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General introduction

Fundamental questions concerning security:

Who are the bad guys? What power do they have?

Two approaches to cryptographic security:

• Old approach: my system is secure since I, nor anybody, found an attack

(until one is found, etc.).

• Modern approach: a system is secure if and only if I can prove it, in some

model, as close to the real world as possible.
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The asymetric world

Cryptosystem: use one algorithm E to encrypt, a different one D to decrypt; E

can be made public.

Signature: signing is done with algorithm S; everybody can verify using algorithm

V .

Properties:

• Efficiency: easy to compute E(M) (resp. D(C)).

• Elementary security: difficult to recover D from E .

How to find E and D? take a hard problem (complexity theory) and transform it

into a secure cryptosystem using a secret trapdoor.
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The ideal picture

Hard problem

Cryptosystem with elementary security

Security proof (CCA, etc.)

Protocol

Proof of protocol

Normalization (IEEE, ANSI)

Patents; products : SSL, etc.
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General overview of the three lectures

1st lecture: a tour of hard problems.

2nd lecture: RSA.

3rd lecture: elliptic curve cryptography.

Bibliography
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• Handbook of applied cryptography (A. Menezes & P. C. van Oorschot &

S. A. Vanstone);

• Elliptic curve public key cryptosystems (Menezes);

• Elliptic curves in cryptography (Blake, Seroussi, Smart);
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I. A tour of hard problems

1. Miscellaneous hard problems.

2. Discrete logarithm.

3. Integer factorization.
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Part 1: miscellaneous hard problems

I. Knapsack.

II. Error correcting codes.

III. Polynomial systems.
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I. Knapsack

1st example of public key cryptosystem (Merkle, 1976).

Hard problem: Given (α0, α1, . . . , αn−1) and N ∈ N, find

(x0, x1, . . . , xn−1) in {0, 1}n s.t.

N =
n−1∑

i=0

αixi.

Thm. Decision problem is NP-complete.

Easy case: (superincreasing sequences) ∀ i, αi >
∑

06j<i αj .

Ex. α0 = 1, α1 = 3, α2 = 9, α3 = 15, N = 19.
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KEY GENERATION: Alice chooses an integer m, (αi) a superincreasing sequence

s.t.
∑n−1

i=0 αi < m, and w an integer prime to m; she computes

α′
i = wαi mod m.

PUBLIC KEY: (α′
i).

PRIVATE KEY: w, m.

ENCRYPTION: to send (x0, x1, . . . , xn−1), Bob sends N ′ =
∑n−1

i=0 α′
ixi.

DECRYPTION: Alice computes

N ≡ w−1N ′ mod m ≡
∑

i(w
−1α′

i)xi mod m =
∑

i αixi and solves the

easy instance of the knapsack problem.

Rem. Broken by Shamir (1978); all generalizations also broken (using the

famous LLL algorithm).

Rem. Idem for systems proposed following Ajtai’s result.
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II. Error correcting codes: the McEliece cryptosystem

KEY GENERATION:

• C linear code (n, k) correcting t errors and G′ a k × n generating matrix;

• P permutation matrix (n× n);

• S non singular matrix (k × k).

PUBLIC KEY: G = SG′P (matrix k × n).

PRIVATE KEY: G′.

ENCRYPTION: Bob computes c = mG + z with a random z of weight 6 t.

DECRYPTION: Alice computes c′ = cP−1, decodes c′ to recover m′; finally

m = m′S−1.

Example: C is a Goppa code, n = 1024, t = 50, k = 524.
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Advantages:

• old and resistant;

• faster than RSA;

• security not related to integer factorization;

• very short signatures (Courtois, Finiasz, Sendrier, ASIACRYPT’2001).

Drawbacks:

• huge public key (n2);

• ciphertext twice as long as cleartext.
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III. Polynomial systems

Hidden field equations (HFE)

(J. Patarin, EUROCRYPT’96)

KEY GENERATION: K = Fpm = Fq, [Ln : K] = n, βi,j , αi ∈ Ln,

θi,j , ϕi,j , ξi integers, s, t : Ln → Ln affine bijections.

f : Ln → Ln

x 7→
∑

i,j

βi,jx
qθi,j +qϕi,j

+
∑

i

αix
qξi

+ µ0.

y = t(f(s(x)))⇐⇒







y1 = p1(x1, x2, . . . , xn)
y2 = p2(x1, x2, . . . , xn)
· · ·
yn = pn(x1, x2, . . . , xn)
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Thm. the pi are of degree 2 (x 7→ xqk

is linear).

Rem. f must be invertible; typical example: q = p = 2, d = 80, n = 80.

SECRET KEY: (f, s, t).

PUBLIC KEY: (pi).

ENCRYPTION: y = (p1(x), p2(x), . . . , pn(x)).

DECRYPTION: x = s−1(f−1(t−1(y))).

Security: MQ problem (solving a quadratic system) is NP-complete.

Advantages: ciphertext and signature are very short.

Drawbacks: really equivalent to MQ? Attacks by Shamir & Kipnis, Courtois,

J.-C. Faugère, A. Joux (Buchberger algorithm is simply exponential over finite

fields).
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Partie 2: discrete logarithm

I. Cryptographic motivation.

II. Generic algorithms.

III. Index-calculus.
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I. Cryptographic motivation: Diffie-Hellman

(1st known example of public key algorithm.)

PUBLIC PARAMETERS: p prime number, g generator of F∗
p.

PROTOCOL:

A
ga mod p−→ B

A
gb mod p←− B

A : KAB = (gb)a ≡ gab mod p

B : KBA = (ga)b ≡ gab mod p

DH problem: given (p, g, ga, gb), compute gab.

DL problem: given (p, g, ga), find a.

Thm. DL⇒ DH; converse true for a large class of groups (Maurer & Wolf).
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II. Generic algorithms

Pb: G = 〈g〉 of ordre n; one wants to solve gx = a.

Pohlig-Hellman

Idea: reduce to n prime.

n =
∏

i

pαi

i

Solving gx = a is equivalent to knowing x mod n, i.e. x mod pαi

i for all i

(chinese remainder theorem).

