyn € N7T, the set I™ contains entries of the form IN b k and OUT b &
withb€ FUL and k € K,.

5. We say that subl, (i, c, k) or subl,,(i,c, k) is a stale message when there is no
message s™(_,4,_,_) in any S™ with m € N.
Each name k € K, occurs in its definition in E™, in stale messages, and as
described in at most one of the following cases, for some m € NT andp € N:
(a) in™(b,k) in M™ (or out™(b,k) in M™), with b € F U L.
(b) subl (i™,b, k) in M? and IN b k within I (or subl,,(i"™,b, k) in M? and
OuT b k within I™) with b€ FU L.
(¢) within S™ = go(eP.here); Iy em er | K() | Flush(I™,in™, out™, k), with at
most one IN b k within '™ (or one OUT b k within ™).
(d) r™(eP, k) in M™ and at most one IN b k within I™ (or one OUT b k within
).
(e) open®(b,k) in MP.
(f) o™ (k) in M™.
(9) k() in MP.
6. Each name k € K} occurs in its definition in E™ and as a single message r(a)
or rctP (k) for somep € N anda € FU L.

7. Each name k € K. occurs in its definition in E™, and as a single message k()
m M™.
8. For every n € Nt, one of the following holds:
(a) either S™ = s™(b,i",e™,1™) for b € F'U L; we say that n is alive. Then,
a™ =a™h™ and P contains a single message of the following forms:
i. ambP(i™,_,e™). Then, aPh?B = a™h™ for some string B of location
names h® with s opened.
. r*(eP, k) with k € K7
iti. o™ (k) with k € K.
(b) or there is none of those messages in P, and
i. either S™ = f™(e™); we say that n is opened. Then, a™ = a™h™.

. or S™ = go(eP.here); Iy en v | k() | Flush(I®,in™, out™, k). We say
that n is in a transient state.

In the following, we identify translation states that only differ by associativity
and commutativity of | and A, and by the presence of 0 processes.

33

Definition B.9 (Strong Barbed Bisimulations) A relation R between two pro-
cess calculi is a strong simulation when, for all P R Q, if P — P', then there exists
Q' such that Q - Q" and P' R Q'.

For a given process calculus equipped with barbs, barbed bisimilarity ~ is the
largest symmetric strong simulation that respects strong barbs (P ~ @Q and P
implies Q lp).

Definition B.10 (Deterministic steps) In the join calculus, we say that a reduc-
tion step P — P' is deterministic when it uses one of the rules CoMM and FLUSH.
For all P,Q € J, we write P =5 Q when @Q is obtained from P by structural
equivalence and by changing the location of top-level definitions fresh a and uid i.
We write =4 for =¢NJT X T.
We write —4 for a deterministic step, and — 4 for the relation:

»a £ {PQ QP =0 NQAINQ 24 Q}
In the following, —4 is called deterministic normalization.

Deterministic steps strongly normalize, by first reducing all FLUSH constructs,
then by doing all CoMM steps. Deterministic steps also commute with every join
step.

Lemma B.11 =, is a strong barbed bisimulation for —4 and —.

Lemma B.12 If P € T, then P /4. P.

Proof: We proceed by case on the rule being used (definition B.10).

CoMmM By conditions 1, 2, 3, and 8 all messages reside in their defining location,
thus no Comm step is enabled.

FrusH By the same conditions, no Flush process is running. |

In the following, we write — for join calculus steps which do not use the structural
rules TREE and SCOPE.

We now partition the steps that are enabled in a translation state and give an
intuitive idea of the corresponding extended ambient semantics. These steps are
enabled without using the structural rules TREE nor SCOPE. The analysis is by case
on the reduction rule being used, with subcases for JOIN-steps.

ComM, FLUSH By lemma B.12, no CoMM nor FLUSH step is enabled.
GO We call these steps migration steps, written —g,.

JoIN We consider the reduction rule being used, following the definitions of D™ and
E™ in definition B.8 and figure 2:

D§ We call these steps delegation steps, written —. Such steps correspond
to initial steps of the algorithm of section 2.1, which are not detailed in
the extended ambient calculus.

D} We call these steps initial steps and partition them further in -y 1y,
—1,0ut, and 1, 0pen Steps depending on the rule being used, in that
order. These steps correspond to ambient steps IN 1, OuT 1, and OPEN
1, respectively.

34

D3 We call these steps completion stepsand partition them further in —2 open
and 2 prove Steps depending on the rule being used, in that order. These
steps correspond to ambient steps OPEN 2 and MOVE 2 respectively.

D7 We call these steps communication steps, written —¢. They correspond
to ambient steps RECV.

D7} We call these steps forwarding steps, written + p,,q. Such steps deal with
the forwarding of messages in opened locations. They do not correspond
to ambient steps.

E™ Let k be the name defined in the rule being used.

k € K[}: these steps are called continuation steps, written .. They do
not correspond to ambient steps.

k € K: these steps are called replication steps, written +—gep;. They
correspond to REPL ambient steps.

DY By definition B.8, there is no message on ¢, hence this rule cannot be used.

We obtain two sets of steps, the first intuitively corresponding to steps in relation
with the ambient steps, the second corresponding to other, bookkeeping steps.

def

X = {'_>1,Ina ’_)I,Outa '_>1,Open7 ’_)2,Movey '_)2,0pena — Rcv> '_>Repl}
def

B = {’_)07}_)Fwd7'_)ﬂ7'_)90}

Next, we define a notion of extension between translation states. This definition
uses set inclusion on processes and definitions as a shorthand for set inclusion on the
sets of parallel processes and composed reaction rules respectively.

Definition B.13 Let P,QQ € T. We say that Q extends P when there is some
m € Np such that:

1. Np g NQ, LP g LQ, and IP g IQ,'

2. for alln € N, Sp = 5§ and o = afy;

o

. for alln € Np such that n # m, Mp = Mg, Ep = Eg;

4. MD | Mgr = Mz

v

. KPP C K& with identical rules on Kg';

D

. for all g € Ng \ Np, &™h™ is a prefiz of a9h9.

We now prove that extended translations [[Q]]tji reduce to translation states, and
that translations states are closed by ——»4.

Lemma B.14 (Ambient translation) Let P € T, let m € N where N is the

index set of P, and let C(-) be the context obtained from P by substituting - | M™
for M™.

1. For every Q € £, we have C([Q]]ﬂem) —»q P for some P' € T that extends P.
2. For every Q € A, we have C([Q],m) —a P' for some P' € T that extends P.

35

Proof: We first show that statement 2 can be deduced from statement 1.

As Q € A, we have by definition B.7 [Q]’ = [Q],.

We now prove statement 1 by structural induction on @, for any C(-) meeting
the hypotheses of the lemma.

