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Abstract tocols, expressed using fixed, high-level, ad-hoc message formats,

We consider the problem of specifying and verifying cryptographic rather than the ordered-tree-with-pointers syntax of XML.

security protocols for XML web services. The security specifica- This paper brings these developments together. We introduce a
tion WS-Security describes a range of XML security tokens, such language-based model for XML security protocols, and establish

as username tokens, public-key certificates, and digital signatureprocess calculus techniques for verifying authentication properties
blocks, amounting to a flexible vocabulary for expressing protocols. for a wide class of WS-Security protocols.

To describe the syntax of these tokens, we extend the usual XML

: ; h ; Background: Web Services Security. Web services are a dis-
data mode| V\.”th symboh(_: representations of cryptographlc valyes. ributgd systems technology based gn network endpoints exchang-
We use predicates on this data model to describe the semantics of

security tokens and of sample protocols distributed with the Mi- ng SOAP p] envelopes—XML documents with a mandataryly

. . . - element containing a request, response, or fault element, together
gg;ﬁ:gjiﬁﬂ%};ﬁgf dnlfc:u\/r\ilsetie;gj;;:itg.d E?’C:TEBE (;dl\,r\],g f%urf with an optionalieader element containing routing or security
mulate and prove security properties with respect to the’standardmformatlon.' SOAP allows for network |ntermed|ar|_es—such as
Dolev-Yao threat model. Moreover, we informally discuss issues routers or firewalls—to process an e_nvelppe, by adding or modify-
not addressed by the fo'rmal modeI’ To the best of our knowledge ng headers. E_xamples of WEb Services include _Internet-b_ased Ser-

o . e PR ' vices for ordering books or invoking search engines, and intranet-
this is the first approach to the specification and verification of secu- based services for linking enternrise apolications
rity protocols based on a faithful account of the XML wire format. 9 P pp )
A common technique for securing SOAP exchanges is to rely on a
lower-level secure tunnel between the endpoints, typically an SSL
connection. This works well in many situations, but has the usual
disadvantages of transport-level security: the secrecy or integrity
General Terms: Security, Languages, Theory, Verification of messages can be guaranteed while in the tunnel, but not subse-
quently in files or databases, and they may not match the security re-
quirements of the application. Pragmatically, client authentication
. . . is often performed by the application rather than by SSL. Besides,
1 Motivations and Outline SSL does not fit SOAP’s message-based architecture: intermedi-

Over the past few years, a growing list of specifications has been aries cannot see the contents of the tunnel, and so cannot route or
defining aspects of XML web services. Security is a serious con- filter messages.

cern and is addressed, in particular, by the recent WS-Security specg petter support end-to-end securi2], WS-Security defines
ification [3] This SpeCiﬁcatiOn prOVideS an XML Vocabulary for how to Sign or encrypt SOAP messages without relying on a se-
designing cryptographic protocols, is widely implemented, and is cyre transport. A central—but informal—abstraction isskeurity
undergoing standardization at OASES]. Still, it provides no for- token which covers data making security claims, such as user iden-
mal basis for stating security goals or reasoning about correctnessiifiers, cryptographic keys, or certificates. WS-Security provides a
The trouble is, new cryptographic protocols are often flawed, XML precise syntax for multiple token formats, such as XML username
or no XML. tokens and XML-encoded binary tokens conveying X.509 public-

Meanwhile, there has been a sustained and successful effort to dekey certificates or symmetric keys. It also specifies syntax for ap-
velop formalisms for expressing and verifying cryptographic proto- Plying encryption and signature to selected elements of SOAP mes-
cols ([, 9, 10, 19, 22, 24, 31, 35] etc). Formal methods can verify ~ S29€s. Like many traditional protocol specifications, WS-Security
various security properties against a standard threat model based of€tails message formats—such as the names of XML tags—rather
an opponent able to monitor and manipulate messages sent over théhan security goals and their enforcement, thereby focusing on in-

network. Such verifications are typically of abstract versions of pro- teroperability rather than security. Although it gives a syntax for a
broad range of protocols, WS-Security also emphasizes flexibility,

and does not define any particular protocol. As a result, for each
given WS-Security compliant protocol, security goals still have to
POPL 04 January 14-16, 2004, Venice, Italy. be carefully specified and validated.
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redirect, and transform messages, but who cannot simply guess se
crets. Needham and Schroeder describe such an opponent in thei
pioneering work on cryptographic protoco9]. The first formal-
ization was by Dolev and Yad.p]. A great many formal methods
have been deployed to verify protocols against this threat model,
with particular progress in the past few years.

