CIMPA-UNESCO School, Bangalore, 2005:

Models of Concurrency

Jean-Jacques Lévy
INRIA

jeanjacqueslevy.net/cimpa.html

Examples

A-calculus [Church]

M,N =z | A\e.M | MN

M ~, N iff VC[] C[M] —* nf implies C[N] —* nf
M ~,, N iff VO[] C[M] —* hnf implies C[N] —* hnf

PCF [Plotkin]

M, N ::= typed A-calculus + recursion + arithmetic
M ~, N iff VC[] C[M] —* n implies C[N] —* n
sequentiality

Algol
M, N ::= valid Algol programs
M ~, N iff VC[] C[M] —* n implies C[N] —* n

etc

Semantics

A semantics function [---] assigns meaning [M] to terms M.
The induced relation ~ defined by M ~ N iff [M] = [N] must be:

1. compositional, i.e.
M ~ N implies C[M] ~ C[N] for any context C[], i.e.
~ is a congruence

consistent with observation, i.e.
if M produces a and M ~ N, then N produces «

keeping choices (more specific to non-determinism), i.e.
branching time semantics, i.e.
bisimulation [Milner]

Last item is more ideologic than necessary.
Bisimulation are useful for proofs.

Concurrency




Plan | Input-output behaviour

Define a calculus for concurrency x is a global variable. At beginning, x =0

Define directly semantics equivalence, Consider
instead of providing a semantics function.

]

S=lz:
Define observation T=z:=0z:=x+1]

Context lemma for congruences

(to reduce the set of contexts to consider) [S] and [T] same functions on memory state.

S||S and T || S are different relations on memory state.

Unfortunately, there are 2 calculi: = [S] # [T] in any compositional semantics

1. CCS, A calculus of communicating systems, [Milner, 80]

. ) : Conclusion: Interaction is important.
2. m-calculus, Communicating and mobile systems: the w-calculus,

[Milner et al, 90]

Fortunately, the w-calculus is strong to express interaction,
and is useful in security.

Non-determinism | Atomicity

x is a global variable. At beginning, =0 x is a global variable. At beginning, x =0

Consider: Consider
S=lz:=1; S=z=c+1||z:=x+1]
T=[z:=2 After S, then z = 2.

After S || T, then = € {1,2} H -
owever i

[z := x4+ 1] compiled into [A:=z + 1;2 := A]
Result is not unique.

Concurrent programs are not described by functions,

. Then
= relations.

S=[A:=z+1L;z:=A]||[B:=x+ 1;2:= B]
After S, then z € {1,2}.

Conclusion: define atomicity




Interaction Example (1/3)

A process is an atomic action, followed by a process. Ie. A vending machine for coffee/tea. At beginning, Py

P~ Null + 2action xXP
drink

Is this equation meaningful?

Answer: Scott's domains, denotational semantics.
Remarkable and difficult theory of [Plotkin, 1976]
(powerdomains for Scott’s domains).

Too difficult theory

Termination

Concurrent processes are often non terminating.

An operating system never terminates; same for the software of a
vending machine, or a traffic-light controler, or a human, etc.

Atomic steps usually terminate.

Transition Graphs | Example (2/3)

A transition graph is a triple (P, Act,T) where A different vending machine for coffee/tea. At beginning, P}

e P is the set of processes
e Act is the set of (atomic) actions

e 7 CPx Act x P is the transition relation

Is this graph equivalent to previous one?




Example (3/3) | CCS (1/2)

Two new vending machines P} and Pj’
process

I finite set guarded sum
composition
restriction
function call

ala

drink a

Alzi,x2,...2n) Lp function definition

{z1,22,...2n} = fn(P)
Cl] w= (11 aCl]+M | wa)l] | PIC[] | C[]|@ context

Why these graphs are not equivalent to previous ones?

Process a abbreviates process a.0

CCS (2/2)

Py() ef coin.(coffee.drink.Po() + tea.drink.Py())
or simply

Py def coin.(coffee.drink.Py + tea.drink.Pp)

P} def com.P{  P| der coffee.drink. P} + tea.drink.P}

P aef coin. P
Py’ ef coin.(coffee.drink.Py + tea.drink.Po) + coin.0
Drinker & Coin. coffee.drink.coin.tea.drink.0

Drinker | Py
Drinker | P}
Drinker | Pjf




Structural equivalence | Reduction rules (2/2)

monoid laws Po aef coin.(coffee.drink.Py + tea.drink.Py)

P+Q=Q+P PlQ=Q|P Drinker & coin.coffee.drink.coin.tea.drink.0

P+(Q@+R)=(P+Q)+R  PIQIR=(P|Q) IR Py | Drinker
P+0=P rP|lOo=P

Alyr,y2, ... yn) = Ply1/z1,y2/x2, .. . Yn/Tn] (coin.(coffee.drink.Py + tea.drink.Py)) | (coin.coffee.drink.coin.tea.drink.0)

def
when A(:Bl,.’l,’g,...xn> = P —

congruence: P=Q = C[P]=C[Q] (coffee.drink.Py + tea.drink.Po) | coffee.drink.coin.tea.drink.0

scope extrusion: (va)P | Q = (va)(P | Q) when a & fn(Q) -
(va)(vb)P = (vb)(va)P drink.Py | drink.coin.tea.drink.0

—

(va)0=0

) Py | coin.tea.drink.0
a-renaming

Reduction rules (1/2) Semantic equivalences

e R is a congruence:
[React] (a.P + M) | (@.Q+ N) — P |Q PRQ = C[P]RC[Q]

(Par] p_p [Res] p__p preserving observation on any a:
PlQ— P |Q (va)P — (va)P’ PRQ = (PlaeQla)

where

[Struct] % Definition 1 [barb] P | & iff P = (u3)(a.Q + M | S) where a &

Definition 2 [weak barb] P a iff P —"Q | «

preserving choices (branching time):
PRQAP—P = 3Qst.Q—Q AP RQ
PRQAQ —Q = 3FP'st.Q—Q NP RQ
Such a relation is named a bisimulation

Many recursive definitions. In which order? Are there well-founded?
[Park,Milner] defined bisimulations as maximal fixpoints.
[Fournet,Gonthier] proved order is irrelevant.




