Concurrency 3

CCS

Jean-Jacques Lévy

jeanjacqueslevy.net/dea



Minimal language for concurrency

The A-calculus is a minimal language for functional languages. It can
also be used as a basis for imperative languages (via continuations).

What is a minimal language for concurrent processes 7

CCS [Milner]

m-calculus [Milner, Parrow, Walker, Sangiorgi]
CSP [Hoare]

Petri nets

Mazurkiewitz traces

Events structures < True concurrency [Winskel]

IO-automatas [Lynch, Tuttle]



CCS (1/4)

Language
a,b,c = (channel) names
a,b,¢ = co-names a=a
e alal|T actions
PQ,R == 0|aP|P+Q|(P|Q)| (va)P|K processes
K®¥ p .= constant definitions
Act = {a,b,c,...} U{a,b,c,...}U{r} Notation: a for .0

e O null process

e «.P sequential action

e P + @ non-deterministic (external) choice
e P | (Q parallel composition

e (va)P restriction on «

e K (recursively defined) constant



CCS (2/4)

Examples (coffee machine revisited)

Py=A P} =B C = (k.d.D+t.d.D)
A=c.(kdA+tdA) B =cC D =cC

Pl =E Pl =F

E = (c.kd.E+ct.dE) F=c+ (ckdF+ctdF)

Interaction with coffee machine

Py | c.k.d Py |ck.d|ct.d

Py | Clientl P) | Clientl P} | Clientl PJ'" | Clientl
Py | Client2 P}’ | Client2 | Client2 Py | Clientl | Client2
where

Clientl &' ¢.%.d.Client1 Client2 ¥ ¢.7.d.Client?2



CCS (3/4)

Semantics (SOS)

[Act] a.P -% P [Sum1] — 2 — P [Sum2] — Q@ — &
P+Q— P P+Q—Q
[Parl] P % i [Par2] Q@ % Q'
PlQ—P|Q PlQ—P|Q
(Com] £== P Q -~ [ReS]P&P’ a ¢ {a,a}

PlQ——P|Q (va)P — (va)P’

o / def
(Rec] P=—= P K= P

K -2, p!

T .
— internal move
%, (a # 7) interaction on external a-channel

By convention, —= input on a-channel and -2 output on a-channel

Sum # internal choice P+Q — P or P+ Q — Q.



CCS (4/4)

At present time, no values passed on communication channels.
(see later for value passing calculi)

No buffering in communications. Different from T CP sockets, from
Kahn/MacQueen flow systems.

= communication by rendez-vous.

= more basic calculus.

Rendez-vous exist in Occam, Ada, CML, Ocaml’s processes.



CCS and strong bisimulation (1/4)

Theorem 1 Following relations hold.

P+0~ P P|O0~P
P+Q ~Q+P PlQ~Q|P
(P+Q)+R ~ P+(Q+R) (P1Q) IR~ P|@Q]R)
P+P ~ P
(va)(P| Q) ~ ((va)P) | Q if a not free in Q
(va)(vb)P ~ (vb)(va)P
(va)P ~ (vb)P{b/a} if b not bound in @
(va)a.P ~ 0 ifa=aora=ua
(va)a.P ~ a.(va).P otherwise

K ~ P if K & p



CCS and strong bisimulation (2/4)

Proof of previous theorem

e P+0~P. Take R={(P+0,P),(P,P+0),(P,P)} and show R is a
bisimulation.
Let P4+0 - P’. Then P -% P’ by rule [Sum1] since 0 = P’ is
not possible. And P’ R P’.
Conversely let P -% P/. Then P+ 0 - P’ by rule [Sum1] . And
again P" R P’.
e P+ Q ~ Q@+ P. Show following R is a bisimulation. Take
R={P+Q,Q+ P,(P,P)}.
Let P+ Q — S.
— Case 1: let P4+ Q —= S using [Sum1]. Then P = S.
But Q + P — S using [Sum?2] .
QED since SR S.
— Case 2: let P+ Q -= S using [Sum2] . Then Q — S.
But Q + P = S using [Sum1] .
QED since SR S.

Conversely let Q + P -2 5. QED by symmetry.



CCS and strong bisimulation (3/4)

Proof of theorem (continued)

o (P+Q)+R~P+(Q+ R). Show following R is a bisimulation.
Take R={(P+Q)+ R, P+ (Q+R),(P,P)}.
Let (P+Q)+R—S.

— Case 1: let (P4 Q) = S using [Sum1] .
+ Case 1.1: let P -2 S using [Sum1].
Then P+ (Q+ R) — S by [Sum1] .
QED since SR S.
«+ Case 1.2: Let Q = S. Then (Q + R) = S by [Sum1], and
P+ (Q+ R) = S by [Sum2] .
QED since SR S.
— Case 2: Let R—= S by [Sum2]. Then (Q + R) = S by
[Sum2], and P+ (Q + R) — S by [Sum2] .
QED since SR S.

By symmetry when P+ (Q + R) — S.
e oOther equations ...

Exercice 1 Give full proof of theorem.



CCS and strong bisimulation (4/4)

Theorem 2 [Expansion]

a.P|b.Q ~ a.(P|b.Q)+b.(a.P|Q)
a.P|a.Q ~ a.(P|a.Q)+a(aP|Q)+7.(P|Q)

Exercice 2 Prove it.

Concurrency in CCS relies on interleaving. Never two actions occur at
same time. Different from “true concurrency”.

Exercice 3 Draw LTS for following processes:

P = (va)((a+1b) | a) Ky & T.(va)(a | (@+b)) + c.K3

K1 € a.(r.Ki +b) +1.a.K; K; € d.Ks

Exercice 4 Draw LTS for (vc)(K; | K2) where

K ¥ 4K, Ko ¥ be Koy

Exercice 5 Give a CCS term for boolean semaphores.
Exercice 6 Give a CCS term for n-ary semaphores.

10



Strong bisimulation and congruence

Theorem 3 Strong bisimulation ~ is a congruence. Namely:

P~Q@ = C[P]~C[Q] forany context C[].

Exercice 7 Prove it.
This means that ~ can be used as standard equations.

Exercice 8 Prove by using equations of Theorems 1 and 2 that:
(vb)(a.(b|c) +1.(b| b.c)) ~ a.c+ T.T.C

Exercice 9 Show K | K ~ K when K £ ¢.K.

Exercice 10 Show K ~ K’ when K € ¢.K and K’ & q¢.a.K".
Exercice 11 Show K ~ a.K’ when K € a.b.K and K/ € b.a. K.

Exercice 12 Show that a.(b+c) # ab+ ac.

11