This paper uses Abadi and Fournet's applied pi calculysl§]

as the underlying specification language for protocols, and relies
on proof techniques from concurrency theory. In this approach,

the opponent is simply an arbitrary context within the calculus; the

scoping rules of the pi calculus ensure that the opponent cannot
learn names representing secrets such as passwords.

We formalize authentication properties using standard correspon-
dence assertion87], as embedded within the pi calculus by Gor-
don and Jeffrey]9]. These assertions are based on two kinds of
events, which can be thought of as logdfile entries by protocol par-
ticipants. A begin-event marks the initiation of a run of a protocol,
while an end-event marks the commitment that a run has correctly
completed. Event labels include data identifying the run, such as
the names of the client and server, message identifier, and payload
A protocol is safe if in every run, every end-event corresponds to
a previous begin-event with the same label. Moreover, a protocol
is robustly safe if it is safe in the presence of an arbitrary oppo-

nent process. Robust safety establishes message authentication, anpda

rules out a range of attacks.

This Paper. We tackle the problem of formal reasoning about
XML-encoded cryptographic protocols. The interest and novelty
in this problem arises not from the XML syntax itself, but from
the need to model low-level detall, in particular, the flexibility and
hierarchical structure of XML signature$7], designed to tolerate
changes to the headers of a SOAP message over its lifetime.

We base our approach on three formalisms: a symbolic syntax for
XML with cryptography and a predicate language for defining ac-
ceptable messages—hboth defined in Seciierand a specialized
version of the applied pi calculus. We explain the purpose of each
of these in turn.

First, to represent XML messages with embedded cryptography,
we enrich the standard XML data model with an abstract syntax
for embedded byte arrays and cryptographic functions. Formally,
we define a many-sorted algebra with sorts for the usual constructs
of XML—strings, attributes, and so on—plus a new sort of sym-
bolic byte arrays, in the style of Dolev and Yao, to represent cryp-
tographic materials embedded in XML.

Second, to define the semantics of security tokens and validity con-
ditions on messages, we introduce a Prolog-like language of predi-
cates on XML data. By insisting on fidelity to the low-level XML
format, we are confronted with the difficulty of defining rather intri-

cate conditions of message acceptability, and hence we need som&

language of predicates on XML. It may be possible to extend some
standard type system or query language for XML (such as DTDs,
XML Schema, or XPath) to express conditions on cryptographic
values. Instead, for the sake of simplicity and being self-contained,

In Section3, given these notations, we formalize the security goals
and message formats of a series of sample protocols. These proto-
cols illustrate a range of WS-Security concepts including message
identifiers, password digests, username tokens, X.509 public-key
certificates, XML signatures based on both password-derived keys
and certificates, and processing by SOAP intermediaries as well as
end-points. For each protocol, we give predicates describing ac-
ceptable messages, and state authentication goals using the usual
message-sequence notation. WS-Security itself defines a formal
syntax for messages, but gives only an informal account of the secu-
rity checks performed by compliantimplementations, as each token
is processed in the SOAP protocol stack. Through formalizing the
series of protocols, we accumulate a collection of re-usable predi-
cates reflecting the semantics of these tokens. Hence, we obtain a
first formal semantics for a significant fragment of WS-Security.

In Section4, we formalize the message-sequence notation within
the applied pi calculus so as to verify our authentication goals. We
explain the structure of the proof of one of the sample protocols
from Section3. The proofs are compositional, and rely on identi-
fying a “trusted computing base” embodying the essential checks
underlying the protocol.

In Section5, we conclude, and discuss related and future work.

A technical report4] provides details omitted in this version of the
per, including sample SOAP messages obtained experimentally
for the protocols of SectioB, a brief overview of the applied pi

calculus calculus, and detailed proof of all our protocols.

Contributions. In summary, we make three main contributions:

(1) A new data model and predicate language for describing
XML-level cryptographic protocols.

Fidelity to the detailed messaging format enables us to ad-
dress its subtleties, such as the interpretation of compound
signatures.

(2) A collection of predicates defining a semantics for the security

tokens of WS-Security and related specifications.