@ = 0: Since C(0) = P and since extension is reflexive, the statement holds by
structural equivalence.

vi.Q): Since [[ui.Q]]ﬁ = [[Q]]ﬁ, the statement holds by induction hypothesis.

va.Q): By definition and structural equivalence, we assume that a does not occur in
C(-), and we have

C([va.Q]'.) ¥ C(det fresha in [Q]%.) = C'([Q]%..)

where C'(-) is C(-) with an additional fresh a definition in A™. Unless m = 0,
c' ([[Q]]im) is not a translation state and we apply lemma B.11 to move fresh a

to R in hO:
C'([Q1E) =4 C"(IQ1E.)

where C"(0) is a translation state that extends P with fresh a in R. By
induction hypothesis, we have C" ([[Q]]ﬂem) —»4 P' for some P’ € T that extends
C"(0), and also extends P. By lemma B.11 (=, is a strong bisimulation for
—4), we have the following diagram:

O([vaQltn) ——C"(QL,)

where n represents the number of deterministic steps, which is the same on
each side by blslmlmulatlon Since we have P" /4, we necessarily have R /4.
Thus C([va. Q]]em) —q P', P' € T and P' extends P.

Q =Q'| Q": by induction hypothesis, C([[Q’]]em) —»q P| for some P| € T. Let C'(+)
be the context obtained from P] for the same m € N. Such a context exist
because P| extends P. Then, by applying the same series of reductions, we
have:

oQ'1QT) £ QT 19"
-4 C'([Q"]'m)

and we conclude by induction using context C'(-) and the same index m.
The resulting configuration is an extension of P since it was extended twice
according to the same index m.

Q@ =!Q’': By definition of the translation, we have:
C(IQTim) £ C(det ko [Q,m | K() in k() = C'(k)
where C'(-) is C(-) with the additional definition for the name x. Since

conditions 7 and 3 are satisfied, C'(k) is a translation state which extends P.

36

Q

z).Q', open a.Q', out a.QQ’, in a.Q)': The same argument as above holds. The
y OP ’ ’ g
only conditions to check are conditions 3, because a message is added, and 5,

which hold trivially. In all cases, the translated configuration is an extension
of P.

Q = (a): We have:

Q

C([(a)]En) = C(snd™(a))

In the case where a ¢ L, F is extended to contain a. The translated configu-
ration is a translation state.

a[@']: we have

C([[a[Q']]]ﬁm) =4 C'(0)Aa™h™h"[D" : s"(a,i",e™,0) | [[Q']]in | ambd™ (i", a, (%)
—a C'(amb™(i", a,e™)) A ™h™B[D" : 5" (a,i" ™, 0) | [Q']](8)
= R" (9)

where n is a new index which is added to the set of indexes N, C’(0) is C(0)

with an additional definition uid ™.

The strong bisimulation (7) uses lemma B.11 to move the uid " definition
from h™ to h°. The — 4 reduction (8) is the CoMM reduction transporting the
amb™ message to a™h™.

We write R’ for R" where [Q’]]ﬂe,, is replaced by 0. The configuration R’ satisfies
conditions 1, 2 and 3 of definition B.8, as it is P with the following differences:
e N'=Nu{n};
e if a ¢ L then F' = F ¥ {a};
e "= a™h™;
e R' = RAuidi™;
o I' =Ty {i"}

o S =s"(a,imem,0);

. MI”=0;
o M'™ =M™ | amb™(i",a,e")
o I'm=10.

All conditions are immediately satisfied. For instance, condition 8(a)i is met as
a € F'UL', a™ = a™h™, there is a message amb™ (", _, ™) and no other such
message since e” is composed of names just introduced, there is no message on
r™ nor o".
By induction, using ambient @' and the context obtained from R’ with index
n, we have R" —; P’ with P’ € T and P’ extends R'. P’ also extends P
because:

1. NpC Nrp CNpr, Lp=Lgr C Lpr,and Ip C Ig C Ips;

2. for all pe N, Sb = Sh, = S%, and ap = a}, = af;

3. for all p € Np such that p # m, M} = M{, = M%, and E% = E%, = EY%,,
since n € Np;

37

4. we have M | M@" = M3 = M%;
5. we have E} = Ef, = E7;

6. for all g € Npr \ Npr, o' ™h™ is a prefix of a 7h9, since P’ extgnds R'. As
Ng = Npw{n}, we have Np:\Np = {n}UNp:\ Ng. Since a ™ = a™h™,
for all ¢ € Np: \ Np, a™h™ is a prefix of a 7h9.

We conclude as we did in case va.Q) by deriving a reduction C(a[Q']) —q P'.

Q =1{Q"}—[Q"]:

C([H{Q'"}-alQ"IE (10)
=; C'(0)Aa™h"™h"[D™ A k> [Q'], : s™(a,i™, €™, 0) | [Q"]E. | r™(e?,@))
= R" 12

where n is a new index which is added to the set of indexes N, p is the index
of the translation of the ambient which contains the scion process i, and C'(0)
is C(0) with an additional definition uid ™.

The =4 step (11) uses lemma B.11 to move the uid " definition from A™ to
hO.

We write R’ for R" with 0 substituted for [Q"]]ﬁn . We have R’ € T for the same
reasons as above, with the only differences being the presence of a continuation
definition (K,* = {k}) and a relocation message r"(eP, k) in M™. Condition 5
is satisfied since the name & is not present in P, and condition 8(a)ii is satisfied
since there is no message of the form amb”(i", _,e™) nor any message on o™.
By induction on @)”, with the context obtained from R’ with index n, we obtain
a configuration P’ € T which extends R', as well as P. We conclude as before.

Q = o{Q"}=a[Q"]:

C([o{Q"}-alQ"E) (13)
=4 C'(0) Aa™h™h"[D" A k> [Q'],n : s™(a,i® €™, 0) | [Q"]%. | 0™ (K)14)
= R" (15)

where n is a new index which is added to the set of indexes N, and C’(0) is
C(0) with an additional definition uid ™

The =4 step (14) uses lemma B.11 to move the uid " definition from A" to
hO.

We write R' for R" with 0 substituted for [[Q”]]gn. As before, we have R' € T,
with condition 8(a)iii in this case.

By induction on Q" with the context obtained from R' with index n, we obtain
a configuration P’ € T which is an extension of R' and of P. We conclude as
before. O

Corollary B.15 If Q) is an extended ambient, there is a S € T such that [Q]]tﬁ —»q
S.

Proof: Since [[0]]'5ﬁ is a translation state, we apply lemma B.14 with [[0]]w to generate
the context using index 0, and with extended ambient Q. O

38

Lemma B.16 (Translation Invariant) Let P € T and P' € J such that P — P',
then there is a Q € T such that P' —4 Q.

Proof: Let P € T and P — P'. The set of strings {a"h™ | n € N} is prefix-closed
and h"™ never appears in a”.

Relying on the partition of reduction steps in translation states, we proceed by
case on the steps P — P’: initial steps, completion steps, communication steps,
replication steps, migration steps, continuation steps, delegation steps and forward-
ing steps. (No deterministic step initially applies in a translation state.)

def

Migration step Let Co(-) = T Aah™[D" AE™: - | M™]. We have:

P = Can(go(ef-here); (It en op | () | Flush(I",in™, out™, k))) (16)
—Go Carne(Ien oo | 6() | Flush(I™,in™, out", k)) (17)
=4 ! one (8" (by1,€P,0) | eP.amb(i,b,e™) | k() | Flush(l",in™, out™ @R)

19
20

0)
—d tl)zPhP(sn(bJaepJ@) | ep'amb(iaba en) | K() | Fn)
-5 P

(
(

~ ~—

where we assume that uid ¢ in Ij!,. ., binds a name ¢ that does not appear
elsewhere in P, where C" (-) is C.(-) with the additional definition uid 7 in
R, and where F"™ is the parallel composition of flushed messages in™(d, k°) and
out™(e, k%) for all entries in the log I™.

