
Type-Based Information Flow Analyses

François Pottier

June 23–25, 2004

François Pottier Type-Based Information Flow Analyses

Why control information flow?

Bob

identity

income

tax form

fiscal counselor secretary

Here is a common real life scenario.
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Bob wishes the secretary to have no idea of his income.
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Why control information flow?

Bob

identity

income

tax form

fiscal counselor secretary

Bob has to trust his counselor.
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Why control information flow?

Bob
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tax form

computer system secretary

The fiscal counselor is replaced...
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Why control information flow?
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computer system secretary

Bob must still trust the system not to leak information. Access
control does not help.
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Why control information flow?
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identity

income

tax form

computer system secretary

Information flow control requires the computer system to conform
to Bob’s confidentiality policy.
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Why control information flow?
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Language-based information flow control consists of an analysis
of a single piece of software with a well-defined semantics.
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Why control information flow?

Bob

identity

income

tax form

fiscal
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The property that Bob desires is noninterference: even if he were
to supply a different income figure, the secretary wouldn’t be
able to tell the difference. In other words, the data sent to the
secretary does not depend on Bob’s income.
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Why control information flow?
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To specify this property succinctly, one assigns ordered informa-
tion levels to each input and output channel – here, L < H –
and one allows information to flow up only.
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The specification may take the form of a type, such as

stringL × intH → stringH × intL
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Part I

Information flow in pure functional languages
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For simplicity, I assume that the security lattice L consists of
two levels L and H, ordered by L ≤ H. Next, I will move to the
general case.
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Syntax

DCC is a call-by-name λ-calculus with products and sums,
extended with two constructs that allow marking a value and
using a marked value.

e ::= x | λx.e | e e | . . . | H : e | use x = e in e
t ::= t → t | unit | t + t | t × t | H(t)

In the semantics, these constructs are no-ops.

DCC was proposed by Abadi, Banerjee, Heintze and Riecke
(1999), drawing on existing ideas from binding-time analysis.
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Types

DCC is a standard simply-typed λ-calculus. Only the two new
constructs have nonstandard typing rules.

Mark
Γ $ e : t

Γ $ (H : e) : H(t)

Use
Γ $ e1 : H(t1) Γ; x : t1 $ e2 : t2 ! t2

Γ $ use x = e1 in e2 : t2

When marking a value, its type is marked as well.

When using a marked value, the mark is taken off its type, but
the end result must have a protected type.
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Protected types

The predicate ! t (“t is protected”) is defined inductively.

Intuitively, the information carried by a value of a protected
type t must be accessible only to high-level observers.

Protected types form a superset of the marked types, that is,
every marked type is protected:

! H(t)

Furthermore, some types that do not carry a mark at their
root may safely be considered protected.
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Example

Define bool as unit + unit. Define if, true, and false accordingly.

This function negates a high-security Boolean value:

λx.use x = x in H : (if x then false else true) : H(bool) → H(bool)
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Protected types, continued

For instance, a function type is protected if its codomain is
protected:

! t2
! t1 → t2

This makes intuitive sense because the only way of obtaining
information out of a function is to observe its result.
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Protected types, continued

A product type is protected if both its components are
protected:

! t1 ! t2
! t1 × t2

This makes intuitive sense because the only way of obtaining
information out of a pair is to observe its components.
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Protected types, continued

The unit type is protected:

! unit

This makes intuitive sense because there is no way of obtaining
information out of the unit value.
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PER Basics

Definition
A partial equivalence relation on A is a symmetric, transitive
relation on A. It can be viewed as an equivalence relation on a
subset of A, formed of those elements x ∈ A such that x R x
holds.

I write x : R for x R x. I write R ! R′ for the relation defined by

f (R ! R′) g '( (∀x, y x R y ⇒ f(x) R′ g(y)).
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A model of DCC

Consider the category where

! an object t is a cpo | t | equipped with a PER, also written
t.

! a morphism from t to u is a continuous function f such
that f : t ! u.

As usual, types are interpreted by objects, and typing
judgements by morphisms.

In particular, a typing judgement of the form $ e : t is
interpreted as an element e of | t | such that e : t, that is, e is
related to itself by the PER t.
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The intuition behind PERs

The partial equivalence relation t specifies a low-level observer’s
view of the object t. It groups values of type t into classes
whose elements must not be distinguished by such an observer.