Idea: let pα || n and m = n/pα. Then b = am is in the cyclic group of ordre pα

generated by gm. We can find the log of b in this group, which yields x mod pα.

Cost: O(max(DL(p))).

Consequence: in DH, n must have at least one large prime factor.
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Shanks

x = cu + d, 0 ≤ d < u, 0 ≤ c < n/u

gx = a⇔ a(g−u)c = gd.

• Step 1 (baby steps): B = {gd, 0 ≤ d < u};
• Step 2 (giant steps): compute f = g−u = 1/gu; for c = 0..n/u, if

af c ∈ B, then stop.

• End: af c = gd hence x.

Analysis: u + n/u group operations, minimal for u =
√

n⇒ (deterministic)

time and space complexity O(
√

n).

Implementation: use hashing to test membership in B.

Rem. Pollard (collisions), space O(1), randomized time O(
√

n).
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II. Index-calculus

(Western and Miller, Pollard, Adleman, etc.)

Rem. works over finite fields or in the cases where some notion of prime number

exist.

• Step 1: compute the logs of B = {p1, p2, . . . , pk};
• Step 2: express agb over B and deduce the log of a.

Step 1: look for relations of the type

gu ≡
∏

i

pαi

i mod p

u ≡
∑

i

αi logg pi mod (p− 1).

Once k relations have been collected, solve the linear system and get logg pi.
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Step 2: look for b s.t.

agu ≡
∏

i

pβi

i mod p

which gives (a = gx):

x + u ≡
∑

i

βi logg pi mod (p− 1)

hence x.

Analysis

Notation: LN [α, c] = exp
(
c(log N)α(log log N)1−α

)

LN [0, c] = (log N)c, LN [1, c] = N c

Prop. Step 1 costs Lp[1/2, 2], step 2 Lp[1/2, 3/2].
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Improvements

• Coppersmith, Odlyzko, Schroeppel (sieve).

• F2n : Coppersmith et al..

• Number field sieve (Gordon, Schirokauer): Lp[1/3, c].

Records: Joux & Lercier in april 2001, 120 decimal digits (10 weeks, on a unique

525MHz quadri-processors Digital Alpha Server 8400 computer); F2607 by E.

Thomé in february 2002 (7 month on one hundred 600 MHz-PC; sparse matrix

1 033 593 × 766 150).
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Let’s do some theory: what about DL in general?

Generic weak instance: n = #G is smooth (Pohlig-Hellman)⇒ better to have

n prime.

Upper-bound: Shanks O(
√

n). Hence, n at least≈ 2200.

Lower-bound: (Nechaev, Shoup) any algorithm solving DL (resp. DH) using

group operations only, must perform at least O(
√

#G) operations.

Nechaev group: best algorithm is O(
√

#G).

Do Nechaev group exist at all?
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Which groups?

Group #G LD

F∗
q q − 1 Lq[1/3]

class groups subexp subexp

jacobian g = 1: poly
√

#G

g = 2, 3, 4: poly (?)
√

#G

g →∞: poly (?) Lqg [1/2]

LN [α, c] = exp((c + o(1))(log N)α(log log N)1−α).

Security: 1024 bits for F∗
q = 200 bits for elliptic curves.
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Part 2: integer factorization

From: xxx@zzz (yyy)

Subject: Factoring public keys attack?

Newsgroups: sci.crypt

Date: 02 Oct 1999 22:12:54 GMT

Instead of trying to factor a prime based public key after

somebody has used it, why not have a lookup table of all

the keys. It is quicker to create the keys than to factor

a key.

[...]

The government could have just been making keys for the past

20 years to put on its lookup table. Then if you use one of

the keys of the standard lengths, they already know the primes.

Answer: π(2256) > 6× 1074.
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Which algorithms?

Methods that depend on p:

• sieve, ρ;

• p− 1:

a- compute g = (ak! − 1, N) for a prime to N . If p | N and p− 1 | k!,

then g > 1.

b- other groups: p + 1 (Lucas sequences); quadratic forms; ECM (elliptic

curves), etc.

size of p N who when

55 62959 − 1 Miyamoto 06/10/01
57 6396 + 1 Zimmermann 31/10/03
58 8 · 10141 − 1 Backstrom 31/10/03

General purpose methods: quadratic sieve, algebraic sieve.
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Combining congruences

Kraitchik: find x tq x2 ≡ 1 mod N , x 6= ±1 mod N .

Step 1: find pairs {(ui, vi)}i∈I s.t.

u2
i ≡ vi mod N, u2

i 6= ±vi.

Step 2: find J ⊂ I ,
∏

j∈J

vj = V 2
J

Step 3:

UJ =
∏

j∈J

uj , U2
J ≡ V 2

J mod N.

Step 4: x = UJ/VJ mod N is a squareroot of 1 and with probability≥ 1/2, it

is non-trivial.
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How to test a square

vi =
∏

p∈P

pα(i,p)

Z =
∏

j∈J

vj =
∏

p∈P

p
P

J α(j,p) = 2⇔ ∀ p,
∑

J

α(j,p) ≡ 0 mod 2

⇒ linear algebra problem: find dependance relations in the matrix

M = (α(i, p) mod 2).

Pb. #P is quite huge.

Idea: replace P by a factor base B = {p1, p2, . . . , pk}:

vi =
k∏

r=1

pα(i,r)
r ⇒ Z =

∏

j∈J

vj =
k∏

r=1

p
P

J α(j,r)
r
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Dixon’s algorithm

Take ui = i and vi ≡ i2 mod N .

Ex. N = 2117, B = {−1, 2, 3, 5, 7, 11}:

rel i vi rel i vi

1 65 −1× 32 5 81 2× 3× 5× 7
2 74 −1× 53 × 7 6 92 −1× 22

3 75 −1× 2× 3× 112 7 99 −1× 24 × 72

4 79 −1× 2× 5× 11

R2 ×R3 ×R5 yields:

(74× 75× 81)2 ≡ (−53 × 7)(−1× 2× 3× 112)(2× 3× 5× 7)

≡ (2× 3× 52 × 7× 11)2 mod N

7462 ≡ 115502, pgcd(746− 11550, N) = 73.
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Variants

• CFRAC: (Morrison & Brillhart, 1970) α = 1/2

• QS, etc.: (Pomerance, Montgomery, Lenstra & Manasse) α = 1/2.