We cover only a substantial fragment of WS-Security, but our
semantics does establish the feasibility of applying our formal
developments to a large class of protocols.

©)

Proofs for a series of concrete protocols drawn from the WSE
distribution.

At an abstract level, the protocols we consider are quite sim-
ple. Still, we have encountered vulnerabilities to XML rewrit-
ing attacks in implementations of these conceptually simple
protocols. So it is worth establishing correctness at this level,
and indeed the formal Dolev-Yao properties are non-trivial.

Symbolic Cryptography in XML

The core of our data model—or abstract syntax—for XML trees is

adapted from Sion and Wadler's grammar for XMIL3f].
XML Data Model: Standard Core

we rely on a fairly standard Horn-clause logic.

Third, to describe complete protocols, we embed these message$tr:string

and predicates within the applied pi calculus. We state and prove

protocol properties against a large class of contexts representing atas: atts

tackers. Applied pi is parameterized in general by an arbitrary equa-
tional theory of terms, which we specialize to our data model for

XML with cryptography. We obtain a calculus expressive enough IEIem

Tag = anyLegalXmlName XML name
=any legal XML string XML string
a:att = Tag="str" attribute
‘=aas|¢ attribute sequence
i:item = Elem| str item
is:items  n=iis|¢€ item sequence
= <Tag asis</Tag> element

to implement our predicates, and to describe complex protocol con-
figurations.

Our data model represents valid, parsed XML. It resembles the
XML infoset recommendationlfl] but with some differences. For



the sake of clarity, we completely suppress information about XML
namespaces, and the documentnl ...> directive. As a minor

technical convenience, we model an element’s attributes as an or-

hmac-shal(key,x: bytes)
pk(Kpriv : bytes)
rsa-shal(X, Kpriy : bytes)

keyed hash
map from private to public key
public key signature

dered sequence rather than a set. (This also reflects the capability x509(s: :bytes, u:string, a:string, Kyyp: bytes)

of an attacker to observe ordering information.)

Our syntax is intentionally close to the standard XML wire for-
mat, but for brevity we rely on three notational conventions. First,
although formally an element’s attributes and bodyis are re-
cursively defined lists, we typically use a standard tuple notation

X.509 certificate

XML string
abstract name (password)
Base64-encoding of byte array
map from password to princi;l)al

str:string :i=
s
base64(x: bytes)
principal(pwd: string)

for fixed-length sequences. Second, instead of writing an element*

<Envelope></Envelope>, say, in full, we drop the tag from the
closing bracket, and simply writeEnvelope></>. Third, when
writing an element that spans several lines, we rely on indentation
(as in Haskell or Python) to delimit the body, and so omit the clos-
ing bracket.

Conventions for Sequences and Elements:
I

a;...an=ay (... (an€)):atts for n> 0; similarly foritems.
- JAN .
<Tag asis</> = <Tag asis</Tag
<Tag as
i
. £ <Tag asiy---in</>
in

Formally, our data model is a many-sorted algebra, based on the
sortsstring, att, atts, item, items, plus a sorbytes for binary data.

We embed this algebra within the applied pi calculus as described
in Section4. The complete algebra is given by the “XML Data
Model” table above plus two more below.

We need the following general definitions. We TetU, V range
over terms of arbitrary sort in the algebra, and wiiitestring, for
example, to mean that belongs to the sortring. Throughout

The exact choice of primitives is a little arbitrary; we include
enough operations here for the protocols of Sec8orThe term
concat(Xy, X2) represents the concatenation of the two arraysnd

X2. The termc14n(i) represents the array obtained by canonical-
izing the XML represented bl according to some standard algo-
rithm [7, 8]. (In fact, for our purposes;14n is simply a way of
symbolically treating an XML item as a byte array; aisn does

not sort attribute lists, for example.) The temf8(str) represents

the UTF8 encoding of the XML stringtr. The termshal(x) repre-
sents the one-way SHAL1 hash of tharray. The ternp-shal(pwd,

salt) represents a key obtained by hashing pinel password and
thesaltarray [L4]. The termhmac-shal(key x) represents a keyed
hash of thex array using the&keyarray as the keyZ3]. The term
pk(Kpriv) represents the public key associated with a private signing
key Koriv. The termrsa-shal(x, Koriv) is a public-key signature of

