
MPRI Concurrency (Cours 2-3)
Final exam, 2005-2006

22 Feb 2006, 16.15–19.15
James.Leifer@inria.fr

Question annotations: ∗ = easy; ∗∗ = medium; ∗∗∗ = hard

1. Consider the term P = νy.(x(x).x(x).xy) | νy.(xy.νx.(yx.x(x))) with x 6= y.

(a) ∗ What is the set of free names of P?

Solution: {x}.

(b) ∗ Define a process P ′ that is α-equivalent to P and has all bound names distinct from
each other and from all free names.

Solution: P ′ = νy1.(x(x1).x1(x2).x2y1) | νy2.(xy2.νx3.(y2x3.x3(x4))).

(c) ∗ What is the set of free names of P ′?

Solution: {x}, since α-conversion doesn’t change the free names.

(d) ∗∗ Show the sequence of three reduction steps (−→) starting at P ′, taking care to make
explicit any scope extrusions you need (i.e. use of (str-ex) in ≡).

Solution:

P ′

≡ νy1, y2.(x(x1).x1(x2).x2y1 | xy2.νx3.(y2x3.x3(x4))) extrusion of y2

−→ νy1, y2.(y2(x2).x2y1 | νx3.(y2x3.x3(x4))) communication on x

≡ νy1, y2, x3.(y2(x2).x2y1 | y2x3.x3(x4)) extrusion of x3

−→ νy1, y2, x3.(x3y1 | x3(x4)) communication on y2

−→ νy1, y2, x3.(0 | 0) communication on x3

2. This question explores the relationship between name hiding and bisimulation in the core π-
calculus (i.e. the calculus on slide 3 with no extra features).

(a) ∗∗∗ Prove that strong bisimilarity is closed by new binding, i.e. P ∼ Q implies νx.P ∼
νx.Q. You may only use the basic definitions of bisimulation and labelled transition (no
“up to” techniques).

Hint: start with a relation R = {(νx.P,νx.Q) / P ∼ Q} and try to show that R is a strong
bisimulation. You may have to add some more pairs to R.

Solution: Take R′ = R ∪ (∼). We aim to show that R′ is a bisimulation. To do
that we need to consider (P0, Q0) ∈ R′ and P0

α
−→ P ′

0 with bn(α) ∩ fn(Q0) = ∅.
We distinguish two cases.

Case P0 ∼ Q0: By definition of ∼, there exists Q′

0 such that Q0
α

−→ Q′

0 and
P ′

0 ∼ Q′

0, hence (P ′

0, Q
′

0) ∈ R′, as desired.

Case (P0, Q0) ∈ R: Then there exists P and Q such that P ∼ Q and P0 = νx.P
and Q0 = νx.Q. We consider the two possible ways that the labelled transition
P0

α
−→ P ′

0 could have been derived.

Case (lab-new): Then there exists P ′ such that P
α

−→ P ′ and P ′

0 = νx.P ′

and x /∈ bn(α). By hypothesis, we also have bn(α) ∩ fn(Q0) = ∅, hence
bn(α) ∩ fn(Q) = ∅, thus it is safe to apply the definition of bisimulation to
the hypothesis P ∼ Q; hence there exists Q′ such that Q

α
−→ Q′ and P ′ ∼ Q′.

Let Q′

0 = νx.Q′. Then by (lab-new), Q0
α

−→ Q′

0. Finally, (P ′

0, Q
′

0) ∈ R ⊆ R′,
as desired.

Case (lab-open): Then there exists P ′ and w such that P
wx
−→ P ′ and w 6= x

and P ′

0 = P ′ and α = w(x). By hypothesis, P ∼ Q, so there exists Q′ such

that Q
wx
−→ Q′ and P ′ ∼ Q′. Let Q′

0 = Q′. By (lab-open), Q0
α

−→ Q′

0.
Finally, (P ′

0, Q
′

0) ∈ (∼) ⊆ R′, as desired.

Since R′ is a symmetric relation, we conclude that it is a bisimulation. Hence for
any P ∼ Q, we have (νx.P,νx.Q) ∈ R′ ⊆ (∼), which completes the proof.

(b) ∗ Give a counterexample to show that the converse is false, i.e. νx.P ∼ νx.Q does not
imply P ∼ Q.