• NFS: (Pollard, Lenstra, Buhler) α = 1/d with d as a function of N ⇒
change in complexity.

Notation: LN [α, c] = exp
(
c(log N)α(log log N)1−α

)

LN [0, c] = (log N)c, LN [1, c] = N c

Prop. Dixon, CFRAC, QS have complexity LN [1/2, c]; NFS has complexity

LN [1/3, c].

N
√

N LN [1/2, 1] LN [1/3, 1]
2512 1.16× 1077 6.69× 1019 1.02× 1010
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The quadratic sieve

Basic version (Pomerance, 1981):

ui = i +
⌊√

N
⌋

, vi =
(

i +
⌊√

N
⌋)2

−N.

Advantages:

◦ vi ≈ 2i
√

N � N ;

◦ crible:

p | vi ⇔
(

i +
⌊√

N
⌋)2

≡ N mod p

implies N square modulo p and

p | vi ⇔ i ≡ i− ou i ≡ i+ mod p

Thm. QS runs in time O(LN [1/2, 3/
√

8]), and space O(k = LN [1/
√

8]).

François Morain, École polytechnique (LIX) 31 CIMPA-UNESCO-INDIA School, 2005

Programming the sieve

procedure sieve(L) (* sieve [0, L[ *)

1. S[i]← vi for i ∈ [0, L[;

2. for p ∈ B
for i0 = i±(p)

i← i0;

while i < L

S[i]← S[i]/p; i← i + p;

3. if S[i] = 1, vi is completely factored.

Rem.∞ of tricks to speed up.

MPQS: (Montgomery, 1985) use a lot of polynomials⇒ QS can be massively

distributed: email (A. K. Lenstra & M. S. Manasse, 1990), INTERNET (RSA-129).
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B) Number Field Sieve (NFS)

• Combination of congruences method invented by Pollard in 1988.

• Use f(X) = adX
d + ad−1X

d−1 + · · ·+ a0 irreducible over Q s.t.

f(m) ≡ 0 mod N .

• Operations in the field Q[X]/(f(X)) =
{
∑d−1

i=0 biX
i, bi ∈ Q

}

.

Ex. In Q[X]/(X2 + 1)

(b1X + b0)(c1X + c0) ≡ (b1c0 + b0c1)X + b0c0 − b1c1.

• One can sieve (in fact two in parallel).

• The size of the coefficients of f has a great impact on the algorithm: SNFS:

factorizes bn ± 1; GNFS: all numbers.

• Non-trivial implementation. Faster than PPMPQS for 120dd–130dd.
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IV. Some records

dd who when timings

100 Manasse & A. K. Lenstra 1991 7 MIPS-years
110 AKL 1992 one month on 5/8

of a 16K MasPar
120 AKL, Dodson, Denny, Manasse 1993 835 MIPS-years

Lioen, te Riele
129 Atkins, Graff, AKL, Leyland 1994 5000 MIPS-years

+ INTERNET

130 Dodson, Montgomery, AKL, WWW, 1996 500 MIPS-years
Elkenbracht-Huizing, Fante,
Leyland, Weber, Zayer

140 te Riele, Cavallar, Lioen, Montgomery, 1999 1500 MIPS-years
Dodson, AKL, Leyland, Murphy,
Zimmermann

155 CABAL 1999 8000 MIPS-years
160 Franke et al. 04/2003 ??
174 Franke et al. 12/2003 ??
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V. Linear algebra

Rem.:M is very sparse (Ω(N) ≤ log2 N ).

Nb size #coeffs 6= 0
per row

RSA-100 50, 000× 50, 000
RSA-110 80, 000× 80, 000
RSA-120 252, 222 × 245, 810

(89, 304 × 89, 088)
RSA-129 569, 466 × 524, 338 47

(188, 614 × 188, 160)
RSA-130 3, 504, 823 × 3, 516, 502 39
RSA-140 4, 671, 181 × 4, 704, 451 32
RSA-155 6, 699, 191 × 6, 711, 336 62
RSA-160 5, 037, 191 × 5, 037, 191 ??
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A) Gaussian elimination

O(k3) but with a very low constant (32 bits into an int, vector processors);

do i=2, ni

i1 = (piv-1)*nblocs

i2 = (tabi(i)-1)*nblocs

CDEC$ INIT_DEP_FWD

do k=1, nblocs

M(i2+k) = M(i2+k).xor.M(i1+k)

enddo

enddo

Variants taking sparsity into account (structured Gaussian elimination).
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B) Sparse methods

• Wiedemann: look for the minimal polynomial ofM via the minimal

polynomial of the sequence of bits ei = u · (M ib) with the

Berlekamp-Massey algorithm in time O(k2+ε); bloc method due to

Coppersmith.

• Lanczos: adapted from numerical analysis, used over a finite field (!),

O(k2+ε); better constant than Wiedemann; bloc variant by P. L. Montgomery

finds 64 dependance relations in the same time.
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Predictions?

It is unwise to make predictions about the difficulty of factoring

Back to complexity:

T (N) N 7→ N2

√
N T 2

LN [1/2] T
√

2

LN [1/3] T
3
√

2

Ex. N = 2512, T (N) = 8000 MIPSY, T (21024) = 82715 MIPSY, but with a

matrix of size (3× 108)2 (feasable in 2018 (Brent)?)

Moore’s law? get 32 bits each time.
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II. RSA

F. Morain

POLYTECHNIQUEECOLE
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Plan

I. Introduction.

II. Theory.

III. Implementation.

IV. Advanced security.

V. Signing.

VI. RSA in TLS.
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I. Introduction

Cryptosystem: use one algorithm E to encrypt, a different one D to decrypt; E

can be made public.

Signature: signing is done with algorithm S; everybody can verify using algorithm

V .

