
MPRI Concurrency (course number 2-3) 2004-2005:
π-calculus

16 November 2004

http://pauillac.inria.fr/∼leifer/teaching/mpri-concurrency-2004/

James J. Leifer
INRIA Rocquencourt

James.Leifer@inria.fr

16 November 2004 0

About the lectures

• The MPRI represents a transition from student to researcher. So...

• Interrupting me with questions is good.

• Working through a problem without already knowing the answer is good.

• I’ll make mistakes. 8-)

About me

• 1995–2001: Ph.D. student of Robin Milner’s in Cambridge, UK

• 2001–2002: Postdoc in INRIA Rocquencourt, France

• 2002–: Research scientist in INRIA Rocquencourt, France

• November 2004: voted against W (who, despite this, was elected for the
first time)

16 November 2004 1

Books
• Robin Milner. Communicating and mobile systems: the π-calculus.

(Cambridge University Press, 1999).

• Robin Milner. Communication and concurrency. (Prentice Hall, 1989).

• Davide Sangiorgi and David Walker. The π-calculus: a theory of mobile
processes. (Cambridge University Press, 2001).

Tutorials available online
• Robin Milner. “The polyadic pi-calculus: a tutorial”. Technical Report

ECS-LFCS-91-180, University of Edinburgh.
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/ECS-LFCS-91-180.ps

• Joachim Parrow. “An introduction to the pi-calculus”.
http://user.it.uu.se/∼joachim/intro.ps

• Peter Sewell. “Applied pi — a brief tutorial”. Technical Report 498,
University of Cambridge. http://www.cl.cam.ac.uk/users/pes20/apppi.ps

16 November 2004 2

Today’s plan

• syntax

• reduction semantics and structural congruence

• labelled transitions

• bisimulation

16 November 2004 3

Syntax

P ::= xy.P output
x(y).P input (y binds in P)
νx.P restriction (new) (x binds in P)
P | P parallel (par)
0 empty
!P replication (bang)
...

Significant difference from CCS: channels carry names.

16 November 2004 4

Free names
The free names of P are written fn(P).
Example: fn(0) = ∅; fn(xy.z(y).0) = {x, y, z}.
Exercise: Calculate fn(z(y).xy.0); fn(νz.(z(y).xy) | yz).
Formally:

fn(xy.P) = {x, y} ∪ fn(P)
fn(x(y).P) = {x} ∪ (fn(P) \ {y})
fn(νx.P) = fn(P) \ {x}
fn(P | P ′) = fn(P) ∪ fn(P ′)
fn(0) = ∅

fn(!P) = fn(P)

Alpha-conversion
We consider processes up to alpha-conversion: provided y′ /∈ fn(P), we
have

x(y).P = x(y′).{y′/y}P

νy.P = νy′.{y′/y}P

Exercise: Freshen all bound names: νx.(x(x).xx) | x(x)
16 November 2004 5

Reduction (−→)

We say that P reduces to P ′, written P −→ P ′, if this can be derived from
the following rules:

xy.P | x(u).Q −→ P | {y/u}Q (red-comm)

P −→ P ′

P | Q −→ P ′ | Q
(red-par)

P −→ P ′

νx.P −→ νx.P ′ (red-new)

Example: νx.(xy | x(u).uz) −→ νx.(0 | yz)

As currently defined, reduction is too limited:

(xy | 0) | x(u) 6−→

νw.xy | x(u) 6−→

16 November 2004 6

Structural congruence (≡)

P | (Q | S) ≡ (P | Q) | S (str-assoc)

P | Q ≡ Q | P (str-commut)

P | 0 ≡ P (str-id)

νx.νy.P ≡ νy.νx.P (str-swap)

νx.0 ≡ 0 (str-zero)

νx.P | Q ≡ νx.(P | Q) if x /∈ fn(Q) (str-ex)

!P ≡ P | !P (str-repl)

We close reduction by structural congruence:

P ≡−→≡ P ′

P −→ P ′ (red-str)

Exercise: Calculate the reductions of νy.(xy | y(u).uz) | x(w).wv and
xy | νy.(x(u).uw | y(v))

16 November 2004 7

Application of new binding: from polyadic to monadic
channels

Let us extend our notion of monadic channels, which carry exactly one
name, to polyadic channels, which carry a vector of names, i.e.