The structural equivalence (16) is a structural rearrangement of top-level lo-
cations, and a-conversion to a globally-fresh name 7. Step (17) is a migration
step. The equivalence (18) is Lemma B.11 applied to the definition uid ¢. Step
(19) is the deterministic reduction of the Flush construct. Steps in (20) are
CoMM steps moving the e?.amb message to h? (eP.amb = ambP), and possibly
moving the k message to its defining location.

By hypothesis, P meets all the conditions of definition B.8; and P’ is P with
the following differences: for all m € N such that a™ = a™h"g, o™ = aPhP B,
I' = IAuid i, M'? = M? | amb®(i,b,e™), S'™ = s™(b,i,e?,0), M'™ = M" | F™.
There is also a message k() in its defining location.

1. holds with o™ = aPhP.
2. holds since n being a transient state for P implies n # 0.

3. holds because it held for P, thus M'? = M? | amb?(i', b, e™) is well-formed
because MP was. M ™ is well-formed because it is a parallel composition
of M™ and in™ and out™ messages.

4. holds because the log I" is empty.

5. The new continuation message « is unique because of the condition 8(b)ii
for P: the only possible occurrence of k was removed from the log if it
was present, and all the messages generated by Flush contain a different
continuation message name. Let us consider all the other occurrences of
any k° that were in [™. Because of condition 5 for P, any occurrence in a
subl,, message is in a message of the form subf, (i", ¢, k*), because k° € I™.
Because of condition 8 on P, we know there is no s™(b,i",e™, ™) message
in P for any m. Thus all messages on sub], with a continuation x* as
argument were stale. Because of condition 8(b)ii, there cannot be any r"

39

message in P, so there is none in P’. Thus the log being empty in P’
respects condition 5. All the x* in the in™ and out™ messages created by
Flush are unique because they were in the log, thus not already present
in a in”, out”, open”, rcv” or o" message in P (because of condition 5).
There is no subf, (i',¢,-) nor any sub’,,(i', ¢,) because none was present
(the uid is new) and none was created. There is no r™ message either, I"
is empty, and all the x° in newly created ¢n™ and out™ are unique. Thus

condition 5 is true for P’.
6. holds because no modification occured for these messages.
7. holds because no k € K. was consumed or created.

8. holds because S™ is the s™(b,4',eP,)) message and hP is the enclosing lo-
cation of h™. By condition &(b)ii, there were no amb”(i", _,e") message
nor any 7" nor o" message in P. However, in P’, a message amb? (i, b, e™)
exists, so condition 8(a)i is verified for 8 being the empty word, and both
other conditions are not met so condition 8 is true.

Continuation step If the definition used is k() > [Q*],., let us consider the context
C(-) such that C(k()) = P . We have C(0) € 7. (The only condition to check
is condition 5, but C(0) is P without the message (), thus the condition
holds.) By lemma B.14, we have: P — C([Q"],.) =4 P' where P' € T.

The same argument holds if the continuation holds a name a as an argument,
with a € FUL, since [Q*] . {%:} = [Q"{*/z}]. if the continuation definition is
k(z)>[Q"],. after a-renaming bound names so that a does not occur bounded
in Q".

Replication step The same argument holds if the continuation calls another copy

of k because the only copy (condition 7) was consumed, thus there is one and
only one copy present after emitting it.

en

Delegation step Condition 3 is verified after an additional CoMM step to bring
the subj’ or subl;, message to h™.
Condition 4 holds because the entry added is of the correct form and s € K,
because of condition 5 with b € FU L.
Condition 5 is verified because the only reference to £° in the in™ or out™ mes-
sage is removed, and a new reference appears in the subl’ (", _,) or sub?%,(i", _, _)
message, as well as once in [™.

All other conditions are preserved.

Communication step of the form:
C(rev™(k) | snd™(a)) = C(k(a))

with a € F'U L by condition 6 on P. After a possible CoMM step to bring the
message on k to its defining location, all conditions except condition 6 hold
immediately.

rcv™ (k) being present in M™, there is no other occurrence of x in P, thus
condition 6 holds in P’.

40

Initial steps with the rule being used being in D} consuming a message on amb?.
In all cases, after a COMM step to bring the 7P or the o” message to its defining
location, conditions 1, 2, 3, 4, 6, and 7 hold immediately.

Condition 5 holds because in the sub?,(é?,_,.) and sub?,(i?,_,.) case, the
presence of this message implies (by the same condition for P) that the only
other occurrence of the continuation is in [P. These messages cannot be stale
because both reductions demand that a message amb™(i?,b, eP) be present,
which implies (condition 8(a)i) the presence of a message s?(b,?,e?,[?) in P.
In both case, a r? message is created, carrying the same continuation. The
[P log is still the only other place where the continuation can be found. The
introduction of a message on open™ is simpler because it cannot be stale and
no log holds the continuation, thus it is unique in P and also in P’ in the o?
message.

Condition 8a immediately holds for A™. For h?, the presence of a amb™(i?, a, €P)
message implies that SP = sP(a,?, _, _) (by condition 8(a)i for P), and this mes-
sage is not consumed. There is also no P nor o message in P. All three pos-
sible reductions of D; remove the unique message of the form ambd™(_, _, eP),
which is unique because of condition 8(a)i in P. The reductions creating a
r?(e", k*) message fulfill condition 8(a)ii and this condition only, because there
is no amb’(_, _,e?) nor o message in P'. The reduction creating a oP(k®) sat-
isfies condition 8(a)iii, This message is also unique because only one is created
and there were none before, and there is also no amb?(_, _, e?) nor r? message
in P'.

Completion step with the rule being used being in D¥. In both reductions, con-
ditions 2, 7, and 6 are immediately verified, as well as condition 4, because the
log is not modified.

Let us first study the opening case. Let P’ be the process obtained after the
reduction s™(a,i"™,e™,I™) | o™(k)> f™(e™) | k() | Flush(I™,e™.in,e™.out), the
deterministic flushing of I™ and ComMM transport of in™, out™ and & if it is
not in K™. P’ satisfies conditions 1 and 3.

Because of condition 5 on P, we know that any & in a message subf, (i",b, k)
or subb,,(i", b, k) has an entry in [™. Since the s(a,i",e™,["™) message is being
consumed and not reemitted, these messages are stale. Because of condition 8a,
we know there is no r" message, so no associated continuation in the log.
Thus all the non-stale continuations in [™ only occur in the log (because of
condition 5), thus the in™(_,) and out™(_, -) messages generated by the flush

satisfy condition 5.