Properties:

• Efficiency: easy to compute E(M) (resp. D(C)).

• Elementary security: difficult to recover D from E .

How to find E and D? take a hard problem (complexity theory) and transform it

into a secure cryptosystem using a secret trapdoor.
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II. Theory

KEY GENERATION: Alice chooses two random primes p and q, p 6= q, N = pq, e

s.t. pgcd(e, λ(N)) = 1, d ≡ 1/e mod λ(N) = lcm(p− 1, q − 1).

PUBLIC KEY: (N, e).

PRIVATE KEY: d.

ENCRYPTION:

• Bob retrieves the authenticated public key of Alice.

• Bob computes y = xe mod N and sends it to Alice.

DECRYPTION: Alice computes yd mod N ≡ x.
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Justification

Prop. Let N be an odd integer > 2. Then N is squarefree iff ∀ a ∈ Z/NZ,

aλ(N)+1 ≡ a mod N .

Proof.

⇒ if a ≡ 0 mod N : clear;

a ≡ 0 mod p : a1+λ(N) ≡ 01+λ(N) mod p ≡ a mod p;

(a, p) = 1 : a1+λ(N) ≡ a1+Kλ(p) mod p ≡ a mod p,

⇐ write N = peN ′, (p,N ′) = 1: choose a = N ′p:

ap−1 ≡ 0 mod p2 6≡ a mod p2.2

Back to RSA:

a1+kλ(N) ≡ a1+λ(N)a(k−1)λ(N) ≡ a× a(k−1)λ(N) mod N.2
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Elementary security of RSA

RSA pb: given (N, e, y), find x s.t. xe ≡ y mod N .

Thm. Breaking RSA⇐ factor N ; converse may be false (Boneh and

Venkatesan).

Prop. Knowing (N,λ(N)) is equivalent to knowing (p, q).

Proof. Enough to compute ϕ(N) = (p− 1)(q − 1) = N − (p + q) + 1.

ϕ(N) = gcd(p− 1, q − 1)λ(N) = gλ(N).

Claim: g = gcd(N − 1, L).

g = gcd(p− 1, q − 1), p− 1 = gp′, q − 1 = gq′,

L = λ(N) = (p− 1)(q − 1)/g = gp′q′

Now:

gcd(N − 1, L) = g gcd(gp′q′ + p′ + q′, p′q′) = 12
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Prop. Knowing (e, d) is equivalent to knowing (p, q) via a randomized

algorithm.

Proof. k = ed− 1 = 2s` ≡ 0 mod λ(N), hence

∀a ∈ (Z/NZ)∗, ak ≡ 1 mod N.

Lem. 1 has four squareroots modulo N . Two of them break N .

Proof. If r ≡ 1 mod p, r ≡ −1 mod q, then (r − 1, N) = p. 2

Back to the thm. ed− 1 = 2s`, ` odd; for some u < s, b = a2u` is a

squareroot of 1. With probability 1/2, b 6= ±1. 2

A. May, CRYPTO’2004: the same result is true via a deterministic algorithm

(using LLL).
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III. Implemention

Choosing prime numbers:

• p 6= q, log2 p ≈ log2 q ≈ 512 (NFS);

• (p− 1, q − 1) = 2 (maximize λ(N)); p/q 6= small rational; p− q big (de

Weger).

• p± 1 with a large prime factor p− 1 = 2kp′ (Pollard) s.t. p′ − 1 has a large

prime factor to prevent the cycling attack: find n s.t.

y ≡ xe,yen ≡ y mod N (∗)

which gives x ≡ yen−1

mod N . Then

(∗)⇔ en ≡ 1 mod λ(N).
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Possible prime generating algorithm:

• build r0 (probably) prime s.t. r0 − 1 has a large (probable) prime factor found

by the Artjuhov-Miller-Rabin algorithm;

• build r1 (probably) prime;

• find p prime s.t. p ≡ 1 mod r0, p ≡ −1 mod r1 using CRT.

ARTJUHOV-MILLER-RABIN: N − 1 = 2st, t odd:

aN−1 − 1 = (at − 1)(at + 1)(a2t + 1) · · · (a2s−1t + 1).

If N is prime, it must divide one of the factors.

Thm. The number of false witnesses is≤ N/4.

Coro. Proba(N passes k runs|N is composite) ≤ 1/4.

Rem. We can deduce from that: Proba(N is prime|N passes k runs).
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Choosing e: minimize the number of fixed points of x 7→ xe, which amount to

(1 + gcd(p− 1, e− 1))(1 + gcd(q − 1, e− 1)).

Rem. e = 3 or e small is possible, but see below.

“Choosing” d:

• d big: if d < N0.292, attacks of Wiener; Boneh et al.;

• if using CRT to decrypt: d ≡ dp mod (p− 1), otherwise

gcd(N,x− yδ) = p for small δ.

• A. May, CRYPTO’2002: if q < Nβ , dp 6 N δ and if

3β + 2δ 6 1− logN (4), then one can factor N in polynomial time. (cf. also

J.Blömer & A.May, CRYPTO’2003).
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ENCRYPTION:

• Primitive: m 7→ me mod N with 0 6 m < N ; takes time O(log e).

• Conversion uchar t[0..n-1] to mpz_t z:

z = t[0]256n−1 + t[1]256n−2 + · · ·+ t[n− 1]

called OS2IP in PKCS #1 v2.1; inverse function I2OSP.

• Put the length of the useful message at the beginning:

M = lU ||MU ||MD5(lU ||MU )

with lU = a3256
3 + a2256

2 + a1256 + a0 7→ a3 a2 a1 a0.

• Cut M into blocks and add noise:

N nk−1 nk−2 · · · n0

m 0 mk−2 · · · m0
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Side channel attacks

Timing attacks: (Kocher) monitor the time taken when exponentiating to recover

the secret bits one at a time.

⇒ new algorithmics where computations must be concealed.

Error attacks: (Boneh et al.) Simplest example when using CRT for decrypting

y = xe mod N . One computes z = yd mod N in the following way:

zp = yd mod (p−1) mod p, zq = yd mod (q−1) mod q + CRT.