For instance, consider the flat cpo bool = {true, false}.
The object boolL is obtained by equipping bool with the diagonal
relation.

The object boolH is obtained by equipping bool with the
everywhere true relation.
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The intuition behind morphisms

The requirement that every morphism f from t to u satisfy
f : t ! u is a noninterference statement.

For instance, the assertion f : boolH ! boolL is syntactic sugar
for

∀x, y ∈ bool x boolH y ⇒ f(x) boolL f(y),

that is,
∀x, y ∈ bool f(x) = f(y),

which requires f to ignore its argument.
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Interpreting types

The interpretation of the type constructors →, × and + is
standard.

The marked type H(t) is interpreted as the cpo | t |, equipped
with the everywhere true relation.

Then, the low-level observer’s view of every protected type is the
everywhere true relation:

Lemma
If ! t, then t and H(t) are isomorphic.
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Interpreting typing judgements

Mark
Γ $ e : t

Γ $ (H : e) : H(t)

Interpreting Mark boils down to

Lemma
e : t implies e : H(t).

Proof.
The PER H(t) is everywhere true.
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Interpreting typing judgements, continued

Use
Γ $ e1 : H(t1) Γ; x : t1 $ e2 : t2 ! t2

Γ $ use x = e1 in e2 : t2

Interpreting Use boils down to

Lemma
e : t1 → t2 and ! t2 imply e : H(t1) → t2.

Proof.
The type t2 is protected, so the PER t2 is everywhere true. As
a result, we have ∀x, y x H(t1) y ⇒ (e x) t2 (e y), that is,
e : H(t1) → t2.

François Pottier Type-Based Information Flow Analyses

An overview of DCC DCC with multiple security levels A proof by encoding into DCC A direct, syntactic proof

Interpreting typing judgements, continued

Thus:

Theorem
This category is a model of DCC.

This shows that every program satisfies the noninterference
assertion encoded by its type.

The PER approach gives direct meaning to annotated types.
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Syntax

In fact, DCC is defined on top of an arbitrary security lattice L.
A value may be marked with any security level ".

e ::= x | λx.e | e e | . . . | " : e | use x = e in e
t ::= t → t | unit | t + t | t × t | T"(t)
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Types

The typing rules are generalized as follows:

Mark
Γ $ e : t

Γ $ (" : e) : T"(t)

Use
Γ $ e1 : T"(t1) Γ; x : t1 $ e2 : t2 " ! t2

Γ $ use x = e1 in e2 : t2
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Protected types

The predicate " ! t (“t is protected at level "” or “" guards t”)
is defined inductively.

Intuitively, when " guards t, the information carried by a value
of type t must be accessible only to observers of level " or
greater.

" ≤ "′ ∨ " ! t

" ! T"′(t)

" ! t2
" ! t1 → t2

" ! t1 " ! t2
" ! t1 × t2

" ! unit
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Subtyping

Technically, DCC does not have subtyping, because it can be
simulated using coercions, that is, functions that have no
computational content.

For instance, whenever " ≤ "′ holds, we have

λx.use x = x in ("′ : x) : T"(t) → T"′(t)

The very existence of coercions indicates that the addition of
true subtyping would be compatible with the model.
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DCC as a target language

Writing programs in DCC is hard, because explicit uses of Mark
and Use must be inserted by the programmer.

One really wants a programming language with no ad hoc term
constructs, where all security-related information is carried by
ad hoc types.

In other words, one needs an ad hoc type system for a
standard term language. This is what I refer to as “type-based
information flow analysis.”
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DCC as a target language, continued

To prove the correctness of the ad hoc type system, one
exhibits a semantics-preserving encoding of it into DCC. Thus,
DCC may be viewed as a target language for proving the
correctness of several type-based information flow analyses.
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A simple ad hoc type system

To illustrate the idea, I now define a nonstandard type system
for a standard λ-calculus with products and sums.

Since the calculus is standard, a distinguished type constructor
T" would not make any sense. Instead, some, but not necessarily
all, of the standard type constructors must now carry a
security level.
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Types

For instance, let

t ::= unit | t → t | t × t | (t + t)"

The encoding of types into DCC is

"unit# = unit"t1 → t2# = "t1# → "t2#"t1 × t2# = "t1# × "t2#"(t1 + t2)"# = T"("t1# + "t2#)
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Protected types

As in DCC, I define the predicate " ! t.

