Concurrency 4

.

Bisimulations

Jean-Jacques Lévy

jeanjacqueslevy.net/dea

Bibliography

- Principles of Concurrent Programming Mordechai Ben-Ari, Prentice Hall, 1982
- Communication and Concurrency Robin Milner, Prentice Hall, 1989
- Algebraic Theory of Processes
 Matthew Hennessy, MIT Press, 1988
- Communicating and Mobile Systems: the Pi-Calculus Robin Milner, Cmabridge University Press, 1999.
- The Pi-Calculus : A Theory of Mobile Processes Davide Sangiorgi, David Walker, Cambridge University Press, 2001
- System Porgramming in Modula-3 Greg Nelson, Prentice Hall, 1991

CCS with values (1/4)

Language

.

 $\mathcal{A}ct = \{a(x), b(x), c(x), \ldots\} \cup \{\overline{a}v, \overline{b}v, \overline{c}v, \ldots\} \cup \{\tau\}$

Notation: α for $\alpha.0$

Memory register

 $Reg\langle\rangle \stackrel{\text{def}}{=} put(x).A\langle x\rangle$ $A\langle x\rangle \stackrel{\text{def}}{=} put(y).A\langle y\rangle \mid \overline{get} x.A\langle x\rangle$ $\dots \mid P \mid \overline{put} 1 \mid get(x).Q \mid \overline{put} 2. get(y).R \mid \dots$ Exercice 1 What can be values of x and y in Q and R?

Buffers $Buf_1^{\text{in,out}}\langle\rangle \stackrel{\text{def}}{=} \text{in}(x).\overline{\text{out}} x. Buf_1^{\text{in,out}}\langle\rangle$

$$Buf_{\mathcal{Z}}^{\text{in,out}}\langle\rangle \stackrel{\text{def}}{=} \text{in}(x).A\langle x\rangle$$
$$A\langle x\rangle \stackrel{\text{def}}{=} \text{in}(y).\overline{\operatorname{out}} x.A\langle y\rangle + \overline{\operatorname{out}} x.Buf_{\mathcal{Z}}^{\text{in,out}}\langle\rangle$$

 $Buf_1'\langle\rangle \stackrel{\text{def}}{=} (\nu c)(Buf_1^{\text{ in},c}\langle\rangle \mid Buf_1^{c,\text{out}}\langle\rangle)$ Exercice 2 Relate Buf_2 and Buf_1' .

CCS with values (3/4)

Semantics (SOS)

.

$$\begin{bmatrix} \operatorname{Act}] \alpha . P \xrightarrow{\alpha} P & [\operatorname{Sum1}] \frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} & [\operatorname{Sum2}] \frac{Q \xrightarrow{\alpha} Q'}{P + Q \xrightarrow{\alpha} Q'} \\ \begin{bmatrix} \operatorname{Par1}] \frac{P \xrightarrow{\alpha} P'}{P \mid Q \xrightarrow{\alpha} P' \mid Q} & [\operatorname{Par2}] \frac{Q \xrightarrow{\alpha} Q'}{P \mid Q \xrightarrow{\alpha} P \mid Q'} \\ \begin{bmatrix} \operatorname{Com1}] \frac{P \xrightarrow{a(x)} P' \quad Q \xrightarrow{\overline{av}} Q'}{P \mid Q \xrightarrow{\neg} P' \{v/x\} \mid Q'} & [\operatorname{Com2}] \frac{P \xrightarrow{\overline{av}} P' \quad Q \xrightarrow{a(x)} Q'}{P \mid Q \xrightarrow{\neg} P' \mid Q' \{v/x\}} \\ \begin{bmatrix} \operatorname{Res}] \frac{P \xrightarrow{\alpha} P' \quad \alpha \notin \{a, \overline{a}\}}{(\nu a) P \xrightarrow{\alpha} (\nu a) P'} & [\operatorname{Rec}] \frac{P\{\tilde{v}/\tilde{x}\} \xrightarrow{\alpha} P' \quad K\langle \tilde{x} \rangle \stackrel{\text{def}}{=} P}{K\langle \tilde{v} \rangle \xrightarrow{\alpha} P'} \end{bmatrix} \\ \end{bmatrix}$$

CCS with values (4/4)

One can emulate CCS with values by pure CCS (with infinite sum).

Р	$\llbracket P \rrbracket$	
a(x).P	$\Sigma_{v \in \mathcal{V}} a_v . \llbracket P\{v/x\} \rrbracket$	($\mathcal V$ set of values)
$\overline{a}v.P$	$a_v.\llbracket P \rrbracket$	
au.P	$ au.\llbracket P \rrbracket$	
$\Sigma_{i\in I}P_i$	$\sum_{i \in I} \llbracket P_i \rrbracket$	
$P \mid Q$	$\llbracket P \rrbracket \mid \llbracket Q \rrbracket$	
• • •		

Exercice 3 Terminate the translation

Exercice 4 Find the relation between P and $\llbracket P \rrbracket$.

CCS and weak bisimulation (1/4)

Write $P(\xrightarrow{\tau})^*Q$ if $P = P_0 \xrightarrow{\tau} P_1 \xrightarrow{\tau} P_2 \cdots \xrightarrow{\tau} P_k = Q$ $(k \ge 0)$.