If zp is correct, but not zq , then recover p as gcd(z − x,N).
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IV. Advanced security

Textbook RSA does not obey Shannon

Common modulus: (Simmons) N common to all users: if M is sent to two

users with (e1, e2) = 1, then using ue1 + ve2 = 1, one gets:

(Me1)u(Me2)v ≡M mod N.

Common exponent: Ci = M3 mod Ni for i = 1, 2, 3; one builds

C = M3 mod N1N2N3; since M < Ni, we deduce C = M3, hence M .

Generalization to more general polynomials gi(M) by J. Håstad.
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Timestamp attacks

If Me mod N and (M + c)e mod N are sent with known c, M can be

recovered.

Ex. (Franklin-Reiter) C1 ≡M3 mod N , C2 ≡ (M + 1)3 mod N ; then:







C2 + 2C1 − 1 = 3M3 + 3M2 + 3M

C2 − C1 + 2 = 3M2 + 3M + 3

hence M = (C2 + 2C1 − 1)/(C2 − C1 + 2) mod N .

More generally: gcd(M e − C1, (M + c)e − C2) even if Z/NZ has zero

divisors.

Thm. (Coppersmith) if f(X) has degree d, one can find all solutions

< N1/d−ε of f(X) ≡ 0 mod N in polynomial time in min(1/ε, log N).
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Beyond elementary security

Goals:

• IND: indistinguishability (Goldwasser & Micali). One cannot distinguish

E(”yes”) from E(”no”).

• NM: non-malleability (Dolev, Dwork, Naor). Given E(m) and E(m′), one

cannot build E(m⊗m′) (say).

Attacks:

• CPA: chosen-plaintext attack (in asymetric crypto, everybody can encrypt!).

• CCA1: non-adaptative chosen-ciphertext attack (Naor & Yung), decryption

oracle before the attack.

• CCA2: adaptative chosen-ciphertext attack (Rackoff & Simon), decryption

oracle available except on the target message.
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The fundamental theorem

Thm. (Bellare, Desai, Pointcheval, Rogaway)

NM-CPA NM-CCA1 NM-CCA2

IND-CPA IND-CCA1 IND-CCA2

×

×
×
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Examples with text book RSA

Text book RSA is not IND-CPA: easy to distinguish TB-RSA(”yes”) from

TB-RSA(”no”).

TB-RSA is not NM-CPA: xe × ye = (xy)e.

Ex. if M < 2m and M = M1M2, Mi < 2m/2, then

Me
1Me

2 ≡ C mod N ⇐⇒ C/M e
2 ≡Me

1 mod N.

TB-RSA does not resist a CCA2:

• Charlie intercepts C = M e mod N ;

• Charlie chooses r at random and asks the oracle to decrypt y = reC ;

• the oracle sends back yd = redCd = rCd from which M is recovered s.t.

Cd = M .
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Counterattack: OAEP, etc.

Idea: take a CPA cryptosystem and transform it into a IND-CCA one.

OAEP: (Bellare & Rogaway)

INPUT:

• Public algorithm f , private algorithm g operating on strings ∈ {0, 1}k ;

k0 + k1 < k;

• Two hash functions G : {0, 1}k0 → {0, 1}n+k1 ,

H : {0, 1}n+k1 → {0, 1}k0 .

• The algorithm encrypts M ∈ {0, 1}n, with n = k − k0 − k1.
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Encryption Decryption

x = z[0..n− 1], c = z[n..n + k1 − 1]

s = G(r)⊕ (M||0k1) ∈ {0,1}n+k1 z = G(r)⊕ s

t = H(s)⊕ r ∈ {0, 1}k0 r = H(s)⊕ t

w = s||t ∈ {0, 1}k s||t = w[0..n + k1 − 1||n + k1..k]

C = f(w) w = g(C)

If c = 0k1 , then M = x, otherwise reject C and do not send x back.

Thm. In the random oracle model, OAEP is IND-CCA2.
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Rem. In practice, take G and H as variants of MD5 à la Full Domain Hash.

Rem. Shoup discovered a breach in the proof and proposed with

s = (G(r)⊕M)||H′(r||M).

Rem. RSA-OAEP is sure anyway (Fujisaki, Okamoto, Pointcheval and Stern).

Boneh: (CRYPTO 2001)

SAEP:

((M ||0s0)⊕H(r))||r

SAEP+:

((M ||G(M ||r)) ⊕H(r))||r
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V. Signing

A) Signature with appendix

PREREQUISITE: each user has a pair (S, V ) where S is the private signature

algorithm and V the public verification algorithm, s.t. V (m,S(m)) =true.

SIGNATURE: Alice signs m and sends (m,SA(m)).

VERIFICATION: Bob gets the authenticated algorithm VA of Alice and tests

whether VA(m, s) ==true.

Rem.

• must use m to verify;

• if m is too long, use S(m) = S ′(H(m)).
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Ex. Alice has RSA parameters (NA, eA, dA); SA(m) = mdA mod NA;

VA(m, s) = (seA mod N == m).

But: (E(x), x) is a valid pair, since V (E(x), x) = E(x) == E(x). One

should not accept everything!

Application to RSA: S(m) = H(m)d mod N withH = MD5;

V (m, s) = ((se mod N) == H(m))?.

Desmedt-Odlyzko; Coron-Naccache-Stern: ifH(x) is too small, use a

smooth-number attack.

⇒ Full Domain Hash: (Bellare & Rogaway; Coron) S(m) = H(m)d mod N

withH : {0, 1}∗ → Z/NZ.
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PSS

Probabilistic signature scheme (Bellare, Rogaway) with security proof.

PREREQUISITE: k0 + k1 < k; H : {0, 1}∗ → {0, 1}k1 ,

G : {0, 1}k0 → {0, 1}k−k1−1; G(w) = G1(w)
︸ ︷︷ ︸

k0 bits

||G2(w).