" ! unit
" ! t2

" ! t1 → t2

" ! t1 " ! t2
" ! t1 × t2

" ≤ "′

" ! (t1 + t2)"
′

This definition is correct with respect to DCC:

Lemma
" ! t implies " ! "t#.
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Sums

All typing rules are standard, except those that deal with sums:

Γ $ e : ti

Γ $ inji e : (t1 + t2)"

Γ $ e : (t1 + t2)" " ! t′

∀i ∈ {1,2} Γ; x : ti $ ei : t′

Γ $ e case x , e1 e2 : t′

These suggest the following encoding of expressions:

"inji e# = " : (inji "e#)"e case x , e1 e2# = use x = "e# in (x case x , "e1# "e2#)
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Subtyping

The type system may be equipped with a simple, structural
subtyping relation, which extends the security lattice. It is
succinctly defined as follows:

- → ⊕ ⊕ × ⊕ (⊕ + ⊕)⊕

The subtyping rule is standard:

Γ $ e : t t ≤ t′

Γ $ e : t′

Its correctness follows from:

Lemma
If t ≤ t′ holds, then there exists a coercion of type "t# → "t′# in
DCC.
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Correctness of the encoding

The correctness of the encoding is given by

Theorem
Γ $ e : t implies "Γ# $ "e# : "t#.
Theorem
e and "e# have the same semantics.

Thus, a function of type boolH → boolL behaves like a DCC
function of type TH(bool) → TL(bool), which I have proved must
ignore its argument.
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A syntactic approach

DCC is a useful tool and allows giving meaning to annotated
types via PERs and logical relations.

However, the simple ad hoc type system which I just presented
can also be proved correct using a syntactic technique.

This technique is inspired by Abadi, Lampson and Lévy (1996)
and by Pottier and Conchon (2000).
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The idea

The idea is to reintroduce marked expressions:

e ::= . . . | " : e

and to define a small-step operational semantics that keeps
track of marks.

The semantics implements a sound dynamic dependency analysis.

The type system is a sound approximation of the semantics.
Thus, it implements a sound static dependency analysis.
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The operational semantics

The operational semantics has standard reduction rules that
deal with functions, products, and sums, plus ad hoc rules that
deal with labels:

(" : e1) e2 → " : (e1 e2) (lift-app)
proji (" : e) → " : (proji e) (lift-proj)

(" : e) case x , e1 e2 → " : (e case x , e1 e2) (lift-case)

These rules prevent labels from getting in the way, and track
dependencies.

When labels are erased, these rules have no effect. So, the
nonstandard semantics is faithful to a standard one, modulo
erasure.
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Computing with partial information

Let a prefix e be an expression that contains holes. Write e / e′
if e′ is obtained from e by replacing some holes with prefixes.

Reduction is extended to prefixes: holes block reduction.

Lemma (Monotonicity)
Let e, e′ be prefixes such that e / e′. If f is an expression such
that e →∗ f , then e′ →∗ f .
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The operational semantics is sound

For an arbitrary set of security levels L, define 1e2L as the
prefix of e obtained by pruning every subexpression of the form
" : e where " 3∈ L.

Lemma (Stability)
Let e be a prefix and f an expression. If e →∗ f and 1f2L = f ,
then 1e2L →∗ f .

Expressions that carry a label not found in f do not contribute
to the computation of f .
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Extending the type system

Since I have reintroduced marked expressions, I must slightly
extend the type system.

Mark
Γ $ e : t " ! t

Γ $ (" : e) : t

This rule is reminiscent of DCC’s. However, since the type
constructor T" is gone, e and " : e are given the same type t.

The premise " ! t ensures that the type annotations carried by
t are sufficiently high to reflect the presence of the mark ".
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The type system is sound

I now wish to prove that reduction preserves types.

The proof that the standard reduction rules preserve types is
standard – well, not quite so, since types carry security
annotations, but there is no surprise.