Solution: Take P = xy and Q = 0 with x, y distinct. Then νx.P ∼ νx.Q since
both sides are deadlocked. However P 6∼ Q since P has the labelled transition

P
xy
−→ but Q does not.

(c) ∗∗ However if we hide and then reveal a name, then it is as if we never hid it! Prove that
νx.(kx | P) ∼ νx.(kx | Q) implies P ∼ Q for k /∈ fn(P) ∪ fn(Q) ∪ {x}.

Hint: There is no need to explicitly construct a bisimulation relation containing (P, Q).
Instead consider the k(x) labelled transitions of νx.(kx | P) and νx.(kx | Q). Take care to
clearly write out any proof trees you use when deriving labelled transitions.

Solution: We can infer a bound output for νx.(kx | P) by the following derivation:

kx
kx
−→ 0

(lab-out)

kx | P
kx
−→ 0 | P

(lab-par-l)

νx.(kx | P)
k(x)
−→ 0 | P

k 6= x, (lab-open)

Since we have two bisimilar processes, νx.(kx | P) ∼ νx.(kx | Q), and x /∈ fn(νx.(kx | Q)),
we know that the right-hand process must be able to match the transition we just

derived, i.e. there exits Q′′ such that 0 |P ∼ Q′′ and νx.(kx | Q)
k(x)
−→ Q′′. There are

only two possible rules that the this last labelled transition can be derived from,
the first of which turns out to be impossible.

Case (lab-new): By the side condition for the rule, the only way it can be applied
is if we do α-conversion on x, i.e. we have a derivation of the form:

kx′ | {x′/x}Q
k(x)
−→

νx′.(kx′ | {x′/x}Q)
k(x)
−→

(lab-new)

where x′ is fresh. Suppose, for contradition, that the premiss were derivable.
By hypothesis, k /∈ fn(Q), hence k /∈ fn({x′/x}Q), therefore we cannot have

{x′/x}Q
k(x)
−→. Nor can kx′

k(x)
−→ since x′ is free here, disallowing any bound

output. Thus this case is impossible.

Case (lab-open): Then the premiss is kx |Q
kx
−→ Q′′. Since k /∈ fn(Q), the output

is due to kx
kx
−→ 0, thus Q′′ = 0 |Q. Finally, P ∼ 0 |P ∼ 0 |Q ∼ Q, as desired.

3. This question addresses relationships between labelled transitions and barbs in the core π-
calculus.

(a) ∗∗∗ Prove that P
xy
−→ P ′ implies P↓x. Hint: induct on the derivation of P

xy
−→ P ′.

Solution: According to the definition of P↓x, we have to show that there exists
~z, w, P0, and P1 such that P ≡ ν~z.(xw.P0 | P1). In fact we can always use w = y,

as we show in the following induction on the derivation of P
xy
−→ P ′.

Case (lab-out): Then there exists P0 such that P = xy.P0. Take P1 = 0 and ~z
to be the empty list of names. Then P ≡ ν~z.(xy.P0 | P1), as required.

Case (lab-par-l): Then there exists P2 and Q such that P = P2 | Q with the

premiss P2
xy
−→. Applying the inductive hypothesis to the premiss, there exist

~z, P0, and P1 such that P2 ≡ ν~z.(xy.P0 | P1). Without loss of generality, we
may assume that ~z ∩ fn(Q) = ∅, hence P = P2 | Q ≡ ν~z.(xy.P0 | P1) | Q ≡
ν~z.(xy.P0 | (P1 | Q)) by scope extrusion, as required.

Case (lab-par-r): Symmetric to the previous case.

Case (lab-new): There exists P2 and u such that P = νu.P2 and u /∈ {x, y},

with the premiss P2
xy
−→. Applying the inductive hypothesis to the premiss,

there exist ~z, P0, and P1 such that P2 ≡ ν~z.(xy.P0 | P1). Hence P = νu.P2 ≡
νu.(ν~z.(xy.P0 | P1)), as required.

(b) ∗ Give an example to show that the converse is not true, i.e. find a P such that P↓x

but not P
xy
−→.

Solution: Take P = νy.xy. Then P↓x but P can only do a bound output on x,

i.e. P
x(y)
−→ 0.