Condition 8(b)i is partially satisfied because S™ is now f™(e™), a™ = a™h™
because of condition 8(a)iii for P. However, since the s"(a, ", €™, ™) message
disappears, this breaks condition 8 if there is a message amb?(i™,a,e™, r™, o").
This is not possible by condition 8(a)iii for A™ in P. Thus condition 8 holds.

Let us study the relocation case. Let P’ is the process after the reduction
s"(a,i™ et 1) | r™(e™, k) >go(e™.here); R'. P' immediately satisfies condi-
tions 3 and 6. Condition 5 also holds because the continuation in the 7™
message was present in the ™ (condition 5 in P) and is now only present in [™.

Condition 8 is satisfied because S™ = go(e™.here).R' and, as was just shown, k
only occurs once in I and nowhere else in P’, except maybe in stale messages.

41

We also know because of condition 8(a)ii and the presence of r™ that there is
no message of the form amb?(_, _, e™), nor any o™, which is still true in P’. The
unique message on r™ has disappeared.

Forwarding step We will study reductions of the form f™(e™) | C" > f™(e™) |
e™.C where C is one of the messages forwarded. P’ is the process after the
reduction and a CoMM reduction to transport the forwarded message. In all
cases, conditions 1, 2, 3, 4, 6, and 7 immediately hold for P’, and condition 8
holds for A™ in P'.

If C is a message snd(b) then all other conditions hold.

If C is a message in(b, k), out(b, k), open(b, k) or rcv(k), then condition 5 hold
because the message carrying the continuation is replaced by another message
carrying the same continuation.

If C is a message sub;, (iP,b, k) or subyy:(i?,b, k), then because of condition 5,
k is also in [P and nowhere else. This is still true after the reduction, so
condition 5 holds.

If C is a message amb(i?,b,eP), then condition 8(a)i is true for some h® in
P. Tt is still true after the reduction with the new ambd™ (i?,b, e?) message, so
condition 8 holds with a? = a™h™h™3: by condition 8(a)i on P, for all h? in
B, St = ft(); we also have S™ = f™(_). Thus, condition 8(a)i holds. O

In the following, we write —, for —»4—, with £ € B U X. This reduction is
defined for P € J only if —4 is defined, hence only if there is a P’ € T such that
P -, P

Lemma B.17 There is no infinite series of normalized bookkeeping reductions —»p.
Proof: Let us consider a series of normalized bookkeping reductions:
P -3Q1i—=pP—>3Q:...

From this series, we extract the series @Q1,Qs, ..., and prove that this series is nec-
essarily finite. By definition of —4, we know that @); € 7 for all i. We define the
depth of a message defined in D™ as the word size of 3 if a"h™ = aP where aP is the
first enclosing location which is alive. Using the partition we just defined, we write
g, K, o, for the number of go steps, continuation steps, delegation steps respectively
enabled. We write fy for the sum of the depth of messages on in, out, open, amb,
rcv, and snd in @), and f; for the sum of the depth of messages on sub;, and subyy:
in .

We consider the well-founded lexical order on the tuple (g, s, fo, 0, f1), and
associate such a tuple to each @;. We check that the tuple strictly decreases as i
increases, which implies that the series is necessarily finite.

Forwarding steps for messages on sub;, and sub,,; decreases their depth, and
eventually only enable initial steps, which are not bookkeeping steps. Delegation
steps consume messages on in, out or open which were at depth 0, but decreases
the number of delegation steps enabled. They create sub;y, or sub,,; messages which
might contribute to f1, but the resulting tuple is still strictly smaller. Forwarding
of other messages decreases their depth and do not enable any continuation nor
migration steps. Continuation steps do not create any migration steps nor any other
continuation step. Migration steps do not enable new migration steps. a

42

We introduce a notion finer that the one of translation state, as some properties
needed hereafter are true only for these processes.

Definition B.18 P is a well-formed process if there is an ambient process () and
an extended ambient process Q' such that Q =71, Q' and |[Q’]]tji —*»g P,

The following lemma insures that migrations are always enabled in a well-formed
process. It is similar to condition 3 of lemma B.2. By definition of —»4, we have
PeT.

Lemma B.19 Let P be a well-formed process. For any n € N such that h™ is in a
transient state, the go(eP.here) is not dead-locked (hP is not a sub location of h™).

Proof: We first define a partial order on locations A", n € N. We say that h™ < h?
iff h? € @™ (W™ is a sublocation of h?). We also define a relation R on locations. We
say that h"RhP iff 7 (e, k) or go(eP.here); R™ is in M™. We define <; as R <.

We prove that the following hypothesis H is preserved through reduction: there
is no cycle in <y; and is valid for the translation of a correct extended ambient
process. If H is true for P, then any migration is enabled, because the destination
location is not a sublocation of the migrating location.

We first prove that the translation of a correct extended ambient () satisfies H. A
correct extended ambient is an extended ambient that satisfies lemma B.2. Following
the definition of the translation, if h, <; hy and hy <y h., then three subprocesses
are present in the extended ambient process:

Ql = XC;C[EC(i)]
Q2 = 1P, b[E(j)]
QS = j'P37a[Ra

where h®, h®, h¢ are the locations corresponding to the ambients a, b and ¢, and where
Ey and E, are evaluation contexts. As can be seen in the subprocesses, necessarily
j < i as was defined in B.2. Thus if there is a cycle of length greater than one in the
translated process for <y, then there is also one for the extended ambient process,
which violates condition 3 of lemma B.2.

If the cycle is of length one, then the extended ambient process has a subprocess
of the form: 7.P;, a[E,(7)], which also implies a cycle for <.

Let us now prove that H is preserved through reduction. The proof is very similar
to the proof of condition 3 of lemma B.2. For the sake of clarity, we write <’, R' and
<’f for the relations after the reduction. There are only three cases which modify the
reductions: a continuation step which creates new locations, an initial step which
creates a message on some r” and a migration step. Completion step do not modify
the location tree and replace the r®(e?, k) message with a go(e’.here); R’ primitive,
which do not modify the relations.

Continuation step A continuation step does not modify the R relation —the
translation involves non-extended ambients— but extends the < relations. Let
h? be the location name of a newly created location. Then it is not possible
that h*Rh? and h® <' hP because no newly created location can be a parent
of an already present location. Thus <};=<y and H is preserved.

Initial step

43

In 1 Let us suppose the reduction occurs in A% Then M? contains the mes-
sages amb®(j,b,€’), amb®(k,a,e®) and sub? (k,b,x). This reduction cre-
ates a message 7% (€%, k), thus R’ = RU{(h?, h®)}. The location tree is not
modified, thus < does not change. We then have <’f:<f U{(he, h)|h® <
he}.

Let us consider a cycle in <’f. This cycle did not exist before thus it
necessarily includes a couple h® <'f he with kb < he. If there are several
such couples, a shorter cycle can be found. Indeed, if A' <'f h® <’f h? <’f
< h3 < ht <5 h* are part of the cycle, a shorter cycle would contain
h' <!t h* <’ h* instead. Thus it is possible to only study the case where
there is only one couple of the cycle which was not in <j;.

