MPRI Concurrency (course number 2-3) 2004-2005:
m-calculus
16 November 2004

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

16 November 2004

About the lectures

e The MPRI represents a transition from student to researcher. So...
e Interrupting me with questions is good.
e Working through a problem without already knowing the answer is good.

o |'ll make mistakes. 8-)

About me

¢ 1995-2001: Ph.D. student of Robin Milner's in Cambridge, UK
e 2001-2002: Postdoc in INRIA Rocquencourt, France

e 2002—: Research scientist in INRIA Rocquencourt, France

e November 2004: voted against W (who, despite this, was elected for the
first time)

16 November 2004 1

Books

e Robin Milner. Communicating and mobile systems: the w-calculus.
(Cambridge University Press, 1999).

e Robin Milner. Communication and concurrency. (Prentice Hall, 1989).

e Davide Sangiorgi and David Walker. The w-calculus: a theory of mobile
processes. (Cambridge University Press, 2001).

Tutorials available online

e Robin Milner. “The polyadic pi-calculus: a tutorial”. Technical Report
ECS-LFCS-91-180, University of Edinburgh.
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/ECS-LFCS-91-180.ps

e Joachim Parrow. “An introduction to the pi-calculus”.
http://user.it.uu.se/~joachim/intro.ps

e Peter Sewell. “Applied pi — a brief tutorial”. Technical Report 498,
University of Cambridge. http://iwww.cl.cam.ac.uk/users/pes20/apppi.ps

16 November 2004

Today'’s plan

e syntax

e reduction semantics and structural congruence

e |abelled transitions

e bisimulation

16 November 2004 3

Syntax

P.=xy P output
z(y).P input (y binds in P)
vz.P restriction (new) (x binds in P)
P|P parallel (par)
0 empty
P replication (bang)

Significant difference from CCS: channels carry names.

16 November 2004

Free names

The free names of P are written fn(P).

Example: fn(0) = &; fn(Ty.2(y).0) = {z,y, z}.
Exercise: Calculate fn(z(y).7y.0); fn(vz.(2(y).Ty) | y2).
Formally:

fn(zy.P) = {z,y}Ufn(P)
fn(z(y)-P) = {z} U (fn(P)\ {y})
fn(ve.P) = fn(P)\ {z}
fn(P|P) = fn(P)Ufn(P)
fn(0) =0

fn(1P) = fn(P)

Alpha-conversion

We consider processes up to alpha-conversion: provided ¢y’ ¢ fn(P), we

have
2(y).P = x(y){y' [y} P
vy.P=vy {y'/y} P
Exercise: Freshen all bound names: vz.(x(z).7x) | z(x)

16 November 2004

Reduction (—)

We say that P reduces to P/, written P — P/, if this can be derived from

the following rules:
Ty.Pla(u).Q — P|{y/u}Q
P— P
PlQ—P'|Q
pP— P

7
ve.P — vx.P

Example: vz.(Ty | z(u).uz) — vz.(0 | yz)

As currently defined, reduction is too limited:

(Ty [0) [x(u) 7=
vw.zy | z(u) /—

(red-comm)

(red-par)

(red-new)

16 November 2004

Structural congruence (=)

PHQIS)=(P|Q)]S
rPlQ=Qlr
Plo=P

ve.vy.P =vyve. P

ver.0=0

ve.P|Q=vx.(P|Q)

IP=P|IP

We close reduction by structural congruence:

if x ¢ fn(Q)

P=—s=Pp
pP— P

Exercise: Calculate the reductions of vy.(Ty | y(u).uz) | x(w

Ty | vy.(x(u) w | y(v))

(str-assoc)
(str-commut)
(str-id)
(str-swap)
(str-zero)
(str-ex)
(str-repl)

(red-str)

).wv and

16 November 2004

Application of new binding: from polyadic to monadic
channels

Let us extend our notion of monadic channels, which carry exactly one
name, to polyadic channels, which carry a vector of names, i.e.

