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Question annotations: = easy; = medium; = hard

1. Consider the term P = vy.(z(z).x(z).Ty) | vy.(Ty.ve.(gr.x(z))) with z # y.

(a) What is the set of free names of P?
Solution: {z}.

(b) Define a process P’ that is a-equivalent to P and has all bound names distinct from
each other and from all free names.

Solution: P’ = I/yl.(:c(xl\).ggl(:cg\).@yl) | vyo.(Tya.vxs.(Gaxs.x3(x4))).

(c) What is the set of free names of P'?
Solution: {z}, since a-conversion doesn’t change the free names.

(d) Show the sequence of three reduction steps (—) starting at P’, taking care to make
explicit any scope extrusions you need (i.e. use of (str-ex) in =).

Solution:
Pl
= vy, ye-(z(21).21(22) Tayr | Ty2.vx3.(J273.23(74))) extrusion of ys
—  vy1,y2-(y2(x2). Ty | vas.(axs.x3(z4))) communication on x
= vy, Y2, 23.(y2(x2).Tay1 | Yaxs.x3(z4)) extrusion of x3

— VY1, Y2, 73.(T3y1 | 23(74)) communication on

— VY1,Y2,T3.

o~~~

0|0) communication on x3

2. This question explores the relationship between name hiding and bisimulation in the core m-
calculus (i.e. the calculus on slide 3 with no extra features).

(a) Prove that strong bisimilarity is closed by new binding, i.e. P ~ @ implies vz.P ~
vz.). You may only use the basic definitions of bisimulation and labelled transition (no
“up to” techniques).

Hint: start with a relation R = {(vz.P,vx.QQ) / P ~ @} and try to show that R is a strong
bisimulation. You may have to add some more pairs to K.

Solution: Take R’ = R U (~). We aim to show that R’ is a bisimulation. To do

that we need to consider (Py, Qo) € R’ and Py — Py with bn(a) N fn(Qop) = 2.

We distinguish two cases.

Case Py ~ Qo: By definition of ~, there exists Q) such that Qy — Q) and
P ~ Qf, hence (Pj, Q) € R, as desired.

Case (Fy, Qo) € R: Then there exists P and @ such that P ~ Q and Py = vx.P
and Qg = vz.Q). We consider the two possible ways that the labelled transition
Py -%+ P} could have been derived.

Case (lab-new): Then there exists P’ such that P -+ P’ and P} = vz.P’
and = ¢ bn(a). By hypothesis, we also have bn(a) N fn(Qo) = @, hence
bn(a) Nfn(Q) = @, thus it is safe to apply the definition of bisimulation to
the hypothesis P ~ Q; hence there exists Q' such that Q —— @’ and P’ ~ Q'.
Let Q) = vz.Q'. Then by (lab-new), Qo — Q). Finally, (P}, Qh) € R C R/,
as desired.



Case (lab-open): Then there exists P’ and w such that P 2% P’ and w # «
and Pj = P’ and a = w(z). By hypothesis, P ~ @, so there exists @’ such
that Q ~% Q' and P' ~ @Q'. Let Q) = Q. By (lab-open), Qo —— Q.
Finally, (P}, Q() € (~) C R/, as desired.
Since R’ is a symmetric relation, we conclude that it is a bisimulation. Hence for
any P ~ @, we have (vx.P,vz.Q) € R’ C (~), which completes the proof.
(b) Give a counterexample to show that the converse is false, i.e. vz.P ~ vx.QQ does not
imply P ~ Q.
Solution: Take P = Ty and @) = 0 with z,y distinct. Then va.P ~ vz.Q since
both sides are deadlocked. However P +4 @ since P has the labelled transition
P but Q) does not.
(c) _However if we hide and then reveal a name, then it is as if we never hid it! Prove that
vz.(kx | P) ~vz.(kz | Q) implies P ~ Q for k ¢ fn(P) U fn(Q) U {z}.
Hint: There is no need to explicitly construct a bisimulation relation containing (P,Q).
Instead consider the k(x) labelled transitions of vz.(kz | P) and vz.(kz | Q). Take care to
clearly write out any proof trees you use when deriving labelled transitions.

Solution: We can infer a bound output for vz.(kx | P) by the following derivation:
——— (lab-out)
Ez +% 0
- L — (lab-par-I)
kz|P 0| P

ve.(kz | P) "o P

k # x, (lab-open)

Since we have two bisimilar processes, vr.(kz | P) ~ vz.(kx | Q),and z ¢ fn(va.(kx | Q)),
we know that the right-hand process must be able to match the transition we just

derived, i.e. there exits Q" such that 0| P ~ Q" and vz.(kz | Q) M) Q". There are

only two possible rules that the this last labelled transition can be derived from,

the first of which turns out to be impossible.

Case (lab-new): By the side condition for the rule, the only way it can be applied
is if we do a-conversion on x, i.e. we have a derivation of the form:

Fa' | {«'/a}Q "2
va' (k' | {a! [2}Q) ")
where 2’ is fresh. Suppose, for contradition, that the premiss were derivable.
By hypothesis, k ¢ fn(Q), hence k ¢ fn({2'/2}Q), therefore we cannot have
Fe) b

k -,k
{2'/2}Q M2} Nor can Bz’ ®% since ' is free here, disallowing any bound
output. Thus this case is impossible.

Case (lab-open): Then the premiss is kx| Q LN Q". Since k ¢ fn(Q), the output
is due to kx %, 0, thus @” = 0| Q. Finally, P~ 0|P ~0|Q ~ Q, as desired.

(lab-new)

3. This question addresses relationships between labelled transitions and barbs in the core =-
calculus.

(a) Prove that P % P/ implies P|z. Hint: induct on the derivation of P T, pr

Solution: According to the definition of P|x, we have to show that there exists
Z, w, Py, and P; such that P = vZ.(Zw.Py | P1). In fact we can always use w = y,

as we show in the following induction on the derivation of P 2P



Case (lab-out): Then there exists Py such that P = Ty.Fy. Take P, = 0 and 2
to be the empty list of names. Then P = vZ.(zy.Py | P1), as required.

Case (lab-par-1): Then there exists P> and @ such that P = P» | Q with the
premiss P> —%. Applying the inductive hypothesis to the premiss, there exist
Z, Py, and P; such that Py = vZ.(Ty.Fy | P1). Without loss of generality, we
may assume that 2N fn(Q) = @, hence P = P, | Q = vZ.(zy. Py | P1) | Q =
vZ.(zy.Py | (P | Q)) by scope extrusion, as required.

Case (lab-par-r): Symmetric to the previous case.

Case (lab-new): There exists P» and w such that P = vu.P, and u ¢ {z,y},
with the premiss P» =, Applying the inductive hypothesis to the premiss,
there exist 2, Py, and P; such that P, = vZ.(Ty.Py | P1). Hence P = vu.Py =
vu.(vZ.(zy.Py | P1)), as required.

(b) Give an example to show that the converse is not true, i.e. find a P such that P|z

but not P E

Solution: Take P = vy.Ty. Then P|lx but P can only do a bound output on x,

1e.P@>O.