If h¢ is h® then h® < h®. Thus h® € ab. By condition 8(a)i of lemma B.16
and the message amb®(j,b,e?), we have a® = a?h?B. h® is not opened
(by condition 8 and the presence of the message amb?(k, a,e®)) and h® is
different from h?, so h¢ < h%, which is impossible by condition 8(a)i for
he.

h¢ being different from h®, the cycle has a length greater than one, thus
there is some h° <'f h®. This cannot be a new couple of the relation
<y, therefore h® <; h®. By condition 8(a)i, h® < h?. Thus we have
h¢ <y h%. We know that h® < h¢. Either S¢ = go(e?.here) or r°(e?, k)
is a message of M€, thus by condition 8 of translation states, h¢ is not
opened and there is no message amb®(_, _, e°). Thus h® < h® (they cannot
be equal because of the message amb?(4,b,e?)). By condition 8(a)i and
the presence of message amb?(j,b,e?), we have a® = a?h?3 and every
h® € f3 is opened. Thus we have h? < h¢. This implies h® <; h¢, which
in turn implies that the cycle exist in <y, which is not possible.

Out 1 Let us suppose the reduction occurs in h%. Then M? contains the
messages s(d,i%, e’ 1), amb?(k,a,e®) and subl,,(k,d,). This reduction

creates a message r%(e’, k), thus R' = R U {(a,b)}. The location tree is

not modified, thus < does not change, and <;=<; U{(h*, h°)|h® < h°}.

By the same argument as before, we reduce a cycle of <’]c to a cycle with

all couple in < except one: h* <; h*. We have h* < he.

By conditions 8 and 8(a)i of translation states, we necessarily have h® <

h¢ < hy. If the cycle is of length one, then h® < h® which is impossible.

Otherwise, the sequence h® <; h® <} h° can be replaced by h® <y h® and

the cycle was present before the reduction, which is not possible.

Migration step Let us suppose that h® <; h’. Let us define Z = {h*|h* < ha}
and C = {h°|h® < h¢}. We then have R’ = R\{(a,b)}, and if h? <' h9,
then either h? < h? or h? € Z and h? € C are true. We thus have </;,C<;
U{(h®, h9)|h® <5 h® A h® <; h%}. Let us suppose there is a cycle. Any couple
in this cycle that is not a couple of <y can be replaced by two consecutive
couples of <y, thus there was a cycle in <y, which is not possible. O

Lemma B.20 (Commutation lemma) Let P be a well formed process. The fol-

44

lowing diagrams hold for vy, € B, =€ X.

P ¢ Q P Y Q
éd :d

y y

y/ QI T Q_I
y'= z

\ \

Proof: We first show that if the two redexes involved in the two steps do not inter-
fere, then it is possible to close the diagram. We write —; and —, for the join steps
corresponding to the redexes being reduced horizontally and vertically, respectively.

The following diagram holds, using the same configuration names as in the lemma:

Pi h Q d =4 Q'
v (1) v (2) v
p—l>r =~ R,
* | d *|d (6) *ld (4) =*|d
(3) ¢ R —R!

EZ =4 (5) lzd (7 EZ)
Py h Rh d R;L EZ T

The first tile 1 holds by the non-interference hypothesis of the two reduction
steps considered. Tile 2 holds by lemma B.16 to yield translation state @', by
definition B.10 of deterministic steps which commute with all other steps, and by
lemma B.11 which states that =4 is a strong bisimulation. Tile 3 holds for the same
reasons, with translation state P"”. Tiles 4 and 5 are built by applying lemma B.16,
and extracting the series of deterministic steps. Tile 6 holds by commutation of
deterministic steps, with R’ having no deterministic step enabled: by definition of
deterministic steps, the configuration reached after all deterministic steps is deter-
ministic. Tile 7 holds by chosing the adequate vertical and horizontal step: transla-
tion state T exists by lemma B.16 from either Q' or P", and both path =;=, can
be chosen to converge, by definition of =; and = .

We now proceed by case on the vertical reduction, proving that the reductions
do not interfere.

Migration step Migration steps do not prevent any other step from occuring, nor
are impeded by any other step, except other migrations. Since the process is
a well formed process, a property preserved by reduction after deterministic
normalization, by lemma B.19, the migration is enabled and can occur.

Continuation step Continuation steps commute with all considered steps, as they
only depend on the location in which they are defined, which is not modified by
the other steps, and as they do not remove any message except the continuation
call itself.

45

Replication step As for continuation steps, replication steps commute with all
considered steps.

Delegation step A possible problem concerning the commutation of a delegation
step with the considered step is a Fwd reduction which would involve the
message on in™ or out™. However, if there is such a reduction, it implies that
there is a message on f™, which in turn, by condition 8(b)i of lemma B.16,
implies that there is no message on s™, thus that delegation is not possible.

Another problem is the modification of the log. However, as the log used in
the deterministic Flush step is held as an argument of the Flush, this does
not prevent commutation.

Communication step As for delegation steps, the only horizontal step which could
prevent the communication to occur would be a Fwd reduction, which is not
possible by a similar reasoning. The communication step itself cannot prevent
any horizontal reduction from occurring, with the exact same results. Thus all
commutations hold.

Initial step Once again, this step could be impeded by the forwarding of one of
the necessary messages (on amb™ and subl,, sub?,, or open™). This is not
compatible with the presence of the message on s™. Nothing else prevents any

commutation with horizontal steps.

Completion step Every completion step immediately commute with every hori-
zontal step.

Forwarding step These steps do not prevent any horizontal reduction from occur-
ring with the same result, thus commute with all of them. O

Next, we define simplification relations on translation states, and express their
properties as commutation diagrams. The first simplification >, consists of the
removing of definitions which cannot be used anymore.

Lemma B.21 For all P,Q € T, we write P =, QQ when P is obtained from Q by
adding K to KQ,ap (or i to Ig), for some name k (or i) that does not occur in Q.
For every —,€ X U B, we have the diagrams:

d Zx d v Y d ™ d

Proof: The proof is immediate as the definition of k (or 7) in P is never used, and
as new local continuation names appearing in @) can be taken different from x. A
translation state is reached after each vertical step by applying lemma B.16. a

Another simplification relation >4 removes stale messages from translation
states.

Lemma B.22 For all P,Q € T, we write P > 4. @ when P is Q with a single
additional stale message.

46

For every —,€ X U B, we have the diagrams:

Zstale Z stale
P Zstal Q .E tal Q
4 ¥
Zstale Zstale
P! d» Sotale d Q' P! d e tals «dQ’

Proof: Let us first prove the second diagram. By lemma B.16, there is a Q" € T
such that Q' -4 Q". Since P is @) with an additional message, the series of reduction
Q —z—4 Q" also applies in P, yielding P"” which is Q”, with the same additional
message at the same location, hence P" >4 Q.

Let us now prove the first diagram. Assume P —, P’'; if this steps does not
consume the additional message, we conclude as above. Otherwise, let subl (i™,_,)
(or sub®,,(i™, _,_)) be the stale message. According to our analysis of steps enabled
in translation states, —, is either an initial step or a forwarding step using a rule of
D",

By definition of stale messages, there is no message of the form s™(_,i™,_,_) in P.
By condition 8b on translation states, there is no message of the form amb™(i™, _,_)
in M™, hence no initial step may consume the stale message.