x under the private kelyriy [21]. The termx509(s,u, a,k) repre-
sents a basic X.509 public-key certificate, wheres the private
signing key of the certifier and, a, k are the signed user name,
algorithm, and key for a given principal. (Such binary certificates
can be embedded as XML items; they are used here to carry public
keys for the asymmetric signing algorithisa-shal.) Finally, the
term principal(pwd) is used to represent a database of user names
associated with secrets, such as passwords, and is explained in Sec-
tion 3.2

we assume that terms, predicates, and equations are WeII-sorted@ur threat model is that SOAP messages may be intercepted, de-

but for the sake of brevity keep the details implicit. In addition to
the syntax defined in this section, terms include sorted variables
XY,z,....We letfv(T) be the set of variables occurring in a tefm

We say a ternT is closedif and only if fv(T) = &. Otherwise, we
say the term iopen—an open term represents a closed term with
some undetermined subterms, represented by the variables. We le
o range over parallel substitutiof® =V} of the termsV for the

variablesX, and we definelom{X = V1) £ {X}. We say that a
substitutiono is closedif and only if o(x) is a closed term for each
x € dom(o). We letV range over vectoryy, ...,V of terms, and

similarly X ranges over vectorsy, ..., X, of variables. We often
treat such vectors as sets.

Next, we extend the standard data model with a symbolic repre-
sentation of cryptography and related operations. We introduce a
sortbytes representing byte arrays, and extesnthg with Base64-
encoded arraysése64(x)). We assume there is an infinite set of
atomic, abstrachames ranged over by. Each name is either of
sortbytes or string. We use these names to represent arbitrary, un-

structured cryptographic materials such as passwords and keys. We

letfn(T) be the set of names occurring in a téfm
XML Data Model: Byte Arrays, Symbolic Cryptography
I

X:bytes ::= byte array (not itself XML)
S abstract name (key, nonce)
concat(Xy, X2 : bytes) array concatenation
cl4n(i:item) canonical bytes of an item

utf8(str: string) UTF8 representation of strings
shal(x:bytes) cryptographic digest
p-shal(pwd:string, salt: bytes) key from salted password

composed, modified, assembled, and replayed by the attalker [
29]. The following selector functions and inverses symbolically
represent the ability of the attacker to decompose messages. It is
deliberate that there are no inverses for the three hash functions
{shal, p-shal, andhmac-shal), and for the public-keypk) and

user namegfincipal) maps; the attacker cannot reverse these one-
way functions.

XML Data Model: Selectors and Inverses
I

byte array
left part of concat
right part ofconcat
inverse ofbase64

X:bytes ;1=
fst(X: bytes)
snd(x: bytes)
i-base64(str: string)
x509-key(cert: bytes) public key in X.509 certificate
check-x509(cert k; : bytes) X.509 certificate verification
check-rsa-shal(x, sig, kpub: bytes) public key verification
str:string ::= XML string
Tagparm(a:att) string param offag-attribute
i-utf8(X: bytes) inverse ofutfg
x509-user(cert: bytes) name in X.509 certificate
x509-alg(cert: bytes) algorithm in X.509 certificate

aatt:i= attribute
hd(as: atts) head of a sequence
as:atts 1= attributes
Tagatt(i :item) attributes ofTag-element
tl(as:atts) tail of a sequence
ilitem = item
hd(is:items) head of a sequence

i-c14n(X:bytes) inverse ofc14n



is:items ;1= items Let p contribute toq if and only if an instancqa(\7) occurs in one
Tagbody(i :item) body of Tag-element of the disjuncts definingl. We stipulate that this relation is well-
ti(is:items) tail of a sequence founded, to avoid recursively-defined predicates. Wevi@b) be

L ! the free variables of all the terms occurringdn and in particular,

Most of these selectors are straightforward inverses with single ar-fyp(v; . Vi) 2 fu(Vy) U--- Uv(Vh). In any clause(x) :- ®,

guments. The two exceptions argeck-x509 andcheck-rsa-shal. we say that each € fv(d) \ X is alocal variable By convention,
The termcheck-x509(cert kq) checks that the certificateert is each occurrence in a clause of the wildcard symbisl short for
signed with a private key associated with the public keyand the only occurrence of a fresh local variable. Local variables are
yields k; if this succeeds. The termheck-rsa-shal(x,sig,Koub) existentially quantified in our semantics; we identify clauses up to

checks that?‘ig is thersa—sh_al signature _013( unde_r thg private K&y  ihe consistent renaming of local variables.
corresponding to the public kéyyp and yieldskoyy if this succeeds. ]
(Some of the inverses, such as the functisngndsnd, would be ISemantlcs of Formulas:= ® wherefv(®) = @
impossible to implement in general, and we do not rely on them to T A —

