
.

Concurrency 3

CCS

Jean-Jacques Lévy

jeanjacqueslevy.net/dea

1

.

Minimal language for concurrency

The λ-calculus is a minimal language for functional languages. It can

also be used as a basis for imperative languages (via continuations).

What is a minimal language for concurrent processes ?

• CCS [Milner]

• π-calculus [Milner, Parrow, Walker, Sangiorgi]

• CSP [Hoare]

• Petri nets

• Mazurkiewitz traces

• Events structures ⇔ True concurrency [Winskel]

• IO-automatas [Lynch, Tuttle]

2

.

CCS (1/4)

Language

a, b, c ::= (channel) names

a, b, c ::= co-names a = a

α ::= a | a | τ actions

P, Q, R ::= 0 | α.P | P + Q | (P | Q) | (να)P | K processes

K
def
= P ::= constant definitions

Act = {a, b, c, . . .} ∪ {a, b, c, . . .} ∪ {τ} Notation: α for α.0

• 0 null process

• α.P sequential action

• P + Q non-deterministic (external) choice

• P | Q parallel composition

• (να)P restriction on α

• K (recursively defined) constant

3

.

CCS (2/4)

Examples (coffee machine revisited)

P0 = A

A = c.(k.d.A + t.d.A)

P ′0 = B C = (k.d.D + t.d.D)

B = c.C D = c.C

P ′′0 = E

E = (c.k.d.E + c.t.d.E)

P ′′′0 = F

F = c + (c.k.d.F + c.t.d.F)

Interaction with coffee machine

P0 | c.k.d P0 | c.k.d | c.t.d
P0 | Client1 P ′0 | Client1 P ′′0 | Client1 P ′′′0 | Client1

P0 | Client2 P ′′0 | Client2 | Client2 P0 | Client1 | Client2

where

Client1
def
= c.k.d.Client1 Client2

def
= c.t.d.Client2

4

.

CCS (3/4)

Semantics (SOS)

[Act] α.P
α−→ P [Sum1] P

α−→ P ′

P + Q
α−→ P ′

[Sum2] Q
α−→ Q′

P + Q
α−→ Q′

[Par1] P
α−→ P ′

P | Q α−→ P ′ | Q [Par2] Q
α−→ Q′

P | Q α−→ P | Q′

[Com] P
a−→ P ′ Q

a−→ Q′

P | Q τ−→ P ′ | Q′ [Res]
P

α−→ P ′ α 6∈ {a, a}
(νa)P

α−→ (νa)P ′

[Rec] P
α−→ P ′ K

def
= P

K
α−→ P ′

τ−→ internal move
α−→ (α 6= τ) interaction on external α-channel

By convention,
a−→ input on a-channel and

a−→ output on a-channel

Sum 6= internal choice P + Q
τ−→ P or P + Q

τ−→ Q.

5

.

CCS (4/4)

At present time, no values passed on communication channels.

(see later for value passing calculi)

No buffering in communications. Different from TCP sockets, from

Kahn/MacQueen flow systems.

⇒ communication by rendez-vous.

≡ more basic calculus.

Rendez-vous exist in Occam, Ada, CML, Ocaml’s processes.

6

.

CCS and strong bisimulation (1/4)

Theorem 1 Following relations hold.

P + 0 ∼ P P | 0 ∼ P

P + Q ∼ Q + P P | Q ∼ Q | P
(P + Q) + R ∼ P + (Q + R) (P | Q) | R ∼ P | (Q | R)

P + P ∼ P

(νa)(P | Q) ∼ ((νa)P) | Q if a not free in Q

(νa)(νb)P ∼ (νb)(νa)P

(νa)P ∼ (νb)P{b/a} if b not bound in Q

(νa)α.P ∼ 0 if α = a or α = a

(νa)α.P ∼ α.(νa).P otherwise

K ∼ P if K
def
= P

7

.

CCS and strong bisimulation (2/4)

Proof of previous theorem

• P + 0 ∼ P . Take R = {(P + 0, P), (P, P + 0), (P, P)} and show R is a

bisimulation.

Let P + 0
α−→ P ′. Then P

α−→ P ′ by rule [Sum1] since 0
α−→ P ′ is

not possible. And P ′ R P ′.

Conversely let P
α−→ P ′. Then P + 0

α−→ P ′ by rule [Sum1] . And

again P ′ R P ′.

• P + Q ∼ Q + P . Show following R is a bisimulation. Take

R = {P + Q, Q + P, (P, P)}.
Let P + Q

α−→ S.

– Case 1: let P + Q
α−→ S using [Sum1] . Then P

α−→ S.

But Q + P
α−→ S using [Sum2] .

QED since S R S.

– Case 2: let P + Q
α−→ S using [Sum2] . Then Q

α−→ S.

But Q + P
α−→ S using [Sum1] .

QED since S R S.

Conversely let Q + P
α−→ S. QED by symmetry.

8

.

CCS and strong bisimulation (3/4)

Proof of theorem (continued)

• (P + Q) + R ∼ P + (Q + R). Show following R is a bisimulation.

Take R = {(P + Q) + R, P + (Q + R), (P, P)}.
Let (P + Q) + R

α−→ S.

– Case 1: let (P + Q)
α−→ S using [Sum1] .

∗ Case 1.1: let P
α−→ S using [Sum1] .

Then P + (Q + R)
α−→ S by [Sum1] .

QED since S R S.

∗ Case 1.2: Let Q
α−→ S. Then (Q + R)

α−→ S by [Sum1] , and

P + (Q + R)
α−→ S by [Sum2] .

QED since S R S.

– Case 2: Let R
α−→ S by [Sum2] . Then (Q + R)

α−→ S by

[Sum2] , and P + (Q + R)
α−→ S by [Sum2] .

QED since S R S.

By symmetry when P + (Q + R)
α−→ S.

• other equations . . .

Exercice 1 Give full proof of theorem.

9

.

CCS and strong bisimulation (4/4)

Theorem 2 [Expansion]

a.P | b.Q ∼ a.(P | b.Q) + b.(a.P | Q)

a.P | a.Q ∼ a.(P | a.Q) + a.(a.P | Q) + τ.(P | Q)

Exercice 2 Prove it.

Concurrency in CCS relies on interleaving. Never two actions occur at

same time. Different from “true concurrency”.

Exercice 3 Draw LTS for following processes:

P = (νa)((a + b) | a) K2
def
= τ.(νa)(a | (a + b)) + c.K3

K1
def
= a.(τ.K1 + b) + τ.a.K1 K3

def
= d.K3

Exercice 4 Draw LTS for (νc)(K1 | K2) where

K1
def
= a.c.K1 K2

def
= b.c.K2

Exercice 5 Give a CCS term for boolean semaphores.

Exercice 6 Give a CCS term for n-ary semaphores.

10

.

Strong bisimulation and congruence

Theorem 3 Strong bisimulation ∼ is a congruence. Namely:

P ∼ Q ⇒ C[P] ∼ C[Q] for any context C[].

Exercice 7 Prove it.

This means that ∼ can be used as standard equations.

Exercice 8 Prove by using equations of Theorems 1 and 2 that:

(νb)(a.(b | c) + τ.(b | b.c)) ∼ a.c + τ.τ.c

Exercice 9 Show K | K ∼ K when K
def
= a.K.

Exercice 10 Show K ∼ K′ when K
def
= a.K and K′ def

= a.a.K′.

Exercice 11 Show K ∼ a.K′ when K
def
= a.b.K and K′ def

= b.a.K′.

Exercice 12 Show that a.(b + c) 6∼ ab + ac.

11