A forwarding step P+ pyq P’ uses S™ = f(eP) to consume the stale message and
produce a message sub? (i™,_,_) (or sub’,,(i™,_,_)). Using a deterministic ComMM-

step P’ —4 P" , this message is moved to MP, and becomes a stale message in MP.
We obtain P" >4 @ for the same state (), with a different stale message. |

Location boundaries in the join calculus cannot be torn apart to match ambient
OPEN 2 steps; instead, we rely on a simplification relation »pg,4 that merges an
opened location and its enclosing location. In the lemma below, m is opened in n
and all forwarding steps in m have been performed.

Lemma B.23 (Opened ambient) Let P,Q € T. We write P =pyq Q when, for
some m € Np, P meets the conditions:

1. S = f™(e™) (hence ol = o™ by condition 8(b)i);
2. M is a parallel composition of messages on names in K ;
and that Q is P with the following changes:
3. Ng = Np \ {m};
4. K =KpUKp (with identical guarded processes);
5 ME=Mp|Mp;
6. for every p € Ng, ag is obtained from o, by deletion of h™ (when present);
7. e™ is substituted for every occurence of e™.

For every —,€ X U B, we have the following diagrams:

p ZFuwd 0 1_3 ZFuwd
v 4
= Fw ZFu
Pt ((I0E Commyx Zred Dy P tos ((I0G Commys Sred 4

Proof: The proof consists of showing that both configurations execute the same
reduction, with some additional steps for the configuration on the left which might
need to forward the results of the reductions to reach a state that is still in the
relation.

In the following, we say that a step P — P’ involves the opened ambient if it
occurs in A™, creates a message on a name defined in D™, creates a Flush message
with arguments defined in D™, or involves an occurrence of e™.

If the step does not involve the opened ambient, then by lemma B.16 we have
P' -4 P" with P" € T.

These deterministic steps necessarily do not involve the opened ambient: Flush
steps create messages which, by definition, are not defined in D™, do not occur in A™
and do not involve e™. Comm steps cannot bring messages to h™ since the messages
created are not on names defined in D™. Since P is a translation state, there are no
other deterministic steps than the one created by the reduction P —, P'.

We derive a series of steps corresponding the the reduction P +—,—»4 P" for Q.
Since the first step does not involve the opened ambient, there is a corresponding
redex which can do the same step. The resulting configuration @' is very similar
to P', with the same differences as between P and (). Since both configuration are
obtained from the reduction of the same redex, the series of deterministic steps for
P', which do not involve the opened ambient, is also enabled in @'. This yields a
configuration)" which does not have any other deterministic step enabled: there
were none other in @' than those created by the step @ —, Q'. By lemma B.16, we
have Q' —4 Q"' with Q"' € T. Since deterministic steps commute, and by definition
of =4, we have Q" =4 Q"

Hence, from @, reductions @) —,—4 Q"' matching those from P yield a transla-
tion state. We check that we have P >p,q Q"'.

Conditions 1 and 2 are immediately met, because the message on f™ cannot
disappear, and no message was create in h"™. Condition 3 is immediately verified,
since each create index name is created in both configurations. Condition 4 is met
because no definition could be added to K}, and if one was added to K3, it was also
added to K7 by the same series of steps. Condition 5 is met because no message was
added to M}, and any message added to Mp is also added to Mg by the same steps.
Condition 6 can be affected if the reduction is a go(h?) for some h" and h™ € aoP.
However, the same reduction occurs in @, ap = aph"h™éPh? and agy = agh"dPh?
thus the condition is met. Condition 7 is immediately met, since no occurence of ™
is involved in the steps.

Let us consider the cases where the opened ambient is involved, by case on the
reduction.

Migration step Then it is necessarily a go(e™.here) reduction for some hl to P;.
Because of the relation between P and @), there is a corresponding go(e™.here)
in hgy. h™ is not a sublocation of A" because otherwise h™ would be one too
and the reduction could not occur. Thus) can also execute the reduction to
(1. The Flush step can be executed by both configurations, to yield P, and
(2. These configurations are not yet translation states because of the message
on e™.amb for P, and e™.amb for (J3. The message in ()2 is simply sent to h”
by a Comm step and the resulting configuration Q' is a translation state. The
message in P, is forwarded to A™ by a Comm step. The resulting configuration
Pj; is a translation state but does not meet condition 2 of the relation. Since
we have S™ = f™(e™), we use the definition f™(e™) | amb™(j, b, ep) > f™(e™) |

48

e™.amb(j,b, ep) followed by a CoMM step, to create the forwarded message on
amb™ and to forward it to yield configuration P’. All conditions are now met
for the relation between P’ and Q'.

Continuation step If the reduction involves a continuation (ie a message whose
name is defined in K7, or K7;), then conditions 4 and 5 insure that a reduc-
tion involving the same definition can occur in h¢,. Every messages, except
for continuations, which are created in M7 are forwarded using the appropri-
ate forwarding step and sent to h5 using a COMM step. These messages are
directly created in Mg and do not need to be forwarded. This accounts for
all the messages beside continuations because an ambient translation creates
messages only on in, out, open, rcv, snd and amb. New definitions introduced
are necessarily on names added to K, Ip and Lp, and they correspond to
the same names added to K, Ig and Lg. Thus, the configurations obtained
are still in the relation.

Replication step The exact same argument applies to replication.

Delegation step A delegation step involving the opened ambient necessarily is a
delegation step which creates a message on sub}, or suby.,, followed by a ComM
step to yield P"”. The corresponding step in) will directly create a message
on sub}, or subl,; with the same arguments, which is sent to A" by a Comm

step. An additional forwarding step followed by a ComM step for P will yield
a configuration that is in the relation with Q".

Communication step The only possibility for a communication step to involve
the opened ambient is if the resulting continuation is defined in the opened
ambient. This directly yields two processes which still are in the relation.

Initial step No IN 1 or OPEN 1 reductions involve the opened ambient. An Out 1
reduction might involve the opened ambient by creating a r?(e™, k) message.
However, the two processes obtained after the reduction are still in the relation,
using condition 7.

Completion step An OPEN 2 reduction might involve the opened ambient if the
ambient is being opened in A™, which implies that the Flush step contains
arguments defined in D™. After the Flush step, forwarding steps will be nec-
essary to carry the messages to h™. All conditions are easily verified. Another
possibility for involving the opened ambient is if the continuation is defined in
h™. Then, the possibly affected conditions 4 and 5 are still verified after the
reduction.

A MOVE 2 reduction simply yields a process which trivially satisfies condition 7,
which is the only one affected.

Forwarding step A forwarding step involving the opened ambient when the des-
tination of the forwarding is h™. The relation > p,q insures that the same
forwarding step in @ will carry directly the message in A”. An additional
forwarding step followed by a CoMM step will achieve the same for P.