! e . h L EV=T=(V=T)
program compliant principals; they exist to represent the possibil- A ,
ity of the attacker correctly guessing, for example, how to divide an FUeV=(V=U.. .UV’ P
array obtained by concatenation into its original two halves.) for someUy, ..., Ui, V', withi > 0

~ A T L
We represent evaluation of selectors and inverses by an equivalence),: p(V) = = ®i{x= V}{.Z =U} ~
for somei € 1..nand closed terms

U =V, the least sort-respecting congruence induced by the follow- Wherep(R) 1~ By v -+ v By andz— () \ X

ing axioms. N
E®,Pp= =P andE= Py

Equivalence of Terms of the Data Model:U =V

Ihd(a a9 =a ti(aag = as ' A formula @ is valid if we havel= ®o wheneveifv(®o) = &.
hd(iis) =i ti(iis) = is ' : : _ '
Tagatt(<Tagasis</>) = as i-base64(base64(x)) = X For open formulas, we introduce a logical equivalence.
Tagbody(<Tagasis</>) = is ?'”th(“th(Str.)) =str Logical Equivalence of Formulas:

Tagparm(Tag="str") = str i-cl4n(cl4n(i)) =i I - - - —
fst(concat(xy, X2)) = X1 snd(concat(Xy, X)) = X Two formulas®, @' arelogically equivalentvhen, for all substitu-

x509-user(x509(s,u,a,k)) =u  x509-alg(x509(s;, u,a,k)) = a tions g such thatbg and®'c are closed, we have ®oiff |= @'c.
x509-key(x509(sy,u,a,k)) =k

check-x509(x509(sy, U, a, k), pk(sr)) = pk(sr)

check-rsa-shal(x, rsa-shal (X, Kpriv), Pk(Kpriv)) = pk(Kpriv) 3 Example Protocols

I . ] . This section describes some WS-Security protocols, whose goal is
In the absence of additional equivalences between terms, we im-t5 gythenticate access to a basic web service. We first present a
plicitly assume that our cryptographic operations have no addi- typical (unauthenticated) web service, then successively refine it by

tional interactions. For instance, the hash functisimsl, p-shal, introducing password-based digests, signatures, X.509 certificates,
hmac-shal, andrsa-shal are independent here. This can be infor-  5nq a firewall intermediary. The first four protocols are taken from
mally checked from their cryptographic specificatiots, [14, 23, the samples provided with WSE 1.24; we used the actual SOAP

21], or modelled as a refinement of the term equivalence, a§in [ messages produced by this implementation to experimentally val-

We end this section by defining a logical notation for predicates on idate our model. (The technical report includes sample messages
XML terms. Formally, we present a Horn logic over our many- Produced by WSE.)

sorted algebra, with primitive formulas for equality and list mem- . .

bership, Sut no recurgively-defined predicateqs. Ouyr notation is sim- 31 An (UnaUthentlcated) Web Service

ple, and suffices for reasoning about security; other languages fea\We consider a typical e-commerce website application where cus-
ture more expressive pattern-matching for XML, but their seman- tomers can browse and purchase ite28.[ The orders are stored

tics would be harder to formalize. on a database server, and can be retrieved and viewed on later vis-
its. For security, customers are required to login, with username
and password, before placing and retrieving orders. In addition to
the standard website interface, the server provides a SOAP web ser-
vice GetOrderthat a customer may invoke to retrieve their order in
XML format, to save it as a receipt, for instance. Our aim is to pro-
vide the same level of security for this web service as the website
login.

We assume there is a fixed, finite setédicates ranged over
by p. For each predicatp, we assume there is a single definition
p(X) :- P1V---V Py, where eacld; is aformulg andn > 0. (When
n> 1, we usually present each clays@) : - ®; separately, in the
style of Prolog.) Next, we define the syntax of formulas.