There remains to prove that the (lift) rules preserve types.
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(lift-app) preserves types

Here is a type derivation for a (lift-app)-redex:

Γ $ e1 : t → t′ " ! t → t′

Γ $ (" : e1) : t → t′
Mark

Γ $ e2 : t

Γ $ (" : e1) e2 : t′
App

One may transform it into:

Γ $ e1 : t → t′ Γ $ e2 : t

Γ $ e1 e2 : t′
App

" ! t′

Γ $ " : (e1 e2) : t′
Mark
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Type preservation

The cases of (lift-proj) and (lift-case) are left to the audience.
Thus:

Lemma (Subject reduction)
Γ $ e : t and e → e′ imply Γ $ e′ : t.
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Putting it all together

Together, the soundness of the semantics and that of the type
system lead to noninterference.

Theorem (Noninterference)
$ e : bool" and e →∗ v imply 1e2↓{"} →∗ v.

Proof.
By subject reduction, v has type bool". Thus, v must be of the
form "1 : "2 : . . . : "n : (true | false), where "i ! bool" holds for
every i ∈ {1, . . . , n}. This means "i ≤ ", that is, "i ∈ ↓{"}, so
1v2↓{"} is v. The result follows by stability.
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A reformulation

This result is perhaps better known under a symmetric form:

Theorem (Noninterference)
Let $ e1 : bool" and $ e2 : bool" and 1e12↓{"} = 1e22↓{"}. Then,
e1 →∗ v is equivalent to e2 →∗ v.

Proof.
By the previous theorem and by monotonicity.

Expressions that have a low-level type and that only differ in
high-level components have the same behavior.
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Syntax
I refer to the programming language as ML. It has functions,
products, sums, references, and exceptions.

v ::= x | () | k | λx.e | m | (v, v) | injj v
a ::= v | raise ε v

e ::= a | v v | ref v | v := v | ! v | projj v | v case x , e e
| let x = v in e | E[e]

E ::= bind x = [ ] in e
| [ ] handle ε x , e
| [ ] handle e done | [ ] handle e propagate | [ ] finally e
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Syntax
I refer to the programming language as ML. It has functions,
products, sums, references, and exceptions.

v ::= x | () | k | λx.e | m | (v, v) | injj v
a ::= v | raise ε v

e ::= a | v v | ref v | v := v | ! v | projj v | v case x , e e
| let x = v in e | E[e]

E ::= bind x = [ ] in e
| [ ] handle ε x , e
| [ ] handle e done | [ ] handle e propagate | [ ] finally e

Exceptions are second-class. They are not values. the idioms
“e handle x , e” and “raise x” are not available.
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Syntax
I refer to the programming language as ML. It has functions,
products, sums, references, and exceptions.

v ::= x | () | k | λx.e | m | (v, v) | injj v
a ::= v | raise ε v

e ::= a | v v | ref v | v := v | ! v | projj v | v case x , e e
| let x = v in e | E[e]

E ::= bind x = [ ] in e
| [ ] handle ε x , e
| [ ] handle e done | [ ] handle e propagate | [ ] finally e

For the sake of simplicity, certain expression forms must be built
out of values. However, this is not a deep restriction.
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Syntax
I refer to the programming language as ML. It has functions,
products, sums, references, and exceptions.

v ::= x | () | k | λx.e | m | (v, v) | injj v
a ::= v | raise ε v

e ::= a | v v | ref v | v := v | ! v | projj v | v case x , e e
| let x = v in e | E[e]

E ::= bind x = [ ] in e
| [ ] handle ε x , e
| [ ] handle e done | [ ] handle e propagate | [ ] finally e

As usual in ML, polymorphism is introduced by let and restricted
to values. Sequencing is expressed using bind.
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Types

Types and rows are defined as follows:

t ::= unit | int" | (t pc [r]5555→ t)" | t ref" | t × t | (t + t)"

r ::= {ε 67 pc}ε∈E
The metavariables " and pc range over L.
Subtyping is structural and extends the security lattice.

int⊕ (- - [⊕]5555→ ⊕)⊕ 8 ref⊕ ⊕ × ⊕ (⊕ + ⊕)⊕

{ε 67 ⊕}ε∈E
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Types, continued

In this definition, there are no (level, type, or row) variables.

This does not prohibit polymorphism. Although the type system
does not have a ∀ quantifier, it has infinitary intersection types,
introduced by let.

Furthermore, rows are infinite objects.

These design choices make it easier to prove noninterference.