The proof of the second diagram is exactly the same, with the only exception of
some occurrences of channels defined in n as defined in m. Both reductions proceed
as described before, and after some forwarding steps and Comm steps, if the step

49

involves a name defined in h™, the configurations obtained are still in the relation.
O

Definition B.24 Let Q € £. We write Q € £E# when Q = va.Q' where Q' has no
restriction in evaluation context, and say that Q) is a normalized extended ambient.

Definition B.25 Let P,Q € £. We write P =¢ @ when P = Q by a-renaming and
scope extrusion, and Q € E*.

We restrict extended ambient steps to steps which are closed under structural
equivalence which does not involve a-renaming nor scope extrusion. These extended
ambient steps are written —x.

1§

We let —» & (—2) d be a relation between normalized

extended ambients £# and translation states 7. This new relation corresponds to
translating the ambient, then doing an arbitrary number of delegation steps, before
deterministic normalization.

We now state the main diagram, which establishes the relation between reduction
steps in extended ambients and reduction steps in their translations.

Lemma B.26 (Operational Correspondance) We have the following diagrams:

50

tr tr

for every Act € {In,Out,Open}

e e
1,Act id
El,Act
Se¢ tr d v
....................... R
tr tr
IRcv Rcv Rcv IRcv
EL tr = d kY YV D¢ tr = d K
....................... e T G < e e e T e
tr tr
IR@pl Repl Repl IRepl
e tr da v Y D¢ tr d
........................ SR e e s
tr
1Move 2 éMove 2
> = Sstale go
........ fm e (=T < gy
tr
Move 2 1Move 2
= =k =stale go
V. Ze o (= yr (2) S S S A
tr
‘|;Open 2 EOpen 2
S¢ tr 2Fwd ,Comm Fuwd =k Sstale d kY
LTS s e (< |)*(<)*(............)* < <
tr
i Open 2 lOpen 2
Vv = ¢ <Fwa C Fwd = Sstate d
Y 2t e (Gomm. Fwdye LT NE D <o

Proof: The proof of each of the diagram is straightforward but fairly tedious. The
main issue consists of proving that each relation can be used. Most of the work was
accomplished by proving lemma B.16 which describe the shape of the join processes
involved.

To apply an ACT 1 step, an additional 0 step might be necessary if it was not
achieved in the 0 steps contained in the horizontal —, reduction series. Otherwise,
the vertical part of the closure if straightforward, following the translation definition.

To apply the relation <, the continuation must not appear anywhere in the
term. This condition is met as there is no stale message in the join term (stale
messages are created by a MOVE 2 or a OPEN 2 step, and are removed with the
=stale relation) and because of condition 5 on translation states, which states that
if there is a continuation message in the term, then there is no other occurrence of
the name, except in stale messages. Removing the used continuation definition is
necessary to yield a process that is a translation of the extended process.

51

The relation <4 is applied as many times as there are stale messages in the
term. These stale messages are created after a MOVE 2 or a OPEN 2 step, and are
message on subl, or subl,, if h™ was the location moving or being opened. The
messages that are removed are those which were created in 0 steps of the horizontal
—¢ series of reductions. As they carry a uid which is not correct anymore, they
cannot appear in the translation of the extended ambient. They are actually replaced
by the messages that are flushed from the log, with the correct uid. Thus, the 0
steps of the bottom —,. series of reductions are the same as before. The strong
equivalence that follows stale message simplification corresponds to the removing of
the uid ¢ binder for the this uid which does not occur in the term, as a new binder
was introduced after the go step.

After an OPEN 2 step, an extended ambient has disappeared, while the corre-
sponding location is still present with a message on f™. To put these processes in
correspondence, it is necessary to remove this location. First, all messages except
those defined in K™ are forwarded to the location in which the ambient was opened
through F'wd steps. This location is necessarily alive as there can not be any opened
location generated by the translation. Then the process meets the conditions to
apply <rwd, which removes the opened location and puts its K™ definitions in the
location in which it was opened. As a translation cannot generate continuation calls,
as the continuation created by the OPEN 2 step was used and as the correspond-
ing definition was removed with the <, relation, the only definitions and processes
concerned are those for restriction and replication. m|

We will now show some diagrams concerning barbs. First we define a notion of
barbs for the translation states.

Definition B.27 (Translated barbs) We let |} be the predicate on join processes
such that P 1 iff Ty(P) —*Lyes-

These four steps are as follows: a COMM step to bring the p(t) message to its
defining location, its consumption, a COMM step to bring the resulting #(b) message to
the location where DY is, and its consumption if a message of the form amb®(i™, b, e™)
is present in M°. As this is the shortest reduction path to observe a barb on yes for
some P € T, P |} if and only if amb®(i™,b,e™) is present in MO.

Now we define a new reduction which represents the observation of a barb.

Definition B.28 Let P € £, we let —; be the relation P — 3 0 if and only if P 1.
Similarly, let R € J, we let R —; 0 if and only if R |}. In the following diagrams,
we simply write |y, for these relations.

We now close the diagrams where all the horizontal relations introduced are tried
against the vertical barb relation.

52

Lemma B.29 The following diagrams hold:

—— s for —,€ B
lb b ‘z
i Y
: b
b
Y
d d d d
: - : :
lb b id d b b
] Y Y A
b b :
b b
Y Y
EZ] EZ] =F L=F]
N N
b b b b b .b .b b
Y Y \ Y
Za =2
; : > fOT Zz€ {tmtstalea tFwd}
b b) b
A Y
tr tr
—_— —_—
=B b b
i Y
b N
b
Y

Proof: To be written.

O

Lemma B.30 Let H be the relation =¢ — s H'* between well-formed processes

and join configurations where

d d K Fwd 0 go

HI = {Eda Eda)) t, i, t, i,

=k = Fuwd Sstale
, o}

We have [-] C A.

Proof: We prove that [- [= =¢ —& (<2,

First we relate the translations of two structurally equivalent processes of the
extended calculus. Let Q, Q' € € such that Q = Q'. We first prove by induction on
the structural equivalence proof that for any e and any D, [D : |[Q]]ﬂe] =q4[D: [[Q’]]ﬁ]
The proof is straightforward since the structural equivalence is preserved through the
traduction, except for scope extrusion across ambient boundaries (structural rules

53

R2 and R2X). Let us consider the R2 case.

[D: [vn.a[P]]}] (21)
D : def freshn in [a[P]]*] (22)
= [DAfreshn: [a[P]]] (23)
= [DAfreshn:def h"[D™ Auidi®: [P]. | s"(a,i" e,0) | amb(i®, a,e™)] i(20)
= [DAfreshn:0]Ah"[D" Auidi®: [P]\. | s(a,i" e,0) | amb(i",a,e™)] (25)
=4 [D:0]Ah"[D" Auidi" Atreshn : [P]'. | s"(a,i",e,0) | amb(i",a,e™)] (26)
= [D:def h"[D" Auidi" Afreshn : [P]t. | s"(a,i" e,0) | amb(i", a,e™)] i(20)]

o
o
&

[D : [a[vn.P]]] (28)

The structural equivalence of step 23 is allowed by choosing n fresh, the second
structural equivalence step 25 is allowed since a # n by definition of R2, and the =4
step 26 corresponds to definition B.10.