Syntax of Formulas and Predicate Definitions:
I

e formula ; A call to GetOrderconsists of a SOAP request and a SOAP re-
V=T term comparison : . :
. : sponse. We introduce predicates to describe these messages. As a
UeV list membership

X ) first example, a valid SOAP message is an XElvelope, con-
p(V) predicate instance taining aHeader and aBody. The predicatéasBodye,b) below

Dy, Dy conjunction ; ; _
,p()AQ VRIS definijtion of predicate with n > O, tmhﬁg)]Sb is the body of envelope (the wildcard_ matches any
We assume that formulas are well-sorted according to the following hasBodye: item,b : item) : -
rules: inV =T both terms belong to the same sortUre V either e= <Envelope><Header>_</>h</>,

U :item andV : items or U : att andV : atts; in p(V) whenp(X) : - b= <Body _>_</>.
®1V -V @y, the length and sorts &f match the length and sorts
of X. The SOAP request foGetOrderis an envelope, where the body



encodes the parameters of the call. The resulting SOAP responseénclude a username identity together with a digest of a password

has a body containing the order, in XML:

isGetOrde(b : item, Orderld: string) : -
b= <Body _>
<GetOrder>
<orderId>Orderld</>

isGetOrderResponge: item, Orderld: string, u : string) : -
b= <Body _>
<GetOrderResponse>
<orderId>Orderld</>
<date>_</>
<userId>u</>

We suppose there is a single server, identified by the SRiosting
the GetOrderweb service, identified by the URV, and multiple
client computers that may connect $on behalf of users. Here
is a protocol for a client computer, identified by its IP address
to request information about order numligrerld from the web
serviceW on servelS, on behalf of a human user

| -SW e

wherehasBodye, b),isGetOrde(b, Orderld)
S—1 ¢

wherehasBodye', b'),
andisGetOrderResponge, Orderld, u')

e Message 1 is an HTTP POST request to the URLwith
an HTTP headegoaPAction: W, and with the SOAP en-
velopee as its content. The predicatéssBodye b) and
isGetOrde(b, Orderld) specify the behaviour of both client
and server: that is, a client will only send Message 1, and a
server will only accept it, if the messagss a suitably for-
matted request for some ord@rderld. We implicitly specify
that if the server receives a message that does not satisfy thes
predicates, it will reject the message.

Message 1:

Message 2:

Message 2 is the HTTP response, containing the SOAP en-
velope€. The predicatehasBodye,b') and isGetOrder
Responsi’, Orderld, u') constrain the server to send a reply
that concerns the ord@rderld requested in Message 1. In
this first protocol, the usarwhose client computer sends the
request need not be the same as the useho is associated
with the order.

It is not a goal here to fully specify the correct behaviour of ei-
ther client or server. We are only concerned about security prop-
erties, and authentication in particular, and suppress other infor-
mation. For example, we suppress the rest of the response, whic
includes details such as the credit card type, number and expiratio
date, billing and shipping addresses, and the sequence of line item
in the order.

h

n ” X
Jathers all the conditions checked on envelopes received by the

and a fresh timestamp. We assume that each pasqwadis a
shared, unguessable secret betwe@md S, so that onlyu (or S

in principle) can generate a valid digest—this hypothesis excludes
dictionary attacks, for instance. (To justify this assumption, pass-
words need to be strong cryptographic secrets; one might also mod-
ify the protocol to encrypt the digest of a weak password, but we
do not pursue this alternative.) Moreover, as in other applications
of the applied pi calculus, we abstractly relate the password and the
user using the special one-way functiincipal from passwords to
users: we leti stand forprincipal(pwd,).

To model this protocol, we develop predicates for describing WS-
Security headers and embedded username tokens. (Our predicate
definitions are not specific to this protocol, and can be re-used for
any protocol relying on these tokens.) First, we define a predicate to
extract the security tokens from some security header of the enve-
lope: the predicatbasSecurityHeadée, toks) means thatoksis a
sequence of security tokens attached to mesaabee first formula

in the predicate body extracts the list of headéesafers items)

from the envelope. The second formuteaderc headers means
thatheaderis some member of the header list. The third formula
means thaheademust be a security header, and extracts the secu-
rity tokens from it.

hasSecurityHeadée : item, toks: items) : -
e= <Envelope><Header>headers/>_</>,
headere headers
header= <Security>toks/>.