Signature Verification

choose r ∈R {0, 1}k0

w = H(m||r) H(m||r) == w and G2(w) == γ and b == 0
r∗ = G1(w)⊕ r r = r∗ ⊕G1(w)
y = 0||w||r∗||G2(w) z = b|| w

︸︷︷︸

k1

|| r∗
︸︷︷︸

k0

||γ

x = yd mod N z = ye mod N
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B) Signatures with message recovery

Idea: S(m) enables one to recover m, which increases the band-width.

Ex. SA(m) = mdA mod NA, VA(s) = seA mod NA.

But: x is a valid signature for E(x), since V (E(x), x) = (E(x) == E(x));

⇒ one must be able to recognize a valid message, using some redundancy R.

Ex. R(m) = m||m: one m′ at random is valid with probability 2−n.

SIGNATURE: Alice compute m′ = R(m), and sends s = SA(m′).

VERIFICATION:

• Bob gets the authenticated verification algorithm of Alice;

• Bob computes m′′ = VA(s) and checks whether m′′ presents the desired

redundancy: if yes, he gets back m = R−1(m′′); otherwise, he rejects the

signature.
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Simple idea: R(m) = mw = m|| 0 . . . 0
︸ ︷︷ ︸

t bits

; k = blog2 N + 1c, t < k/2,

w = 2t et 0 6 m < n/w − 1.

But... existential forgery on given m (De Jonge & Chaum):

• Euclid’s algorithm applied to (N,m′ = mw): at each step xN + ym′ = r

and at some point |y|, r < N/w;

• compute (m2,m3) = (rw, |y|w);

• if s2 = md
2 and s3 = md

3 are known, then s2/s3 = (m2/m3)
d = m′d.

Other choices: 00 · · · 00||m||11 · · · 11 or m||H(m) are not enough (cf.

Girault, Misarsky, Bleichenbacher, etc.), nor ISO/IEC 9796 (1999-2000:

Coron-Naccache-Stern, Coppersmith-Halevi-Jutla, Grieu; broken again by

Girault-Misarsky).
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PSS with message recovery

Signature Verification

choose r ∈R {0, 1}k0

w = H(m||r) H(m||r) == w and b == 0

r∗ = G1(w)⊕ r m = γ ⊕G2(w)

m∗ = G2(w)⊕m r = r∗ ⊕G1(w)

y = 0||w||r∗||m∗ z = b|| w
︸︷︷︸

k1

|| r∗
︸︷︷︸

k0

||γ

x = yd mod N z = ye mod N

François Morain, École polytechnique (LIX) 64 CIMPA-UNESCO-INDIA School, 2005



From primitives to protocols: SignCryption

Goal : Bob ({E,D, S, V }B ) wants to be sure that the cleartext corresponding to

the ciphertext he just received was actually written by Alice ({E,D, S, V }A).

1) send (EB(m), SA(m)): Carole intercepts (EB(mb), σ) and can compute

for herself VA(m0, σ) and VA(m1, σ).

2) send (EB(m), SA(EB(m))): one knows that Alice signed EB(m) and not

m. Carole can sign it too.

3) send SA(EB(m)) : beware of Anderson & Needham : Alice sends

{MeB mod NB}dA mod NA. If Bob wants a signature on M ′, he can solve

[M ′]x = M mod NB and register the key (xeB , NB) as (another) public key

of his own.

4) EB(m||SA(m)) : Carole cannot deduce anything.
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VI. RSA in TLS – RFC 2246, january 1999

Client Server

ClientHello −→
←− ServerHello
←− Certificate* (X509)

←− ServerKeyExchange*

←− CertificateRequest*

←− ServerHelloDone

Certificate* −→
ClientKeyExchange −→

CertificateVerify* −→
[ChangeCipherSpec] −→

Finished −→
←− [ChangeCipherSpec]

←− Finished

François Morain, École polytechnique (LIX) 66 CIMPA-UNESCO-INDIA School, 2005

With RSA

Client Server

←− Certificate* (X509) : 3 PubS

←− ServerKeyExchange*× ×
←− CertificateRequest*

←− ServerHelloDone

Certificate* : 3 PubC −→
ClientKeyExchange: PubS(pms) −→

CertificateVerify* : SC(handshake msgs) −→
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Bleichenbacher (CRYPTO’98)

Client Server

←− Certificate* (X509) : 3 PubS

←− ServerKeyExchange*× ×
←− CertificateRequest*

←− ServerHelloDone

Certificate* : 3 PubC −→
ClientKeyExchange: PubS(pms) −→

←− Error

Attack: by using the server as an oracle, can decrypt a message m with a large

number of trials, if formatted using PKCS # 1 v1.5.
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Conclusion: replace

if(! goodFormatForMessage(m))

send_error("bad format");

by

ok = goodFormatForMessage(m);

if(ok){
{remaining code}

}
if(! ok)

kill_connection();
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Manger’s attack – CRYPTO’01

Timing attack on the preceding scheme. Replace it with:

ok = goodFormatForMessage(m);

{remaining code}
if(!ok) kill_connection();

⇒ Do not turn a program into an oracle!
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Conclusions on RSA

• Good cryptography is orthogonal to good software engineering!! For

instance, modularity is at stakes.

• RSA is the king, it generated much enthousiasm, anger, theorems, etc. over

30 years. But resisted. Still more to come?

• However, important drawbacks: implementing a safe RSA is like crossing a

mine field by night; bandwidth has reduced a lot (768 bits over 1024).

• Isolated point in crypto space (E(D(m)) = D(E(m)) for instance).

• Replace with new stuff (elliptic curves?).
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Plan

I. ElGamal cryptosystem and signature.

II. Building AC-systems.

III. Attacking AC-systems.

IV. Pairings and applications.

V. Other algebraic curves; tori.
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I. ElGamal cryptosystem and signature

A) ElGamal encryption

KEY GENERATION: Alice chooses a prime p, (Z/pZ)∗ = 〈g〉, 0 < a < p− 1.

PUBLIC KEY: (p, g, h = ga mod p).

PRIVATE KEY: a.

ENCRYPTION: Bob chooses r ∈R (Z/(p− 1)Z)∗, sends (u, v) = (gr, hrM).