Hence, by definition of the translation B.7, we have [[Q]]tﬁ =4 [[Q’]]tﬁ.

We have the following diagram: ¢ ¢, o’
[-1°
[Q1* ——[e1"

*10

d

R

This diagram holds by the definition of the —2> relation as well as the rela-
tion between the translations of two structurally equivalent ambient processes. We

conclude using the definition of =4 and —% to derive:

— 0 — d 0 d 0 0
=d —>> = =(I = I =

O

We are now ready to establish the correctness of the translation. The next the-
orem is more precise than Theorem 5.4. It uses a notion of hybrid barbed strong
bisimulation up to bookkeeping.

Theorem B.31 Let R be a relation between extended ambient processes and join
configurations such that PRQ implies P |y iff To(Q) {yes and that satisfies the
following diagrams for every —,€ X and —y€ B:

Such a relation is called o hybrid barbed strong bisimulation.
The relation H is a hybrid barbed strong bisimulation.

Proof: In order to close each of the four diagrams for H, and also to establish the
correspondence of barbs, we glue the elementary diagrams (or tiles) of lemmas B.20,
B.21, B.22, B.23, B.26, and B.29. Since most of these diagrams introduce further
horizontal and vertical steps, the existence of a finite tiling is unclear. Technically,
we apply a general confluence technique relying on decreasing diagrams, proposed by
Van Oostrom [17] and adapted to bisimulation proofs in [9]:

For each target diagram, we identify “horizontal” and “vertical” relations that
may appear in the tiles, and we strictly order these relations. Then, we check that we
have a tile for every product of an horizontal and a vertical relation that is decreasing
for the strict ordering on relations. To conclude, we apply the decreasing diagram
theorem.

To prove diagrams of theorem B.31 for all —,€ X, and the preservation of weak
barbs we use the sets of relations:

d d K Fwd 0 go

tr
H = {957 |—>7€d;9d7 b,) i, I, I,

=k =<Fwd <stale
; ; }

V. = BUXU{*LEg:*LQdaib}

For each diagram we strictly order these relations, and check that every divergence
of an horizontal and a vertical relation can be closed as a decreasing tile for the chosen
order.

Formally, we thus have 2 13 % 15 tiles to check. All the relevant diagrams of the
previous lemmas are decreasing with regards to this order.

(diagrams to be typeset)

Lemma B.32 H is a weak barbed bisimulation.

Proof: We first prove that if P +444 Q and P — P’ then Q —»* Q' and P’ —» 4«4
Q'. If the step P — P’ is deterministic, then we have P' —» 4«4 @ by commutation
of deterministic steps and by lemma B.11. Otherwise, by lemma B.16, there is a
P" € T such that P’ -4 P". Hence, by commutation of deterministic steps, and by
lemma B.11, we have Q —3— Q' and Q' =4 P". Since we have P" € T, we have
P'" &, QI‘

We now prove the first bisimulation diagram. Let P, P', R, R' € £ be well formed
processes, and @ € J, such that P =¢ R —, R' =¢ P' and PHQ@. Then, by
theorem B.31, we have RH(). By the same theorem, there is a series of reductions
Q(—g—p)* »g—, Q' with R'HQ', hence P'HQ'. Since we have QQ —» 444 Q, by
the argument above, we have Q —* S’ with Q' - 444 S’, hence we have P'HS".

We now prove the second bisimulation diagram. Let P € &£ be a well formed
process, and Q,Q' € J such that PHQ and Q — @Q'. We have the following

55

diagram:

Pt Q—tsp- 2T
l* (@) l o Iw
P Ho Q- 4...>1;/....f‘? T!
*d (3) *d

1;/ e v
é?d

Y

TII

By lemmas B.14, B.16, and by definition of #, there is a T such that Q —4 T,
and we have PHT. Tile 1 holds by definition B.10 of deterministic steps, as they
commute with other steps. If the considered step () — R is a deterministic step, then
by definition of H, we have PHR. Otherwise, there is a step R — R' to consider. In
this case, this step corresponds to a step of T+, T' with z € BUX. By lemma B.16,
the existence of T" is derived. Tile 2 holds by definition of =4, which is a relation
included in the strong bisimulation =4. Tile 3 holds by bisimulation. Finally, tile
4 holds by applying theorem B.31, which results in P'HT’. By definition of H, we
have P'"HT", thus P'HR.

The preservation of barbs is a direct consequence of their preservation in the
relation H. m|

Lemma B.33 The relation H preserves divergence.

Proof: Let P € £ be a well-formed process and @) € J such that PHQ. If P 1, by
theorem B.31, following the same argument than the proof of lemma B.32, we have
Q1

Let us suppose there is an infinite series of steps starting with configuration Q.
This series satisfies the following diagram:

d d
Q * : *

After partitioning deterministic and non-deterministic steps in the original series,
each tile is built using lemma B.16.

Since there cannot be an infinity of successive deterministic reductions, there is
an infinity of tiles. Thus we have a divergence of the form: @ —»z—~—»4— By
lemma B.17, there is no infinite series of normalized bookkeeping reductions -4+ g,
thus there is an infinity of — x steps. By theorem B.31, we have a divergence for P.

O

We finally combine our technical results to establish correctness, as stated in
section 3.

56

Proof of Theorem 3.1: Let P be an ambient process. As regards weak- and fair-
must barbs, we compose the equations of theorem 5.3 (P < P with different opera-
tional semantics) and of theorem 5.4 (P ~% [P]").

We begin with a remark on fair-must barbs that applies to each of these equations.
Let < be at least a barbed coupled simulation between two families of processes
equipped with reductions and barbs —, |, and —', ;. We write |} for —>'*J,;,. Then,
< also respects fair-must barbs: if P < @, OP {3, and @ —*Q', then P »* P' > Q'
(using the simulation property of P > @) and P’ —»* P" < Q' (by coupling) with
P" |y (by definition of OP —*| b), hence also @' {}; (using the weak barb property
of P" < @) and finally 0@ ;.

For the notion of translated barb |; used in the statement of theorem 5.4, we
thus obtain P |l iff [P]* —*{#, and OP |}, iff O[P]* —*|1.

The statement of theorem 5.4 uses another variant of the top-level translation,
so we still have to prove that [P]° —*|# iff [P]” Uyes- The direct implication
immediately follows from the definition of |}. Conversely, [[P]]b Jyes is C (IP1") —*
T lyes- By induction, we prove that every step in the series of reductions leading to T
is either one of the four steps expressing the barb |5, or a step that is independent
for the context C'(-) and commutes with each of these four steps.

The divergence property is established independently (since it is not generally
preserved by the equations above). From (P, —) to (P, —12¢), the extended seman-
tics only refines some steps into pairs of steps, which does not affect divergence.
From (P, —=12¢) to |[P]]t, we apply the strong bisimulation up-to bookkeeping of the-
orem B.31, in combination with the finite-bookkeeping lemma B.17: if |[P]]t —" for
all n > 0, then also [P]'((=5)* =12, (—p)*)™ for all m > 0, hence by strong
bisimulation P —7%~. From [P]° to [P]", there is at most one extra step. O

57