P =%y, ..., yn).P output
(Y1, ..oy Yn). P input (y1, ..., y, bind in P)

Is there an encoding from polyadic to monadic channels? We might try:
[Z(y1, ... yn).P] = Ty1...Tyn.[P]
[=(y1, - yn)-P] = 2(y1)...x(yn).[P]
but this is broken! Can you see why? The right approach is use new binding:
[Z(y1, ..., yn).P] = vz.(Tz.Zyy... Zyn.[P])
[x(y1s ooy yn).-P] = x(2).2(y1)-...2(yn). [P]

where z ¢ fn(P) in both cases. (We also need some well-sorted
assumptions.)

16 November 2004 8

Application of new binding: from synchronous to
asynchronous ouput

In distributed computing, sending and receiving messages may be
asymmetric: we clearly know when we have received a message but not
necessarily when a message we sent has been delivered. (Think of email.)

P =y output
z(y).P input (y binds in P)
Nonetheless, one can always achieve synchronous sends by using an
acknowledgement protocol:

[zy Pl = vz.(T(y, 2) | 2
[2(y).P] = x(y, 2).(Z()

provided z ¢ fn(P) in both cases.

0.[PD)
| PD)

16 November 2004 9

Labels

The labels « are of the form:

=Ty output
Z(y) bound output
xy input
T silent

The names n(a) and bound names bn(«) are defined as follows:

a‘ Ty T(y) wy T
n(a) {z,y} {z,y} {z,y} @
bn(a)) @ Y g o

16 November 2004 10

Labelled transitions (P —— P)

Labelled transitions are of the form P - P’ and are generated by:

Ty.P -4 P (lab-out) z(y).P =5 {z/y}P (lab-in)

p-=p
—— X ifbn(a) Nfn(Q) = @ (lab-par-I)
PlQ—P'Q
@ / Ty o
P+P,if y & n(a) (lab-new) iif y # x (lab-open)
vy.P — vy.P vy. P W pr
p W, p oo p W) Z(y) P
— 7 Q,ﬁ Q (lab-comm-I) Q— Q ify ¢ fn(Q) (lab-close-l)
PlQ—PQ PlQ —vy.(P'|Q)
PP P
‘% (lab-bang)
p = p

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

16 November 2004 11

Labelled transitions and structural congruence

Theorem:

1.P— PiffP-=P.

2. P=-% Plimplies P - = P/

Exercise: Why does the converse of the second not hold?

Exercise: Show that the following pair of processes are both in (—) and

(LE):

vzTz|x(u)gu vzyz

Fun with side conditions

Exercise: Show that the side condition on (lab-par-l) is necessary by
considering the process vy.(Zy.y(u)) | Zv and an alpha variant.

16 November 2004 12

Strong bisimulation

Arelation R is a strong bisimulation if for all (P, Q) € R and P - P’, where
bn(a) N fn(Q) = @, there exists @’ such that Q —— @’ and (P, Q') € R,
and symmetrically.

Strong bisimilarity ~ is the largest strong bisimulation.

16 November 2004 13

Bisimulation proofs

Theorem: P = @ implies P ~ Q.

Can you think of a counterexample to the converse?
Some easy results:

1.P|lO~P

2.7ywvz.P ~vzTy.P,if 2 ¢ {z,y}

3.z(y)wvz.P ~vzx(y).P, if 2 ¢ {z,y}

4. \wz.P & vz.\P for some P

More difficult:

lLve.P|Q ~vz.(P|Q)
2.1P |1P ~ 1P
3.P~QimpliesP|S~Q|S

16 November 2004 14

Adding sum
P:=M sum
P|P parallel (par)
P replication (bang)
M =7wy.P output

x(y).P input (y binds in P)

M+ M sum

0

Change structural congruence to treat 4+ as associative and commutive with
identity 0.

Change reduction: (zy.P + M) | (z(u).Q + N) — P | {y/u}Q.

Change labelled transition: M +7y.P + N o, P
M+ 2(y).P+ N 5 {z/y}P

16 November 2004 15