Labelled Transition Systems Strong bisimulation (2/4)
Reducing contexts (~ critical pairs in TRS): Proposition 7 Strong bisimulation is a congruence
[Act] a.P -5 P P~Q = C[P]~CQ]
a a So ~ is a semantics for | o (strong observation)
[sum1] —2—P" [Sum?2] _Q—Q

P+Q-%p P+Q-%qQ Exercise 5 (difficult) Show that it is the semantics induced by strong
observation.

a / a / a @ /
[Ccom E—=F_Q—Q Parl] — P —P  (parp] QL —Q
PlQ— P |Q PlQ—P|Q PlQ—P|Q . o
How to prove previous proposition ?
P-% P ad¢{aa}
(va)P == (va)P’

[Res] Typical (co-inductive) proof about bisimulation:

o e We want to show P ~ Q.
[Req) £l3/Z] — P'a A(z) = P As ~ is a maximal fixpoint,
Al@) — P’ ~ is the the largest relation R
satisfying the fixpoint equations of definition 5;
Proposition 3 P-L=Q iff P— Q find R such that PR Q
Proposition 4 P=-% @ implies P -25=Q show it satisfies the fixpoint equations of definition 5,
we say ‘“‘we show that R is a bisimulation”.

Proposition 5 P QiffPla (a#7)

Strong bisimulation (1/4) | Strong bisimulation (3/4)

Proof of previous proposition.

Definition 6 P strongly bisimilar to Q@ (we write P ~ Q) if whenever
e P+0~P. Take R ={(P+0,P),(P,P+0),(P,P)} and show R is a
bisimulation.
e Q- Q' thereis P’ such that P 5 P" and P' ~ Q. Let P+0 -2 P'. Then P - P’ by rule [Sum1] since 0 -2 P’ is
not possible. And P’ R P'.
Graphically, Conversely let P -% P’. Then P +0 -2 P’ by rule [Sum1]. And
Py pr again P’ R P'.

R ‘R

Q- .9‘.> Q/

e P -2 P/ thereis Q' such that Q -5 Q' and P/ ~ Q'.

P+ Q ~ Q+ P. Show following R is a bisimulation. Take
R={P+Q,Q+ P, (P,P)}

Let P+Q % 8.

Exercise 1 Give intuition for Py < P}’ < Py — Case 1: let P+Q — S using [Sum1]. Then P - S.
But Q + P - S using [Sum?2] .

QED since SR S.

(< is strong simulation, i.e. half of strong bisimulation) — Case 2: let P+Q -2 S using [Sum2] . Then Q -2 .

Exercise 3 Show that (va)(P + M) ~ (va)P + (va)M. But @+ P = S using [Sum1].
QED since SR S.

Conversely let Q + P -2+ 5. QED by symmetry.

Exercise 2 Give intuition for Py ~ P}, Py & PY/, Po o Py’

Exercise 4 Show that (va)(P | Q) # (va)P | (va)M.




CCS and strong bisimulation (4/4) | Weak bisimulation (2/2)

Proof of theorem (continued) Exercise 7 Show that = is the semantics induced by observation of
e (P+Q)+R~P+(Q+ R). Show following R is a bisimulation. weak barbs |} a.
Take R={(P+ Q)+ R, P+ (Q+R),(P,P)}.
Let (P+Q)+R -8,
— Case 1: let (P+ Q) - S using [Sum1].
% Case 1.1: let P -2 S using [Sum1] .
Then P+ (Q+ R) - S by [Sum1].
QED since SR S.
% Case 1.2: Let Q -5 S. Then (Q + R) - S by [Sum1], and
P+ (Q+R) - S by [Sum2] .
QED since SR S.
— Case 2: Let R— S by [Sum2]. Then (Q+ R) - S by
[Sum2], and P+ (Q + R) % S by [Sum2] .
QED since SR S.
By symmetry when P+ (Q 4+ R) - S.

e other equations ...

Exercise 6 Give full proof of theorem.

Weak bisimulation (1/2) | Conclusion

Only visible actions are interesting = Skip internal moves — axiomatization of (weak) bisimulations

Definition 8 P =2 Q iff P —* 2L, 22, ... =9 o+ 0  (n>0)

and a = ajas - - - algorithms to compute bisimulations
= -
Definition 9 & is a where 7 has been eliminitated. model checkers for bisimulations

Definition 10 P weakly bisimilar to Q (we write P =~ Q) if whenever temporal logic: Hennessy-Milner logic
e P -2 P’ thereis Q' such that Q N Q' and P' = Q. missing reconfigurable networks of processes

e Q- @, there is P’ such that P =% P’ and P' ~ Q.
- the mw-calculus

Nearly a congruence, except for + (partial commitment problem).

Definition 11 [observation-congruence] P observation-congruent to @
(we write P =~ Q) if, for any a € Act, whenever

e P -5 P/ thereis Q' such that Q = Q' and P/ ~ Q’.
e Q2 Q' there is P’ such that P == P’ and P/ ~ Q'.

(differs from weak bisimulation in first step)




