Languages and Systems
for Global Computing

MPRI, 4/1/2006

Concurrency theory

concurrent programs are always difficult to understand

concurrency theory (1978 — 1992) is an elegant theory,
mainly interested by non-distributed systems

distributed systems are asynchronous
(no output guards, no broadcasts)

routing is important in distributed systems

failure detection has to be handled

Concurrency, Locality and Mobility

e m-calculus is a calculus for reconfigurable (extendible)
communicating systems, named “mobile processes” .

e its variants make localization more explicit: distributed Join
calculus, distributed n-calculus, w1-calculus, etc

e the calculus of Mobile Ambients has all its synchronization
based on localization.

Goals

global computing can be used to access and synchronize
large data, to access large computing resources, to
customize groupware environments.

global computing = scalability and decentralized systems.
global computing is a very (too?) ambitious project

basic theory: concurrent and localized objects, extendible
languages and systems, security, etc

engineering: compiling for several run-times, inter-pointer
analysis, distributed garbage collection, etc

reality and vaporware: Java, .Net, peer-to-peer, etc

Already existing
e agents in Al
e distributed systems

e theory of concurrency: CSP, CCS, w-calculus

From m-calculus to Join calculus (1/3)
Suppose we have:
e one sender on location s communicates on channel =z,

e several receivers on locations o and b wait for data on
channel z,

Then which routing strategy?
e sending one of them, but fairness?

e sending both = distributed consensus between sender s and
receivers a and b.

e protocol for atomic broadcast?

= receivers are uniquely located (per channel name)

= point-to-point one-way communications from senders to
channel managers

From m-calculus to Join calculus (2/3) The Join-Calculus Language, release 1.05

Extra pro blems See [Fournet, Gonthier, Maranget]

e if z-channel manager dies, where to send a message for = 7 ML style (1/2)
= channel managers are always alive = permanent receivers

let x =1 ;; Type inference

in CCS/r-calculus, synchronization acheived by consumption val x: int

of receivers, E.g. a lock is a channel without receiver during # let y = x+1 5,

the critical section. val y: int
do print(x); print(y) Synchronous expr.

permanent receivers = synchronization acheived by waiting 12

for several messages on several channels. # let 1d(x) = reply x ;; Polymorphism
val id: (o) — (@)

do print(id(1)); print_string (id("hello"))
lhello

= receivers are guards joining several messages # let succ(x) = reply x+1 ;;

(as for Petri nets) val succ: (int) — (int)

let s = id (succ) ;;

val s: (int) — (int)

spawn echo(1) Asynchronous expr.

let e = id (echo)

val e: (int)

From m-calculus to Join calculus (3/3) ML style (2/2)

Caveat

remote procedure calls are nearly transparent [B. Nelson] # let £(x,y) = reply x+y, x-y ;; Tuples
val f: (int X int) — (int X int)
RPCs — big success for programming
let fib(n) = Recursive let
remote synchronization should also be quasi transparent if x <=1 then { reply 1 }
[Magic Cap] else { reply fib (n-1) + fib (n-2)}
val fib: (int) — (int)
= local and remote communication follow the same
schemes. # let twice (£) = High-order
let r(x) = reply £(£(x)) in
reply r
val twice: ((a) — () — ((a) — (a))

Concurrency

spawn echo (1) | echo (2) Non determinism

let fruit (£f) | cake (c) = Synchronization
{print_string(f ~ "_" ~ c = "\n");}

val fruit: (string)

val cake: (string)

spawn fruit ("apple") | fruit ("blueberry") |
cake ("pie") | cake ("crumble")

apple pie

blueberry crumble or

blueberry pie

apple crumble or ...

Locks

let new_lock () =
let free() | lock() = reply to lock
and unlock() = free() | reply to unlock in
free() | reply lock, unlock

val new.lock: () —(()—()x()—=())

spawn ... lock(); ... ; unlock();

Barriers

let joinl () | join2 () = reply to joinl
| reply to join2
spawn ... joinl (); playerl ();
| ... join2 O); player2 O;

Local definitions

let count(n) | inc() = count(n+1) | reply to inc
and count(n) | get() = count(n) | reply n to get

val count: (int)

val inc: () — ()

val get: () — (int)

let new_counter () = Scope extrusion
let count(n) | inc() = count(n+1l) | reply to inc
and count(n) | get() = count(n) | reply n to get
in count (0) | reply inc,get
val new_counter: () — (() — ()x() — ({(int)))

Full-duplex channels

let new_channel () = Asynchronous ch.
let send(x) | receive() = reply x to receive in
reply send, receive

val new_channel: () — ((a) X () — (a))

let new_schannel () = Synchronous ch.
let send(x) | receive() = reply x to receive
| reply to send in
reply send, receive
val new_schannel: () — ({(a)— () x () — (a))

Distribution

let new_cell_d () = Cell server
let get() | some(x) = none() | reply x to get
and put(x) | none() = some(x) | reply to put in
none() | reply get, put

do ns.register ("cell_d", new_cell_d)

let new_cell_d = ns.lookup ("cell_d") ;; Cell client

let read, write = new_cell_d() do (
write ("world");
write ("hello," ~ read());
print_string (read());
print_newline()

) 5

Checking types in nhame service 7 «— typed marshalling ?

