
J-O-Caml (2)
jean-jacques.levy@inria.fr

pauillac.inria.fr/~levy/qinghua/j-o-caml
Qinghua, November 20

Plan of this class

• compiling programs

• list processing

• pattern-matching

• new data types

• labeling algorithm

Compiling programs

prog1.ml

program text
ocamlc

binary

a.out

• ocamlc -o prog1 produces prog1 (executable byte code)

• ocamlc -c prog1.ml produces prog1.cmo (byte code)

• ocamlopt -c prog1.ml produces prog1.cmx (binary)

• also files prog1.cmi (compiled interfaces -- see later)

List processing

List processing

List processing

• polymorphic types

• ‘a list (say ``alpha list’’) is type of list of any type, e.g. int list, bool list, ...

Exercices on lists

Exercices on lists

• Arbitrary precision numbers can be implemented by lists (little endian or
big endian style). Write addition and multiplication algorithms.

• Conway sequence of lists starts with list [1]. Then next list in sequence
is obtainte by reading previous list. Therefore [1; 1], [2; 1], [1; 2;
1; 1], [1; 1; 1; 2; 2; 1].... Print lists of Conway sequence. Is there
any unlucky number ?

New data types

• products

New data types

• products

New data types

• sums

New data types

• sums

New data types
• recursive types

New data types
• recursive types

New data types
• recursive types

• recursive polymorphic types

New data types
• recursive types

• recursive polymorphic types

New data types

• recursive polymorphic types (alternative definition for binary trees)

New data types

• recursive polymorphic types (alternative definition for binary trees)

Caring about space

• with an extra argument as an accumulator of the result

Caring about space

• with an extra argument as an accumulator of the result

Combien d’objets
dans une image?

Jean!Jacques L"vy
INRIA

Labeling

16 objects in this picture

1

1

2 3

4 5 6

7
8 9

10

11 12

13 14

Naive algorithm

1) choose an unvisited pixel

2) traverse all similar connected pixels

3) and restart until all pixel are visited

Very high complexity:
- how to find an unvisited pixel ?

- how organizing exploration of connected pixels (which direction?)

Algorithm
1) first pass

- scan pixels left-to-right, top-to-bottom giving a new object id each time a new
object is met

2) second pass
- generate equivalences between ids due to new adjacent relations met during
scan of pixels.

3) third pass
- compute the number of equivalence classes

Complexity:
- scan twice full image (linear cost)

- try to efficiently manage equivalence classes (Union-Find by Tarjan)

Animation
 with Polka system for animated algorithms

Exercise for next class

• find an algorithm for the labeling algorithm

Equivalence classes

Equivalence classes
“Union-Find”

• objects

• equivalences

• find the equivalence class of

x1, x2, ... , xn

xp

• 3 operations:
-

-

-

NEW(x)

FIND(x)

UNION(x , y)

 new object

 find canonical representative

 merge 2 equivalence classes

Equivalence classes
“Union-Find”

• with tree-like structure

x9

x7

x5 x10

x1

x4

x2

x6

x3

x8

x11

x12

x13

• given by the array of direct ancestors

7 79 990 11 12 2 8 8 13 8ancestor

Equivalence classes
“Union-Find”

• unbalanced trees because of merges
- UNION(x , y) merge 2 equivalence classes

x9

x7

x5 x10

x1

x4

x3

x8

x11

x12

x13

x6

x2

x6 = x13

Equivalence classes
“Union-Find”

• try to balance
- UNION(x , y) merge 2 equivalence classes

x9

x7

x5 x10

x1

x4 x3

x8

x11

x12

x13

x6

x2

 therefore keep height at each node

opérations pour O(log n) FIND(x)

Equivalence classes
“Union-Find”

• compression of path toward canonical representative
- with side-effect on tree structureFIND(x)

x9

x7

x5 x10

x1

x4

x6

x2

x9

x7

x5 x10

x1

x4

x6

x2

FIND(x4)

Exercice for next class

• find good primitives for graphics in Ocaml library

• design the overall structure of the labeling program