A system that has (level, type, and row) variables, finite syntax
for rows, and constraints, and that supports type inference, can
be defined in a second step.
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Protected types

The definition of " ! t is unsurprising:

" ! unit
" ≤ "′

" ! int"
′

" ≤ "′

" ! (∗ ∗ [∗]555→ ∗)"′

" ≤ "′

" ! ∗ ref"
′

" ! t1 " ! t2
" ! t1 × t2

" ≤ "′

" ! (∗ + ∗)"′
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Typing judgements

I distinguish two forms of typing judgements: one deals with
values only, the other with arbitrary expressions.

Γ, M $ v : t pc, Γ, M $ e : t [ r ]

The level pc reflects how much information is associated with
the knowledge that e is executed.

The row r reflects how much information is gained by observing
the exceptions raised by e.
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Connecting values and expressions

Values and expressions are connected as follows:

e-Value
Γ, M $ v : t

∗, Γ, M $ v : t [∗ ]
A value is an expression that has no side effects.
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Abstraction and application

Abstraction delays effects. Application forces them (pc ≤ pc′).

v-Abs
pc, Γ[x 67 t′], M $ e : t [ r ]

Γ, M $ λx.e : (t′
pc [r]5555→ t)∗

e-App

Γ, M $ v1 : (t′
pc′ [r]5555→ t)" Γ, M $ v2 : t′

pc ≤ pc′ " ≤ pc′ " ! t

pc, Γ, M $ v1 v2 : t [ r ]

Information about the function may leak through its side effects
(" ≤ pc′) or through its result (" ! t).
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Imperative constructs

Information encoded within the program counter may leak when
writing a variable, causing an indirect flow (pc ! t).

e-Assign

Γ, M $ v1 : t ref" Γ, M $ v2 : t pc 9 " ! t

pc, Γ, M $ v1 := v2 : unit [∗ ]
In the presence of first-class references, information about the
reference’s identity may leak as well (" ! t).
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Raising an exception

The value carried by the exception must have fixed (declared,
monomorphic) type typexn(ε).

e-Raise
Γ, M $ v : typexn(ε)

pc, Γ, M $ raise ε v : ∗ [ ε : pc; ∗ ]
Raising an exception reveals that this program point was
reached. Hence, the information gained by observing the
exception is pc.
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Handling a specific exception

Knowing that e2 is executed allows deducing that an exception
was caught. Thus, e2 is typechecked under the stricter context
pc 9 pcε, where pcε is the amount of information carried by the
exception.

e-Handle
pc, Γ, M $ e1 : t [ ε : pcε; r ]

pc 9 pcε, Γ[x 67 typexn(ε)], M $ e2 : t [ ε : pc′; r ] pcε ! t

pc, Γ, M $ e1 handle ε x , e2 : t [ ε : pc′; r ]

Examining the whole expression’s result may also reveal that an
exception was caught (pcε ! t).
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Computing in sequence

Knowing that e2 is executed allows deducing that e1 did not
raise any exception. The amount of information associated with
this fact is bounded by 9 r1.

e-Bind
pc, Γ, M $ e1 : t′ [ r1 ]

pc 9 (9 r1), Γ[x 67 t′], M $ e2 : t [ r2 ]

pc, Γ, M $ bind x = e1 in e2 : t [ r1 9 r2 ]
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Finally

Executing e1 finally e2 eventually leads to executing e2, so
observing that e2 is executed yields no information. Thus, e2 is
typechecked under the context pc.

e-Finally
pc, Γ, M $ e1 : t [ r ]
pc, Γ, M $ e2 : ∗ [∂⊥ ]

pc, Γ, M $ e1 finally e2 : t [ r ]

Observing an exception originally raised by e1 reveals that e2
has completed successfully. To avoid keeping track of this fact,
I require e2 to always complete successfully.
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Reminder: a semantics with labels

In a labelled semantics, examining a single reduction sequence
allows comparing it with other sequences. For instance, consider:

(λxy.y) (H : 27) →∗ λxy.y

By stability, this implies

(λxy.y) [] →∗ λxy.y

By monotonicity, this implies

(λxy.y) (H : 68) →∗ λxy.y
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Labels are limited

The statement
if !x = 0 then z := 1

causes information to flow from x to z, even when it is skipped.

As a result, designing a sensible labelled operational semantics
(one that enjoys stability) becomes problematic.

In fact, Denning (1982) claims that no dynamic dependency
analysis is possible in the presence of mutable state.
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A semantics with brackets

Instead, I will reason directly about two reduction sequences
that share some structure.