DECRYPTION: Alice computes M ≡ v/ua.

Justification: v/ua ≡ hrM/gra mod p.

Rem. ElGamal generalizes trivially to any cyclic group G = 〈g〉 of order n.

Drawback: ciphertext twice as long as the cleartext.

Rem. Encryption must be randomised, otherwise hrM1/(h
rM2) = M1/M2.

Choosing r must be done with great care (Phong Nguyen et al.).
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Discrete logarithm and security

Three problems:

• discrete logarithm (LD): given gx, compute x;

• computational Diffie-Hellman problem (CDH): given (gx, gy), compute gxy ;

• decisionnal Diffie-Hellman problem (DDH): given (gx, gy, gz), do we have

z ≡ xy mod n?

Prop. LD⇒ CDH⇒ DDH.

Thm. (Maurer & Wolf) For a lot of groups LD⇔ CDH.

Thm. (Joux & Nguyen) There exist groups for which DDH is easier than CDH.
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Security of ElGamal’s cryptosystem

Pb ElGamal: given (p, g), for all (h = ga, u, v), one can compute v/ua.

Prop. ElGamal⇐⇒ CDH.

Proof. If CDH is solvable: target message (gr, hrM); from h = ga and gr , one

gets gar = hr , hence M .

If ElGamal can be solved: send (g−x, gy, 1), get M = 1/(gy)−x = gxy . 2

Prop. ElGamal is not NM-CPA.

Proof. Given (gr, hrm), one can compute (g2r, h2rm2). 2

Prop. ElGamal does not resist to a CCA2.

Proof. given (u, v), one asks the oracle to decrypt (gu, v) and we get back

M/h, hence M . 2
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Thm. ElGamal is IND-CPA iff DDH is difficult.

Proof. give m0, m1 to the encrypting oracle that sends back

(u, v) = (gr, hrmb), b ∈ {0, 1}. The attacked must find out which of

(u, h, v/m0) or (u, h, v/m1) is a valid DH triplet. 2

Rem. When G = (Z/pZ)∗, this is not true, since (m/p) is available.

Variant: (gr,m⊕H(hr)); but m⊕H(hr)⊕ 1n = (m⊕ 1n)⊕H(hr).

Baek, Lee, Kim (ACISP2000): variant of Fujisaki-Okamoto, CRYPTO’99 that

turns ElGamal into an IND-CCA2 scheme.
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B) Signing with ElGamal

KEY GENERATION: Alice chooses a prime p, (Z/pZ)∗ = 〈g〉, 0 < a < p− 1.

PUBLIC KEY: (p, g, hA = ga mod p).

PRIVATE KEY: a.

SIGNATURE OF m: Alice chooses a secret k ∈R (Z/(p− 1)Z)∗; signature is

(r, s) with r = gk mod p, s = (m− ar)/k mod (p− 1).

VERIFICATION:

• Bob gets the authenticated key of Alice: hA;

• Bob checks whether 1 ≤ r < p (∗);

• Bob checks whether hr
Ars = gm mod p.

Justification: hr
Ars = gar+ks = gm.
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Elementary security:

• ⇐ DL: one gets a.

• If one knows s, one has to solve hr
Ars = gm ??

• If one knows r, one must solve DL on rs = gm/hr
A;

• Take care to k.

Why Bob must check (∗): let (r, s) be a signature on some known m; m2 is

the target message. Write u ≡ m2/m mod (p− 1);

gm2 ≡ ghu ≡ (hA)rursu mod p.

Choose s2 ≡ su mod (p− 1) and r2 ≡ ru mod (p− 1), r2 ≡ r mod p

using CRT. Then (r2, s2) is a valid signature on m2.

Existential forgery: if b and c are prime to p− 1, then
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(r′ = gbhc
A, s′ = −r′/c mod (p− 1)) is a valid signature for

m′ = −r′b/c mod (p− 1).
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C) DSA

KEY GENERATION: prime p of 512 to 1024 bits, q prime factor of p− 1 with 160

bits; g ≡ h(p−1)/q mod p 6≡ 1.

PUBLIC KEY: y = gx mod p.

PRIVATE KEY: x < q.

SIGNATURE: Alice chooses k < q at random; signature is (r, s) with

r = (gk mod p) mod q, s = (k−1(H(m) + xr)) mod q.

VERIFICATION:

w ≡ 1/s mod q, u1 ≡ (H(m)w) mod q, u2 ≡ rw mod q,

(gu1yu2 mod p)
?
= r mod q.

Advantage: short signature. Drawback: slow verification.
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II. Building AC-cryptosystems

Why ACC? best candidates to be Nechaev groups.

Best groups so far: hyperelliptic curves of genus g, with size≈ qg over some

finite field Fq . Typical size qg ≈ 2160−−200 ≈ 1050−−60.

• Miller, Koblitz (1986): elliptic curves are suggested for use, following the

breakthrough of Lenstra in integer factorization (1985).

• Koblitz (1988): hyperelliptic cryptosystems.

• See: Algebraic curves and cryptography, S. Galbraith & A. Menezes, January

12, 2005.
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General definitions

Let C be a plane smooth projective curve of genus g with equation

F (X,Y ) = 0 with coefficients in K, char(K) = p.

Conic: (genus 0) x2 + y2 = 1.

Elliptic curve: (genus 1) y2 = x3 + x + 1.

Hyperelliptic curve: (genus g) y2 = x2g+1 + · · · (or in some cases

y2 = x2g+2 + · · · ).
Def. C(K) = {P = (x, y) ∈ K2, F (x, y) = 0}.
Thm. When g ≤ 1, there is a group law on C(K). When g > 1, there is a group

law on the jacobian of the curve.
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Group law

E : Y 2 = X3 + aX + b

O
E

P1

P2
S

P
3

D

P3 = P1 ⊕ P2, [k]P = P ⊕ · · · ⊕ P
︸ ︷︷ ︸

k times

λ =







(y1 − y2)/(x1 − x2)

(3x2
1 + a)/(2y1)

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
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+

P1

P2

+

+

Q1

Q2

+

+

R1

R2

(Courtesy from PGaudry)
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Cardinality

Thm. (Hasse-Weil) (
√

q − 1)2g ≤ #Jac(C) ≤ (
√

q + 1)2g .

g = 1: #E = q + 1− t, |t| ≤ 2
√

q. Explains why so much success in integer

factorization (ECM) or primality proving (ECPP).