With username tokens, the unique identifier of a message is a pair
(n: bytes,t : string) wheren is a nonce—some byte array—and
t is a timestamp represented as a string. The predisBigest

éJserToke(ttoK u,pwd n,t) means thatok is a username token for

useru with passwordwd, identifier(n,t), and a valid digest.

isDigestUserTokefnok : item, u, pwd: string, n : bytes,t : string) : -
tok = <UsernameToken _>
<Username>U</>
<Password Type="PasswordDigest">base64(d)</>
<Nonce>base64(n)</>
<Created>t</>
u = principal(pwd),
d = shal(concat(n, concat(utf8(t), utf8(pwd)))).

inally, a top-level authentication predicatgsUserTokenDigest

server. hasUserTokenDige& u,pwd n,t,b) means that the enve-
lope e with bodyb contains a valid username token fopwd n,t.

Our predicates express constraints on messages sent and received

by compliant implementations of our protocols. On the sender side,

they express post-conditions for every outgoing message. On the
receiver side, they express pre-conditions that must be checked be-
fore incoming messages are processed. Inthe presence of an active

attacker, it is essential that the receiver dynamically check these
conditions, even if the sender enforces them. Our first protocol
offers no protection against active attacks, since any well-formed
envelope is accepted by the server.

3.2 Password Digest
Username tokens with a cryptographic digest provide a first, basic

hasUserTokenDige@ : item, u, pwd: string,

hasSecurityHeadee,toks),n : bytes,t : string, b : item) : -

utok € toks
isDigestUserTokemutok u, pwd n,t),
hasBodye, b).

The following protocol description includes both SOAP messages
and additional begin- and end-events, in the style of Woo and
Lam [37]. We use these events to express the authentication guar-

mechanism for authenticating web service requests. Such tokensantee obtained by the server from running this protocol.



Event 1:
Message 1:

| logs<Begin>unt</>

| -SW e
wherehasUserTokenDige& u,pwd n,t,b),
andisGetOrde(b, Orderld)
Slogs<End>unt</>

S—1 ¢

wherehasBodye', b'),
andisGetOrderResponge, Orderld, u)

Event 2:
Message 2:

We interpret events in the abstract log as follows: before issuing a
request, the initiator logs its intent as an entgggin>u nt</> that
contains the user nanoeand the message identifier. Conversely, af-
ter checking an envelope, the server legsd>u n t</> to manifest

that it accepts a request with these parameters. In any case, the at-

tacker cannot log entries. Ideally, begin- and end-events should be
in direct correspondence, but this is clearly not the case if the at-
tacker can delete, reorder, or repldy messages. Instead, we have
the following correspondence property:

CLAaim 1. In the presence of an active Dolev-Yao attacker, if
<End>U n t</> is logged by S, therBegin>u n t</> has been
logged by I.

This is a fairly weak authentication property, which can be read
as “if S accepts a request from thenu recently sent some re-
quest”. The two requests are not necessarily the same: for in-
stance, an active attacker can intercept the envelope, modify its
body, and pass it to the server. In many settings, it may be suit-
able to have a richer correspondence betweamd Ss actions,

for example between entrie®egin>u S W n t Orderld/> and
<End>u S W nt Orderld/>.

Although the password digest is optional in WS-Security username
tokens, our claim would clearly not hold if the server accepted
tokens without checking the digest, since the attacker could then
forge a message with any identifigr,t) irrespective of the user’s
requests.

In itself, our protocol does not eliminate replays. (Technically,
our correspondence assertion is non-injective.) However, since the
identifier is authenticated, the application can safely use it to filter
duplicate or expired messages.

3.3 Password-based Signature

In order to achieve more precise authentication properties under the  ;

same assumptions—a shared password betwesgn S—one can
use an XML digital signature on selected elements of the enve-
lope [17]. In addition to the username token, we add a signature
token that signs (for instance) the envelope body, with a signing
key derived from the password and the username token.

A hash-based signature of items ...
roughly pictured as follows.

, Xn using a keyk, may be

<Signature>
<SignedInfo>
<Reference>...hash ofx;...</>

<Reference>...hash ofx,...</>
<SignatureValue>
...hash ofsSignedInfo element with keyk...

See Sectiod.3for a full example of a signed envelope. Next, we
define the additional predicates needed for our modified protocol,
including predicates defining the various parts of a signature.