P ::= x〈y1, ..., yn〉.P output
x(y1, ..., yn).P input (y1, ..., yn bind in P)

Is there an encoding from polyadic to monadic channels? We might try:

Jx〈y1, ..., yn〉.P K = xy1....xyn.JP K

Jx(y1, ..., yn).P K = x(y1)....x(yn).JP K

but this is broken! Can you see why? The right approach is use new binding:

Jx〈y1, ..., yn〉.P K = νz.(xz.zy1....zyn.JP K)

Jx(y1, ..., yn).P K = x(z).z(y1)....z(yn).JP K

where z /∈ fn(P) in both cases. (We also need some well-sorted
assumptions.)

16 November 2004 8

Application of new binding: from synchronous to
asynchronous ouput

In distributed computing, sending and receiving messages may be
asymmetric: we clearly know when we have received a message but not
necessarily when a message we sent has been delivered. (Think of email.)

P ::= xy output
x(y).P input (y binds in P)

Nonetheless, one can always achieve synchronous sends by using an
acknowledgement protocol:

Jxy.P K = νz.(x〈y, z〉 | z().JP K)

Jx(y).P K = x(y, z).(z〈〉 | JP K)

provided z /∈ fn(P) in both cases.

16 November 2004 9

Labels

The labels α are of the form:

α ::= xy output
x(y) bound output
xy input
τ silent

The names n(α) and bound names bn(α) are defined as follows:

α xy x(y) xy τ
n(α) {x, y} {x, y} {x, y} ∅

bn(α) ∅ y ∅ ∅

16 November 2004 10

Labelled transitions (P α
−→ P ′)

Labelled transitions are of the form P
α

−→ P ′ and are generated by:

xy.P
xy
−→ P (lab-out) x(y).P

xz
−→ {z/y}P (lab-in)

P
α

−→ P ′

P | Q
α

−→ P ′ | Q
if bn(α) ∩ fn(Q) = ∅ (lab-par-l)

P
α

−→ P ′

νy.P
α

−→ νy.P ′
if y /∈ n(α) (lab-new)

P
xy
−→ P ′

νy.P
x(y)
−→ P ′

if y 6= x (lab-open)

P
xy
−→ P ′ Q

xy
−→ Q′

P | Q
τ

−→ P ′ | Q′
(lab-comm-l)

P
x(y)
−→ P ′ Q

xy
−→ Q′

P | Q
τ

−→ νy.(P ′ | Q′)
if y /∈ fn(Q) (lab-close-l)

P | !P
α

−→ P ′

!P
α

−→ P ′
(lab-bang)

plus symmetric rules (lab-par-r), (lab-comm-r), (lab-close-r).

16 November 2004 11

Labelled transitions and structural congruence

Theorem:

1. P −→ P ′ iff P
τ

−→≡ P ′.

2. P ≡
α

−→ P ′ implies P
α

−→ ≡ P ′

Exercise: Why does the converse of the second not hold?

Exercise: Show that the following pair of processes are both in (−→) and
(

τ
−→≡):

νz.xz | x(u).yu νz.yz

Fun with side conditions
Exercise: Show that the side condition on (lab-par-l) is necessary by
considering the process νy.(xy.y(u)) | zv and an alpha variant.

16 November 2004 12

Strong bisimulation

A relation R is a strong bisimulation if for all (P, Q) ∈ R and P
α

−→ P ′, where
bn(α) ∩ fn(Q) = ∅, there exists Q′ such that Q

α
−→ Q′ and (P ′, Q′) ∈ R,

and symmetrically.

Strong bisimilarity ∼ is the largest strong bisimulation.

16 November 2004 13

Bisimulation proofs

Theorem: P ≡ Q implies P ∼ Q.
Can you think of a counterexample to the converse?

Some easy results:

1. P | 0 ∼ P

2. xy.νz.P ∼ νz.xy.P , if z /∈ {x, y}

3. x(y).νz.P ∼ νz.x(y).P , if z /∈ {x, y}

4. !νz.P 6∼ νz.!P for some P

More difficult:

1. νx.P | Q ∼ νx.(P | Q)

2. !P | !P ∼ !P

3. P ∼ Q implies P | S ∼ Q | S

16 November 2004 14

Adding sum
P ::= M sum

P | P parallel (par)
!P replication (bang)

M ::= xy.P output
x(y).P input (y binds in P)
M + M sum
0

Change structural congruence to treat + as associative and commutive with
identity 0.

Change reduction: (xy.P + M) | (x(u).Q + N) −→ P | {y/u}Q.

Change labelled transition: M + xy.P + N
xy
−→ P

M + x(y).P + N
xz
−→ {z/y}P

16 November 2004 15

