
.

CIMPA-UNESCO School, Bangalore, 2005:

Models of Concurrency

Jean-Jacques Lévy

INRIA

jeanjacqueslevy.net/cimpa.html

1

.

Semantics

A semantics function [[· · ·]] assigns meaning [[M]] to terms M .

The induced relation ' defined by M ' N iff [[M]] = [[N]] must be:

1. compositional, i.e.

M ' N implies C[M] ' C[N] for any context C[], i.e.

' is a congruence

2. consistent with observation, i.e.

if M produces α and M ' N , then N produces α

3. keeping choices (more specific to non-determinism), i.e.

branching time semantics, i.e.

bisimulation [Milner]

Last item is more ideologic than necessary.

Bisimulation are useful for proofs.

2

.

Examples

• λ-calculus [Church]

M, N ::= x | λx.M | MN

M 'e N iff ∀C[] C[M] −→∗ nf implies C[N] −→∗ nf

M 'w N iff ∀C[] C[M] −→∗ hnf implies C[N] −→∗ hnf

• PCF [Plotkin]

M, N ::= typed λ-calculus + recursion + arithmetic

M 'p N iff ∀C[] C[M] −→∗ n implies C[N] −→∗ n

sequentiality

• Algol

M, N ::= valid Algol programs

M 'p N iff ∀C[] C[M] −→∗ n implies C[N] −→∗ n

• etc

3

.

Concurrency

4

.

Plan

1. Define a calculus for concurrency

2. Define directly semantics equivalence,

instead of providing a semantics function.

3. Define observation

4. Context lemma for congruences

(to reduce the set of contexts to consider)

Unfortunately, there are 2 calculi:

1. CCS, A calculus of communicating systems, [Milner, 80]

2. π-calculus, Communicating and mobile systems: the π-calculus,

[Milner et al, 90]

Fortunately, the π-calculus is strong to express interaction,

and is useful in security.

5

.

Non-determinism

• x is a global variable. At beginning, x = 0

• Consider:

S = [x := 1;]

T = [x := 2;]

After S || T , then x ∈ {1, 2}

• Result is not unique.

• Concurrent programs are not described by functions,

⇒ relations.

6

.

Input-output behaviour

• x is a global variable. At beginning, x = 0

• Consider

S = [x := 1]

T = [x := 0; x := x + 1]

[[S]] and [[T]] same functions on memory state.

• S || S and T || S are different relations on memory state.

⇒ [[S]] 6= [[T]] in any compositional semantics

• Conclusion: Interaction is important.

7

.

Atomicity

• x is a global variable. At beginning, x = 0

• Consider

S = [x := x + 1 || x := x + 1]

After S, then x = 2.

• However if

[x := x + 1] compiled into [A := x + 1; x := A]

• Then

S = [A := x + 1; x := A] || [B := x + 1; x := B]

After S, then x ∈ {1, 2}.

• Conclusion: define atomicity

8

.

Interaction

• A process is an atomic action, followed by a process. Ie.

P ' Null + 2action ×P

Is this equation meaningful?

• Answer: Scott’s domains, denotational semantics.

Remarkable and difficult theory of [Plotkin, 1976]

(powerdomains for Scott’s domains).

• Too difficult theory

Termination

• Concurrent processes are often non terminating.

• An operating system never terminates; same for the software of a

vending machine, or a traffic-light controler, or a human, etc.

• Atomic steps usually terminate.

9

.

Transition Graphs

A transition graph is a triple (P,Act, T) where

• P is the set of processes

• Act is the set of (atomic) actions

• T ⊆ P ×Act × P is the transition relation

10

.

Example (1/3)

A vending machine for coffee/tea. At beginning, P0

P0

.20e
P1

coffee

P2

drink

tea

P3
drink

11

.

Example (2/3)

A different vending machine for coffee/tea. At beginning, P ′
0

P ′
0

.20e

coffee drink

.20e

tea drink

Is this graph equivalent to previous one?

12

.

Example (3/3)

Two new vending machines P ′′
0

and P ′′′
0

P ′′
0

.20e

coffee

drink

.20e

tea

drink

P ′′′
0

.20e

.20e

coffee

drink

tea

drink

Why these graphs are not equivalent to previous ones?

13

.

CCS

14

.

CCS (1/2)

P, Q ::= process
P

i∈I
αi.Pi I finite set guarded sum

P | Q composition

(νa)P restriction

A〈a1, a2, . . . an〉 n ≥ 0 function call

0 =
P

i∈∅ Pi

α ::= a | a guard

a = a

A〈x1, x2, . . . xn〉
def
= P function definition

{x1, x2, . . . xn} = fn(P)

C[] ::= [] | α.C[] + M | (νa)C[] | P | C[] | C[] | Q context

Process α abbreviates process α.0

15

.