I will design an ad hoc semantics where the following reduction
sequence is valid:

(λxy.y) 〈27 | 68〉 →∗ λy.y

and where, by projection, one may deduce

(λxy.y) 27 →∗ λy.y
(λxy.y) 68 →∗ λy.y

Brackets encode the differences between two programs, that is,
their high-level parts.

François Pottier Type-Based Information Flow Analyses

Type system Semantics Noninterference

Why are brackets really useful?

In ML, references are dynamically allocated and do not have
statically known names (they are not global variables).

One cannot tell in advance whether the references allocated at
a certain site are high- or low-level. In fact, they might be both,
depending on the calling context.

For these reasons, it is difficult to even state that the low-level
slice of the store is the same in two executions of a program.

In the bracket semantics, the low-level slice of the store is
syntactically shared between the two executions.
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The bracket calculus ML2

The language ML2 is defined as an extension of ML.

v ::= . . . | 〈v | v〉 | void
a ::= . . . | 〈a | a〉
e ::= . . . | 〈e | e〉

Brackets cannot not be nested.
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Projections

A ML2 term encodes a pair of ML terms. For instance,
〈v1 | v2〉 v and 〈v1 v | v2 v〉 both encode the pair (v1 v, v2 v).

Two projection functions map a ML2 term to the two ML terms
that it encodes. In particular:

1〈e1 | e2〉2i = ei i ∈ {1,2}
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Functions

Each language construct is dealt with by two reduction rules.
One performs computation. The other lifts brackets so that
they never prevent computation.

(λx.e) v → [v/x]e (app)
〈v1 | v2〉 v → 〈v1 1v21 | v2 1v22〉 (lift-app)

Compare with the labelled semantics:

(H : e1) e2 → H : (e1 e2) (lift-app)
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Products

The treatment of products is analogous.

projj (v1, v2) → vj (proj)

projj 〈v1 | v2〉 → 〈projj v1 | projj v2〉 (lift-proj)
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Designing the (lift) rules

The hypothetical reduction rule

e → 〈1e21 | 1e22〉

is computationally correct. However, in the presence of such a
rule, achieving subject reduction would require the type system
to view every expression as high-level.

The (lift) reduction rules track dependencies and must be made
sufficiently precise to achieve subject reduction.
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References

A store µ is a partial map from memory locations to values
that may contain brackets.

Store bindings of the form m 67 〈v | void〉 or m 67 〈void | v〉
account for situations where the two programs that are being
executed have different dynamic allocation patterns.
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References, continued

Reductions which take place inside a 〈· | ·〉 construct must read
or write only one projection of the store.

For this purpose, let configurations be of the form e /i µ, where
i ∈ {•,1,2}. Write e / µ for e /• µ.

ei /i µ → e′i /i µ
′ ej = e′j {i, j} = {1,2}

〈e1 | e2〉 / µ → 〈e′1 | e′2〉 / µ′
(bracket)
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References, continued

The reduction rules that govern assignment are:

m := v /i µ → () /i µ[m 67 updatei µ(m) v] (assign)

〈v1 | v2〉 := v / µ → 〈v1 := 1v21 | v2 := 1v22〉 / µ (lift-assign)

where

update• v v
′ = v′

update1 v v
′ = 〈v′ | 1v22〉

update2 v v
′ = 〈1v21 | v′〉
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Example

if !x = 0 then z := 1 / x 67 〈0 | 1〉, z 67 0
→ if 〈0 | 1〉 = 0 then z := 1 / x 67 〈0 | 1〉, z 67 0
→ if 〈0 = 0 | 1 = 0〉 then z := 1 / x 67 〈0 | 1〉, z 67 0
→∗ if 〈true | false〉 then z := 1 / x 67 〈0 | 1〉, z 67 0
→ 〈if true then z := 1 | if false then z := 1〉 / x 67 〈0 | 1〉, z 67 0
→∗ 〈() | ()〉 / x 67 〈0 | 1〉, z 67 〈1 | 0〉
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Exceptions at a glance

The semantics of exceptions is given by a number of standard
rules and a single (lift) rule.

bind x = v in e → e[v/x]
raise ε v handle ε x , e → e[v/x]
raise ε v handle e done → e

raise ε v handle e propagate → e; raise ε v
a finally e → e; a

E[a] → a
if E handles neither 1a21 nor 1a22

E[〈a1 | a2〉] → 〈1E21[a1] | 1E22[a2]〉
if none of the above rules applies
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Relating ML2 to ML

Pairs of ML reduction sequences that produce answers are in
one-to-one correspondence with ML2 reduction sequences.

