
.

From automata to CCS (1/6)

Remove final (not interested in termination), and initial states

(assimilate processes with states, hence any state is “initial” relative to

the process it is identified with).

Such an automaton deprived from initial and final states is called a

labelled transition system, or LTS for short.

1

.

From automata to CCS (2/6)

A LTS is given by

• a finite set of states, or P, Q, . . .,

• a finite alphabet Act whose members are called actions, and

• transitions between them, written P
µ→ Q.

2

.

From automata to CCS (3/6)

A LTS together with one of its states, that is, a process, can be

described by the following syntax :

P ::= Σi∈Iµi · Pi | let ~K = ~P in Kj | K

(empty sum denoted by 0)

3

.

From automata to CCS (4/6)

CCS P ::=

Σi∈Iµi · Pi | let ~K = ~P in Kj | K | (P | Q) | (νa)P

Synchronization Trees P ::=

Σi∈Iµi · Pi

Finitary CCS P ::=

Σi∈Iµi · Pi | (P | Q) | (νa)P (I finite)

4

.

From automata to CCS (5/6)

in CCS

Act = L ∪ L ∪ {τ}
(disjoint union), where L is the set of labels, also called names, or

channels, and τ is a silent action that records a synchronisation. µ ∈Act,

α ∈ L ∪ L, α = α

5

.

From automata to CCS (6/6)

We write

Σi∈Iai · Pi = (Σi∈I\i0ai · Pi) + ai0 · Pi0

(note that the notation implicitly views sums as associative and

commutative – this will be made explicit later)

6

.

Labelled operational semantics (1/4)

Σi∈Iµi · Pi
µi→ Pi

P
µ→ P ′ (µ 6= a, a)

(νa)P
µ→ (νa)P ′

P
µ→ P ′

P | Q µ→ P ′ | Q

Q
µ→ Q′

P | Q µ→ P | Q′

P
α→ P ′ Q

α→ Q′

P | Q τ→ P ′ | Q′

Pj [~K ← (let ~K = ~P in ~K)]
µ→ P ′

let ~K = ~P in Kj
µ→ P ′

7

.

Labelled operational semantics (2/4)

τ-transitions (resp. α-transitions) correspond to internal evolutions

(resp. interactions with the environment).

Rule COMM involves both.

In λ-calculus, one considers only one (internal) reduction : β.

8

.

Labelled operational semantics (3/4)

Example :

P = (νc)(K1 | K2) where

8
<
:

K1 = a · c ·K1

K2 = b · c ·K2

Behaviour : do a and b independently, then τ , then loop.

9

.

Labelled operational semantics (4/4)

It is possible to formulate internal reduction in CCS without reference

to the environment.

Price to pay : work modulo structural equivalence.

10

.

Structural equivalence

Σi∈Iµi · Pi ≡ Σi∈Iµf(i) · Pf(i) (f permutation)

P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R

((νa)P) | Q ≡ (νa) (P | Q) (a not free in Q)

let ~K = ~P in Kj ≡ PÑj[~K ← (let ~K = ~P in ~K)]

11

.

Reduction operational semantics (1/2)

P1 + a · P | a ·Q + Q1 → P | Q P1 + τ · P → P

P1 → P ′1

P1 | P2 → P ′1 | P2

P → P ′

(νa)P → (νa)P ′

P1 ≡ P2 → P ′2 ≡ P ′1

P1 → P ′1

12

.

Reduction operational semantics (2/2)

The relations → and
τ→≡ coincide.

Exercise CCS 1.1 Prove it, via the following claims :

• If P
µ→ P ′ and P ≡ Q, then there exists Q′ such that Q

µ→ Q′ and

P ′ ≡ Q′.
• If P

α→ P ′, then P ≡ (ν~a) (α ·Q + P1 | P2) and P ′ ≡ (ν~a) (P1 | P2), for

some ~a, P1, P2, Q.

13

.

Semaphore in CCS

Sem = P ·V · Sem

Sem | (P · C0;V) | (P · C1;V)

→ (V · Sem) | (P · C0;V) | (C1;V)

→? (V · Sem) | (P · C0;V) | V
→ Sem | (P · C0;V)

Exercise CCS 1.2 Encode P ; Q in CCS.

14

.

Value passing

P1 + a(x) · P | a〈v〉 ·Q + Q1 → P [x← v] | Q
A memory cell :

Reg〈x〉 = Get〈x〉 ·Reg〈x〉+ Put(y) ·Reg〈y〉

One-shot :

8
<
:

Sem〈x〉 = (Get〈x〉 ·K) + K

K = Put(y) · Sem〈y〉

(cf. Concurrency 2)

15

.

Bisimulation on a LTS (1/4)

A simulation is a relation R such that for all P, Q, if P R Q then

∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ Q

µ→ Q′ and P ′ RQ′)

16

.