Pb: compute this cardinality as quickly as possible (polynomial time?). No general

formulae except in special cases that might be dangerous (CM curves,

supersingular curves).
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Cryptographic needs: Fp with large p or F2n with n prime (Weil descent, see

below); subgroups of large prime order.

Algorithms:

• g = 1, p large: Schoof (1985), Pila, etc. Completely practical after

improvements by Elkies, Atkin, and implementations by M., Lercier, etc. New

recent record M. for p = 10999 + 7.

• p = 2: p-adic methods (Satoh, Fouquet/Gaudry/Harley; Mestre;

Lercier-Lubicz, etc.; Kedlaya; Lauder-Wan). Completely solved.
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g\p 2 small medium large

1 MF & PG & Harley Satoh Couveignes SEA

Mestre, etc. Kohel RL & FM FM

2 Mestre, etc. Kedlaya PG & NG PG & Schost

PG & NG & Bostan+Schost

3-hyper RL & Lubicz idem idem tbd

3-super Ritzenthaler idem idem tbd

#define RL "R.˜Lercier"

#define PG "P.˜Gaudry"

#define MF "M.˜Fouquet"

#define NG "N.˜Gürel"
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III. Attacking AC-systems

• No (known) subexponential method for small g (including g = 1); recover

a subexp method when g increases.

• Reduction Jac(C)/Fq ↪→ Fqk with k small:

– Supersingular curves: MOV (Menezes, Okamoto, Vanstone using the Weil

pairing); Frey & Rück (using the Tate pairing); Galbraith.

– other cases: elliptic curves with t = 2 with the Tate pairing.

• Discrete logs in subgroups of order pe of Jac(C)/Fpr can be found in

polynomial time: g = 1 (anomalous curves) done by Satoh-Araki, Semaev,

Smart; g > 1 by Rück.

• Elliptic curves: largest example done: ECC2-109 in april 2004 (1200 years

of Athlon XP 3200+, http://www.certicom.com/chal/).
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Discrete log on hyperelliptic curves

• Algorithm ADH from Adleman, DeMarrais, Huang (ANTS I):

Lp2g+1 [1/2, c]

with c ≤ 2.181 if log p ≤ (2g + 1)0.98 (heuristic using Lovorn’s theorem on

smooth polynomials); SNF.

• Flassenberg & Paulus: using sieving techniques; experiments with

y2 = x2g+1 + 2x + 1, faster than Shanks for g ≥ 6.

• y2 = x2g+2 + · · · (Müller-Stein-Thiel): proved Lp2g+2 [1/2, 1.44].

• Extensions, proved analysis and optimizations by Enge: if θ log q ≤ g

Lqg [1/2, c(θ)],

with limθ→0 c(θ) = +∞; easier SNF. Smaller c =
√

2 by Enge and Gaudry.
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Gaudry’s variant

Idea: use a O(q) factor basis + random walk to generate relations.

Time O(q2 logc q) for fixed g. Provably (and practically) better than Pollard’s ρ

for g > 4.

Thériault (2003): use one large prime, leads to O(q2−2/(g+0.5)), so g = 3 and

g = 4 are in danger (assuming q is large).

Gaudry/Thériault/Thomé (2004): use double large primes leads to a method in

O(q2−2/g).
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Weil descent

(Frey, 1998; Gaudry-Hess-Smart, 2002)

Rough idea: to attack DLP in Jac(C/Fqn), find another curve X/Fq and a

non-constant rational map f : X → C s.t. DLP is easier on X .

Typical example. Fq = F221 , E/Fq4 , leads to a curve X/Fq of genus g = 4

(therefore O(q3/2) using GTT).

Rem. m further analyzed by Menezes & Wu, F2p not breakable; see also

Menezes, Maurer, Teske for the composite case.

Rem. Recent computations of Smart: can break E/Fq4 , g = 8, faster than ρ for

q > 217.

Recent results: Semaev; Gaudry; Diem: Subexponential Lpn [3/4] attack for

E/Fpn when n ∼ log p.
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IV. Pairings and applications

Setup: ` prime, ` | #E and ` | qk − 1,⇒∃P ∈ E(Fq), Q ∈ E(Fqk ) that

generate E[`].

Weil and Tate pairings: e : 〈P 〉 × 〈Q〉 → µ` ⊆ F×
qk

• bilinear: e(aP, bQ) = e(P,Q)ab;

• non-degenerate;

• efficiently computable if k is small (in O(log(`)M(qk))).

Immediate application: MOV reduction when k is small, reduction of DL to Fqk .

More recent applications: identity based cryptosystems, short signatures

(Boneh, Lynn, Sacham), etc.
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Non interactive key exchange (Sakai–Ohgishi–Kasahara)

Private Key Generator
Master key s ∈ [0, `− 1]

�
�

�
�

�
�

��	

@
@

@
@

@
@

@@R

sPA , sQA sPB , sQB

Alice Bob
PA = H(“ALICE”) PB = H(“BOB”)

QA = H ′(“ALICE”) QB = H ′(“BOB”)

e(PB, sQA) = e(PB , QA)s = e(sPB ,QA)
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Conclusions on algebraic curves

• Recent, but resist to many attacks, especially in genus 1 or 2.

• Many advantages: short keys, short signatures, new tools (pairing), etc.

• Many systems can be interpreted in terms of curves (e.g., torus based

cryptography of Rubin and Silverberg reinterpreted by Kohel as generalized

jacobians of curves).
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General conclusions for the three talks

• A lot of systems were designed; new must be added/tested (biodiversity).

• Theory of security emerged, though not completely satisfactory. Algebra of

composition still needed (possible at all?).

• More and more MATHEMATICS involved, but used in a computer science

game.
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