Distribution and mobility (2/2)

let new_cell_mlog (a) = Cell server

let log (s) = print_string ("cell" ~ s ~ "\n"); reply to log in

loc applet

with get() | some(x) = log ("is empty");
none() | reply x to get

and put(x) | none() = log ("contains" ~ x);
some(x) | reply to put in

init go(a); none()

end in

reply get, put

dO ns.register ("cell", new_cell)

let new_cell_mlog = ns.lookup ("cell") ;; Cell client

loc user
init
let read, write = new_cell_mlog(user) in {
write ("world");
write ("hello," ~ read());
print_string (read());
}

end

log keeps on server side.

Distribution and mobility (1/2)

let new_cell_m (a) = Cell server
loc applet
with get() | some(x) = none() | reply x to get
and put(x) | none() = some(x) | reply to put in
init go(a); none()
end in
reply get, put

dO ns.register ("cell_m", new_cell_m)

let new_cell_m = ns.lookup ("cell") Cell client

loc user

init

let read, write = new_cell_m(user) in {
write ("world");
write ("hello," ~ read());
print_string (read());
print_newline();

¥

end

a, applet, user are locations. Subjective moves.

The join-calculus

processes
sending ¥ on x

(rec) definition of D in P
parallel composition

empty process
definitions

elementary clause

simultaneous definitions

T

(D)

empty definition
join-patterns

receiving v on x

J|J composed patterns

x, v, v2, ...defined and receiving variables

Defined variables are bound in def D in P
Receiving variables are bound in J> P

Free and bound variables Structural equivalence and calculus (2/2)

defined var free var
dv(T) = fv(0) 0 Processes Mononoty
P|P") = fv(P)URV(P) P=aQ = P=0q

@) (2} U{uc) P=Q = P|R=Q|R

dv(D A D') D)udv(D’)
dv(J > P) fv

fv(
(z
dv(J|J") - udv(J’) fv(def D in P) (fv(P) Ufv(D)) — dv(D) P=Q = JrP=JrQ
(
(

av(z(v) = fv(a[D:P)) = {a}Ufv(D)UfV(P) D=D',P=Q —> def Din P =det D' in Q

dv(a[D : P]) {a} wdv(D) fv(go(a, k)) = {a,r}
receiving var
rv(J|J") = rv(J)wrv(J) fv(T) = 0 Defs
rv(z(?)) = {uev} fv(D A D) fv(D)ufv(D’)
fv(J> P) = dv(J)U(fv(P) —rv(J))

Reduction rules

def DAJ>PinJo|Q — defDAJp>PinPo|Q
P=R—-S=Q = P—-Q

Structural equivalence and calculus (1/2) Join-Calculus wrt other calculi (1/2)

Monoidal rules

PlQ =
(P1Q) IR =
PO =

DAD'
(DAD"YyAD"
DANT =

Binding rules
PldeftDin@ =
def D in def D’ in P
def T in P =

QIP
Pl(Q]R)
P

= D'AD

DA (D' AD")
D

defDin P |Q fv(P)ndv(D) =0
def DA D' in P similar
P

wrt the w-calculus [Milner, Parrow, Walker]
e one-way channels
e fixed static set of receptors per channel
e permanent definitions

JC is a subset of the =w-calculus easily implementable in a
standard distributed environment (Unix/WinXXX). No need
for distributed-consensus protocols (Isis-like).

Simple failures. Channel and receptors fail at same time
(permanent failure model)

Join-Calculus wrt other calculi (2/2)

wrt Ambients [Cardelli, Gordon]
e lexically scoped
communication and migration are orthogonal
JC = communication, Ambients = administration

Ambients good for security

wrt wl-calculus [Amadio]
e pi-one relies on a condition on types
e JC based on its syntax

e quasi identical

Join-Calculus with migrations

P,Q == ...| go(a,r)

current location becomes a sublocation of a, then send a trigger
on channel &

Remarks: hierarchy
- a location moves with its sublocations

- if a goes to b, then b must not be a sublocation of a. Syntactic
check at compile time (move lock freeness).