CCS (2/2)

P0〈〉
def
= coin.(coffee.drink .P0〈〉 + tea.drink .P0〈〉)

or simply

P0

def
= coin.(coffee.drink .P0 + tea.drink .P0)

P ′
0

def
= coin.P ′

1
P ′

1

def
= coffee.drink .P ′

2
+ tea.drink .P ′

2

P ′
2

def
= coin.P ′

0

P ′′′
0

def
= coin.(coffee.drink .P0 + tea.drink .P0) + coin.0

Drinker
def
= coin.coffee.drink .coin.tea.drink .0

Drinker | P0

Drinker | P ′
0

Drinker | P ′′
0

16

.

Structural equivalence

• monoid laws

P + Q ≡ Q + P

P + (Q + R) ≡ (P + Q) + R

P + 0 ≡ P

P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R

P | 0 ≡ P

• A〈y1, y2, . . . yn〉 ≡ P [y1/x1, y2/x2, . . . yn/xn]

when A〈x1, x2, . . . xn〉
def
= P

• congruence: P ≡ Q ⇒ C[P] ≡ C[Q]

• scope extrusion: (νa)P | Q ≡ (νa)(P | Q) when a 6∈ fn(Q)

• (νa)(νb)P ≡ (νb)(νa)P

• (νa)0 ≡ 0

• α-renaming

17

.

Reduction rules (1/2)

[React] (a.P + M) | (a.Q + N) −→ P | Q

[Par] P −→ P ′

P | Q −→ P ′ | Q
[Res] P −→ P ′

(νa)P −→ (νa)P ′

[Struct]
P ≡−→≡ Q

P −→ Q

18

.

Reduction rules (2/2)

P0

def
= coin.(coffee.drink .P0 + tea.drink .P0)

Drinker
def
= coin.coffee.drink .coin.tea.drink .0

P0 | Drinker

≡

(coin.(coffee.drink .P0 + tea.drink .P0)) | (coin.coffee.drink .coin.tea.drink .0)

−→

(coffee.drink .P0 + tea.drink .P0) | coffee.drink .coin.tea.drink .0

−→

drink .P0 | drink .coin.tea.drink .0

−→

P0 | coin.tea.drink .0

19

.

Semantic equivalences

• R is a congruence:

P R Q ⇒ C[P] R C[Q]

• preserving observation on any α:

P R Q ⇒ (P ↓ α ⇔ Q ↓ α)

where

Definition 1 [barb] P ↓ α iff P ≡ (ν eβ)(α.Q + M | S) where α 6∈ eβ
Definition 2 [weak barb] P ⇓ α iff P −→∗ Q ↓ α

• preserving choices (branching time):

P R Q ∧ P −→ P ′ ⇒ ∃Q′ s.t. Q −→ Q′ ∧ P ′ R Q′

P R Q ∧ Q −→ Q′ ⇒ ∃P ′ s.t. Q −→ Q′ ∧ P ′ R Q′

Such a relation is named a bisimulation

Many recursive definitions. In which order? Are there well-founded?

[Park,Milner] defined bisimulations as maximal fixpoints.

[Fournet,Gonthier] proved order is irrelevant.

20

.

Labelled Transition Systems

Reducing contexts (∼ critical pairs in TRS):

[Act] α.P
α

−→ P

[Sum1] P
α

−→ P ′

P + Q
α

−→ P ′
[Sum2]

Q
α

−→ Q′

P + Q
α

−→ Q′

[Com]
P

a
−→ P ′ Q

a
−→ Q′

P | Q
τ

−→ P ′ | Q′
[Par1] P

α
−→ P ′

P | Q
α

−→ P ′ | Q
[Par2]

Q
α

−→ Q′

P | Q
α

−→ P | Q′

[Res]
P

α
−→ P ′ α 6∈ {a, a}

(νa)P
α

−→ (νa)P ′

[Rec]
P [~a/~x]

α
−→ P ′ A〈~x〉

def
= P

A〈~a〉
α

−→ P ′

Proposition 3 P
τ

−→≡ Q iff P −→ Q

Proposition 4 P ≡
α

−→ Q implies P
α

−→≡ Q

Proposition 5 P
α

−→ Q iff P ↓ α (α 6= τ)

21

.

Strong bisimulation (1/4)

Definition 6 P strongly bisimilar to Q (we write P ∼ Q) if whenever

• P
α

−→ P ′, there is Q′ such that Q
α

−→ Q′ and P ′ ∼ Q′.

• Q
α

−→ Q′, there is P ′ such that P
α

−→ P ′ and P ′ ∼ Q′.