Bisimulation on a LTS (2/4)

A bisimulation is a relation R such that R and R−1 are simulations.

P, Q are bisimilar (notation P ∼ Q) if there exists a bisimulation R such

that P RQ.

(R−1 = {(Q, P) | P RQ})

17

.

Bisimulation on a LTS (3/4)

If R,S are bisimulations, then so is their composition

RS = {(P, R) | ∃Q P RQ and Q SR}

In particular, ∼∼⊆∼, i.e., bisimilarity is transitive.

18

.

Bisimulation on a LTS (4/4)

Two processes that simulate one another, yet are not bisimilar :

P1 = a · P2 + a · P4 Q1 = a ·Q2

P2 = b · P3 Q2 = b ·Q3

P1 T Q1 P4 T Q2 P2 T Q2 P3 T Q3

Q1 S P1 Q2 S P2 Q3 S P3 .

but for all simulation R containing (P1, Q1) we have :

P1 RQ1 and P1
a−→ P4 ⇒ P4 RQ2

19

.

Induction and coinduction (1/4)

A function f : D → E, where D, E are partial orders, is monotonous if

∀x, y x ≤ y ⇒ f(x) ≤ f(y)

Given (monotonous) f : D → D, a prefixpoint (resp. a postfixpoint, a

fixpoint) of f is a point x such that f(x) ≤ x (resp. x ≤ f(x), x = f(x)).

20

.

Induction and coinduction (2/4)

Any monotonous function G : P(X)→ P(X) has a least prefixpoint,

which is moreover a fixpoint, and a greatest postfixpoint, which is

moreover a fixpoint. They are respectively :

lfp(G) =
T{X | G(X) ⊆ X}

gfp(G) =
S{X | X ⊆ G(X)}

21

.

Induction and coinduction (3/4)

Induction principle : To show lfp(µ) ⊆ R is is enough to show µ(R) ⊆ R.

In practice, the induction principle is often used for a subset of lfp(µ),

and then serves to show that R = lfp(µ).

22

.

Induction and coinduction (4/4)

Coinduction principle : To show R ⊆ gfp(µ) it is enough to show

R ⊆ µ(R).

In practice, the principle of coinduction is used to show that some

element x is in gfp(µ), and for this it is enough to find a postfixpoint R

such that x ∈ R.

23

.

Operators defined by rules (1/4)

Monotonous operators GK on P(X) defined via a set K of rules, each of

the form (Y, x), with Y ⊆ X and x ∈ X, or, graphically (for

Y = {x1, . . . , xn} finite) :
{x1, . . . , xn}

x

Set GK(R) = {x ∈ X | ∃ (Y, x) ∈ K Y ⊆ R}.

24

.

Operators defined by rules (2/4)

Prefixpoints of GK =

subsets R closed forwards by the rules :

∀ (Y, x) ∈ K (Y ⊆ R⇒ x ∈ R)

Postfixpoints of GK =

subsets R closed backwards by the rules :

∀x ∈ R ∃ (Y, x) ∈ K Y ⊆ R

25

.

Operators defined by rules (3/4)

Bisimulation is defined by a set of rules : take K to be the set of all

{(P ′, f(µ, P ′)) | P µ→ P ′} ∪ {(g(µ, Q′), Q′) | Q µ→ Q′}

(P, Q)

where f is any function mapping each pair µ, P ′ such that P
µ→ P ′ to a

process f(µ, P ′) such that Q
µ→ f(µ, P ′) (resp. g . . .).

26

.

Operators defined by rules (4/4)

What do we gain by knowing that ∼, first defined as the union of all

bisimulations, is actually the largest fixpoint of some operator ?

First, that ∼ itself is a bisimulation, second that it is a prefixpoint, not

only a post-fixpoint.

27

.

Continuity (1/3)

G : P(X)→ P(X) is continuous if it preserves
S

of increasing chains, i.e.

G(
S

n∈ω Xn) =
S

n∈ω G(Xn). G is called anti-continuous if it preserves
T

of decreasing chains.

G continuous ⇒ lfp(G) =
S

n∈ω Gn(∅)
G anti-continuous ⇒ gfp(G) =

T
n∈ω Gn(X)

28

.

Continuity (2/3)

If all the Y ’s in the rules of K are finite, then GK is continuous.

If, for all x, {(Y | (Y, x) ∈ K} is finite, then GK is anti-continuous.

In CCS with finite sums, the bisimulation operator GK is both

continuous and anti-continuous.

29

.

Continuity (3/3)

Consider the following K :

nil

l

cons(a, l)

The lfp of GK is the set of lists. The gfp of GK is the set of finite and

infinite lists.

Exercise CCS1.2 : How to obtain infinite lists ?

30