Join-Calculus with locations

D,E:= ...|a[D: P]

a is a location

Caution: scopes and linearity
e the scope of a in a[D : P| delimited by the enclosing def statement

e a location only defined once, e.g. the following definition is
illegal
defa[D: P|AalE:Q]> R in S

e a defined name appears in the join-patterns of a unique location,
e.g. the following definition is illegal

def alz(u) > P: Q] Ablz(v)> R:S]in T

Join-Calculus and Failures

permanent failures

a location fails with its sublocations

emission or moves from dead sites are impossible
sending to or moves to dead sites are possible

failure detection impossible in an asynchronous world
[Fisher, Lynch, Paterson], [Chandra, Toueg]

a trace-semantics equivalent implementation is feasible
positive information about failures in practice.

only suicides presently implemented (next version with
asynchronous failures ?)

failures of channels # failures of sites

Failures are a big and large problem < Distributed algorithms?
«— distributed operating systems ?

Failures should be part of semantics of languages.

Jocaml (1/3)
Interface with the outside world
let agent = ref 0 ;;

let def register_me (loc, name, (args:string list)) =
reply O |
let name = incr agent; Printf.sprintf
"%s %d" (match args with [name] -> name | _ -> "Agent") l!agent in
let name =
match args with
' s ::1->s
| [1 -> name in
let name = if String.length(name) > 8 then String.sub name 0 8
else name in
let job, kill = make_comp (loc) in
next (name, job, kill) ;;
let _ =
Ns.register !ns_name register_me (vartype:
(Join.location * string * string list -> unit) metatype);
Join.server () ;;

3

Jocaml (3/3)

let woe = 6 and hh = 6 and let w = size_x () / ww and h = size_y () / hh

let def s!(n,m) | next!(name,job,kill) =
let w = min w (sx-n) and h = min h (sy-m) in
print_name (n,m,w,h,name,black) ;
let def finished r | mutex! () =
draw_square (name,n,m,w,h,r); job_done ();
next (name, job,kill) | reply
or restart () | mutex! () = s(n,m) | reply
in
mutex () |
loc boss do {
{ Join.fail job; restart (); Join.halt (); } |
{ Thread.delay 15.0; restart (); Join.halt (); } |
let r = job (n/pixel,m/pixel,w/pixel,h/pixel) in
print_string "job done"; print_newline ();
finished r;
Join.halt ();
}
or killAll! () | next! (name,job,kill) = killAll() | kill()
and counter! n | job_done () =
{ if ww*hh = n+1 then killAll () else counter (n+1) } | reply ()

Then go!

Jocaml (2/3)

let _ =
spawn { counter 0 };
for i = ww - 1 downto 0 doO
for j = hh - 1 downto 0 doO
spawn { s(i*w,j*w) }
done
done ;;

let def make_comp (there) =
let loc mandel [Quad;Calc]
def square (i0,jO,w,h) =
let r = Quad.empty w h limit in
for i = 0 tow - 1 do
for j =0 toh -1 do

Quad.set r i jm
done

done;

reply r to square
and kill! () = Join.kill Join.here;
do { Join.go there } in
reply (square, kill)

Join Research (1/2)

semantics of equivalence (rournet, conthier]

labeled transition systems (open JC) (soreale, Fournet, Lanevel
semantics of security (aadi, Fournet, conthier]

types and interference (conchon, pottier]

dynamicC ressources (scmitt]

implementation JC 1.05 (rournet, Maranget]

implementation Jocaml (rournet, 1e Fessant, Schmitt]

compiling join patterns (e ressant, Maranget]

distributed runtime (GC) (rournet, 1e Fessant]

control of communication and migration, the M-calculus

[Schmitt, Stefani]
coding of pi-calculus and Ambients (rournet, Lévy, Schmitt]

distributed ObjeCtS [Fournet, Laneve, Maranget, Qin, Rémy]

Join Research (2/2)

functional nets (odersky

typed marshalling (reiser, peskine, Sewell, Wansbrough)
Petri nets and JC (sruni, Montanari, Sassone]
Distributed patterns (sruni, rontanari]

Symmetric run-times (P2P) 1o ve donet ... ML-DoONKey [1e ressant]

see http://join.inria.fr

Conclusion and Future work

e usefulness of mobility
Missing the Global Computing Fibonacci

worldwide computing
customization of groupware applications
extendible systems, hot restart

distributed games
in Jocaml: games, mobile editor, hevea
reconsidering compilation problems
locality and interference analysis
connection with security

correct handling of failures

mastering Jocaml releases