Graphically,

P

R
Â

Â

Â

Â

α
//____ P ′

R

Q
α

// Q′

Exercise 1 Give intuition for P0 . P ′′′
0

. P0

Exercise 2 Give intuition for P0 ∼ P ′
0
, P0 6∼ P ′′

0
, P0 6∼ P ′′′

0

(. is strong simulation, i.e. half of strong bisimulation)

Exercise 3 Show that (νa)(P + M) ∼ (νa)P + (νa)M .

Exercise 4 Show that (νa)(P | Q) 6∼ (νa)P | (νa)M .

22

.

Strong bisimulation (2/4)

Proposition 7 Strong bisimulation is a congruence

P ∼ Q ⇒ C[P] ∼ C[Q]

So ∼ is a semantics for ↓ α (strong observation)

Exercise 5 (difficult) Show that it is the semantics induced by strong

observation.

How to prove previous proposition ?

Typical (co-inductive) proof about bisimulation:

We want to show P ∼ Q.

As ∼ is a maximal fixpoint,

∼ is the the largest relation R

satisfying the fixpoint equations of definition 5;

find R such that P R Q

show it satisfies the fixpoint equations of definition 5,

we say “we show that R is a bisimulation”.

23

.

Strong bisimulation (3/4)

Proof of previous proposition.

• P + 0 ∼ P . Take R = {(P + 0, P), (P, P + 0), (P, P)} and show R is a

bisimulation.

Let P + 0
α

−→ P ′. Then P
α

−→ P ′ by rule [Sum1] since 0
α

−→ P ′ is

not possible. And P ′ R P ′.

Conversely let P
α

−→ P ′. Then P + 0
α

−→ P ′ by rule [Sum1] . And

again P ′ R P ′.

• P + Q ∼ Q + P . Show following R is a bisimulation. Take

R = {P + Q, Q + P, (P, P)}.

Let P + Q
α

−→ S.

– Case 1: let P + Q
α

−→ S using [Sum1] . Then P
α

−→ S.

But Q + P
α

−→ S using [Sum2] .

QED since S R S.

– Case 2: let P + Q
α

−→ S using [Sum2] . Then Q
α

−→ S.

But Q + P
α

−→ S using [Sum1] .

QED since S R S.

Conversely let Q + P
α

−→ S. QED by symmetry.

24

.

CCS and strong bisimulation (4/4)

Proof of theorem (continued)

• (P + Q) + R ∼ P + (Q + R). Show following R is a bisimulation.

Take R = {(P + Q) + R, P + (Q + R), (P, P)}.

Let (P + Q) + R
α

−→ S.

– Case 1: let (P + Q)
α

−→ S using [Sum1] .

∗ Case 1.1: let P
α

−→ S using [Sum1] .

Then P + (Q + R)
α

−→ S by [Sum1] .

QED since S R S.

∗ Case 1.2: Let Q
α

−→ S. Then (Q + R)
α

−→ S by [Sum1] , and

P + (Q + R)
α

−→ S by [Sum2] .

QED since S R S.

– Case 2: Let R
α

−→ S by [Sum2] . Then (Q + R)
α

−→ S by

[Sum2] , and P + (Q + R)
α

−→ S by [Sum2] .

QED since S R S.

By symmetry when P + (Q + R)
α

−→ S.

• other equations . . .

Exercise 6 Give full proof of theorem.

25

.

Weak bisimulation (1/2)

Only visible actions are interesting ⇒ Skip internal moves
τ

−→

Definition 8 P
α

=⇒ Q iff P −→∗ α1−→−→∗ α2−→ · · · −→∗ αn−→−→∗ Q (n ≥ 0)

and α = α1α2 · · ·αn.

Definition 9 bα is α where τ has been eliminitated.

Definition 10 P weakly bisimilar to Q (we write P ≈ Q) if whenever

• P
α

−→ P ′, there is Q′ such that Q
bα

=⇒ Q′ and P ′ ≈ Q′.

• Q
α

−→ Q′, there is P ′ such that P
bα

=⇒ P ′ and P ′ ≈ Q′.

Nearly a congruence, except for + (partial commitment problem).

Definition 11 [observation-congruence] P observation-congruent to Q

(we write P ∼= Q) if, for any α ∈ Act, whenever

• P
α

−→ P ′, there is Q′ such that Q
α

=⇒ Q′ and P ′ ≈ Q′.

• Q
α

−→ Q′, there is P ′ such that P
α

=⇒ P ′ and P ′ ≈ Q′.

(differs from weak bisimulation in first step)

26

.

Weak bisimulation (2/2)

Exercise 7 Show that ∼= is the semantics induced by observation of

weak barbs ⇓ α.

27

.

Conclusion

• axiomatization of (weak) bisimulations

• algorithms to compute bisimulations

• model checkers for bisimulations

• temporal logic: Hennessy-Milner logic

• missing reconfigurable networks of processes

⇒ the π-calculus

28