Let $\mu = \mu_1 \mu_2 \cdots \mu_n$ (n > 0)

Write $P \xrightarrow{\mu} Q$ if $P \xrightarrow{\mu_1} \xrightarrow{\mu_2} \cdots \xrightarrow{\mu_n} Q$ Write $P \xrightarrow{\mu} Q$ if $P(\xrightarrow{\tau})^* \xrightarrow{\mu_1} (\xrightarrow{\tau})^* \xrightarrow{\mu_2} (\xrightarrow{\tau})^* \cdots \xrightarrow{\mu_n} (\xrightarrow{\tau})^* Q$

Write $\hat{\mu}$ be μ where all occurences of τ in μ have been erased.

Take $\mu = \tau ab\tau \tau \overline{a}$, then $\hat{\mu} = ab\overline{a}$. If $\mu = \tau^n$, then $\hat{\mu} = \epsilon$ (empty string).

Then $\xrightarrow{\mu}$ specifies exactly the τ actions occuring in μ $\stackrel{\mu}{\Longrightarrow}$ specifies at least the τ actions $\stackrel{\hat{\mu}}{\Longrightarrow}$ specifies nothing about the τ actions

CCS and weak bisimulation (2/4)

Definition 1 *P* weakly bisimilar to *Q* (we write $P \approx Q$) if, for any $\alpha \in Act$, whenever

- $P \xrightarrow{\alpha} P'$, there is Q' such that $Q \xrightarrow{\widehat{\alpha}} Q'$ and $P' \approx Q'$.
- $Q \xrightarrow{\alpha} Q'$, there is P' such that $P \xrightarrow{\hat{\alpha}} P'$ and $P' \approx Q'$.

(\approx is the largest weak bisimulation)

Examples

$$A \stackrel{\text{def}}{=} c.(k.A + t.A) \qquad C \stackrel{\text{def}}{=} (a.\overline{b}.\tau.C + \overline{b}.a.\tau.C)$$
$$B \stackrel{\text{def}}{=} (\nu d)c.(k.d.B + t.d.B) \qquad D \stackrel{\text{def}}{=} ((a.\overline{b}.D + \overline{b}a.D))$$
$$A \approx B \qquad C \approx D$$

Exercice 5 Find weak bisimulation when $A_0 \stackrel{\text{def}}{=} a.A_0 + b.A_1 + \tau.A_1$ $A_1 \stackrel{\text{def}}{=} a.A_1 + \tau.A_2$ $A_2 \stackrel{\text{def}}{=} b.A_0$ $B_1 \stackrel{\text{def}}{=} a.B_1 + \tau.B_2$ $B_2 \stackrel{\text{def}}{=} b.B_1$

CCS and weak bisimulation (3/4)

Proposition 2 Following equations hold.

$$\begin{aligned} \tau.P &\approx P \\ P &\approx Q \Rightarrow P \mid R \approx Q \mid R \\ P &\approx Q \Rightarrow R \mid P \approx R \mid Q \\ P &\approx Q \Rightarrow \alpha.P \approx \alpha.Q \\ P &\approx Q \Rightarrow (\nu x)P \approx (\nu x)Q \\ K \stackrel{\text{def}}{=} P \text{ and } P &\approx Q \Rightarrow K \approx Q \end{aligned}$$

Exercice 6 Prove it.

Fact 3 $P \approx Q \Rightarrow P + R \approx Q + R$

Take $P = \tau Q$, Q = a, R = b. Then $\tau a \approx a$. But we have not $\tau a + b \approx a + b$.

Hence weak bisimulation is not a congruence in CCS (differs from strong bisimulation)

CCS and weak bisimulation (4/4)

Definition 4 [observation-congruence] P weakly congruent to Q (we write $P \cong Q$) if, for any $\alpha \in Act$, whenever

- $P \xrightarrow{\alpha} P'$, there is Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$.
- $Q \xrightarrow{\alpha} Q'$, there is P' such that $P \xrightarrow{\alpha} P'$ and $P' \approx Q'$.

Exercice 7 Prove $\cong \subseteq \approx$.

Proposition 5 \cong is a congruence.

Exercice 8 Prove it.

Proposition 6 The following τ laws are true:

$$\alpha.\tau.P \approx \alpha.P$$
$$P + \tau.P \approx \tau.P$$
$$\alpha.(P + \tau.Q) + \alpha.Q \approx \alpha.(P + \tau.Q)$$

Exercice 9 Prove them.

CCS and weak bisimulation (4/4)

Proposition 7

.

$$\begin{array}{ll} P \sim Q \ \Rightarrow \ P \cong Q \ \Rightarrow \ P \approx Q \\ P \approx Q \ \Rightarrow \ \alpha.P \cong \alpha.Q \\ P \approx Q \ \mbox{iff} \ P \cong Q \ \mbox{or} \ P \cong \tau.Q \ \mbox{or} \ \tau.P \cong Q \end{array}$$

Exercice 10 Prove it.

Proposition 8 \cong is the largest congruence on CCS contained in \approx . Exercice 11 Prove it.