Lemma (Soundness)
Let i ∈ {1,2}. If e / µ → e′ / µ′, then 1e / µ2i → 1e′ / µ′2i.

Lemma (Completeness)
Assume 1e / µ2i →∗ ai / µ′i for all i ∈ {1,2}. Then, there exists a
configuration a / µ′ such that e / µ →∗ a / µ′.
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The basic idea

The bracket calculus is a tool to attack the noninterference
proof. Indeed, to prove that two ML programs produce the same
answer, it is sufficient to prove that a single ML2 program
produces an answer that contains no brackets.

Thus, the key is to keep track of brackets during reduction.

I do so via a standard technique: a type system for ML2 and a
subject reduction theorem.
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Keeping track of brackets

To define a type system for ML2, it suffices to give typing rules
for brackets.

These rules are parameterized by an (upward-closed) set of
“high” levels H. They require the value and the side effects of
every bracket to be “high.”

v-Bracket
Γ, M $ v1 : t Γ, M $ v2 : t H ! t

Γ, M $ 〈v1 | v2〉 : t
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Type preservation

In ML2, reduction preserves types:

Theorem (Subject reduction)
If $ e /µ : t [ r ] and e /µ → e′ /µ′ then $ e′ /µ′ : t [ r ].
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A final lemma

An expression with a “low” type cannot produce a value whose
projections differ.

Lemma
Let " 3∈ H. If $ e : int" and e →∗ v then 1v21 = 1v22.

Proof.
By subject reduction, $ v : int" holds. So, v must be either an
integer constant k or a bracket 〈k1 | k2〉. Because " 3∈ H, the
latter is impossible.
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Noninterference

Theorem (Noninterference)
Choose ", h ∈ L such that h 3≤ ". Let h ! t. Assume
(x 67 t) $ e : int", where e is an ML expression. If, for every
i ∈ {1,2}, $ vi : t and e[vi/x] →∗ v′i hold, then v′1 = v′2.

Proof.
Let H = ↑{h}. Define v = 〈v1 | v2〉. h ! t and v-Bracket imply
$ v : t. By substitution, this yields $ e[v/x] : int".

Now, 1e[v/x]2i is e[vi/x], which, by hypothesis, reduces to v′i . By
completeness, there exists an answer a such that e[v/x] →∗ a.
Then, by soundness, we have 1a2i = v′i , so a is a value.

h 3≤ " implies " 3∈ H. The previous lemma then shows that the
projections of a coincide.

François Pottier Type-Based Information Flow Analyses

Part III

Conclusion
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Some open problems

! The type systems that I have presented are sometimes not
flexible enough. Dynamic labels are an interesting extension.
What other extensions are possible and useful?

! Noninterference is often too drastic a requirement.
Declassification appears useful but is unsafe. How can it be
tamed?

! Despite a huge number of publications, nobody seems to be
using these type systems in practice. There may be a need
for a few killer applications!

François Pottier Type-Based Information Flow Analyses

Selected References I

Martı́n Abadi, Anindya Banerjee, Nevin Heintze, Jon G. Riecke.
A Core Calculus of Dependency.
POPL, 1999.

Dorothy E. Denning.
Cryptography and Data Security.
Addison-Wesley, 1982.

Andrew C. Myers.
Mostly-Static Decentralized Information Flow Control.
Technical Report MIT/LCS/TR-783, 1999.

Andrew C. Myers and Andrei Sabelfeld.
Language-Based Information-Flow Security.
IEEE JSAC 21(1), 2003.

François Pottier Type-Based Information Flow Analyses

Selected References II

François Pottier and Vincent Simonet.
Information Flow Inference for ML.
ACM TOPLAS 25(1), 2003.

Vincent Simonet.
The Flow Caml system: documentation and user’s manual.
INRIA Technical Report 0282.

Steve Zdancewic and Andrew C. Myers.
Secure Information Flow via Linear Continuations.
HOSC 15(2–3), 2002.

François Pottier Type-Based Information Flow Analyses