¢ isUserTokenKeyok, u, pwd n,t,k) means thatok is a user-
name token for usem with passwordowd, unique identifier

(n,t), and derived kek. The key derivation uses @shal
keyed hash salted with the message identifier.

isSigVa(sy si,k, a) means thasvis the digital signature com-
puted on the itensi with key k using algorithma (which for
password-based signaturesisc-shal).

ref(t,r) means that the item is a reference containing the
digest of itemt.  (We use the three wildcardsto match
certain attributes and elements irrelevant to security here.)

e isSigInfasi,a,x1,...,Xn) means that the signed information
si, for signature algorithna, contains a list of references of
which the firstn are for the itemsq, ..., x,. After these refer-
encessi may contain any number of references to other items
(represented in the predicate by an This flexibility in the
predicate enables the client to sign additional items even if not
required by the server (to conform to a uniform send policy,
for example).

e isSignaturésig,a,k,x1,...,Xn) means that the signatusig

signsxy, ..., Xy With algorithma and verification kek.

hasUserSignedBodg, u,pwd n,t,b) is the top-level predi-
cate. It means that the envelopeontains a username token
for u,pwd n;t, and that the body of e is signed by the key
derived from the token.

isUserTokenKeyok : item,u, pwd: string,
n: bytes,t : string,k : bytes) : -

tok= <UsernameToken _>

<Username>U</> _

<Nonce>base64(n)</>

<Created>t</>,
u = principal(pwd),
k = p-shal(pwd concat(n,utf8(t))).

isSigVa(sv: bytes,si: item, K : bytes,a: string) : -
a= hmac-shal,
sv= hmac-shal(k, c14n(si)).

ref(t: item,r : item) : -
I = <Reference _>
_ _ <DigestValue>base64(shal(cl4n(t)))</>.

(for eachn > 1)

isSigInfdsi: item,a: string,X1,...,Xn : item) : -
= <SignedInfo>
_ <SignatureMethod Algorithm="a"></>
r ... M-

ref(x1,r1),...,ref(xn,rn).

isSignaturésig: item,a: string, K : bytes, X1, ...,X, : item) : -
Sig= <Signature>Si <SignatureValue>base64(sV)</>_</>,
isSigInfdsi,a,xq,...,Xn),
isSigVa(svsi,k, a).

hasUserSignedBodg': item, u : string, pwd: string,
n: bytes,t : string,b : item) : -
hasBodye, b),
hasSecurityHeadée, toks),
utok € toks
isUserTokenKeyitok u, pwd n,t, k),
sig € toks
isSignaturésig, hmac-shal,k,b).

The message exchange is much as in Se@&ignwith two differ-
ences: each log entry now containsh t Orderldinstead of just



u n t; we use the top-level predicatesUserSignedBodg, u, pwd,
n,t,b) instead ofhasUserTokenDige&, u, pwd n,t,b). We obtain
a similar, but stronger authentication property:

CLAIM 2. In the presence of an active Dolev-Yao attacker, if
<End>U n t Orderlck/> is logged by S¢Begin>u nt Orderlck/>
has been logged by I.

This claim can be read as “B accepts a request from thenu
recently sent this request”. As before, we can rely on the identifier
(n,t) for replay protection.

We make two observations concerning these predicates. First,
isUserTokenKegoes not check the presence or validity of the op-

tional username token digest. In fact, checking the password digest

would not provide any additional authentication guarantee here.
Conversely, its (potential) occurrence in the envelope slightly com-
plicates our proofs in the next section. Arguably, the initiator should

not include both a digest and a signature, since this may facilitate
a dictionary attack on the password, unless it does not know which
evidence will be considered by the server.

Second, although each referemagpically provides a pointer to the

digested element, either as a fragment URI or as an XPath expres-

sion, we do not rely on this information in tief predicate. Instead,
we check that the actual item we are interested in—the lbedis

targeted by the reference. In general, this approach is preferable,

since it leaves the resolution of pointers outside the trusted com-

e hasPathHeadé€e, ac,to,id,ea et,ei) means that envelope
has a path header with actian, destinatiorto, and message
identifierid in elementsa et, andei, respectively.

e hasx509SignedBods k;,u,ac,to,id,b,ea et ei) is the top-
level predicate. It means that the envelapbas an X.509
token foru certified byk, whose public key signs the bodty
and a path heades et, ei containingac,to, id.

isX509Toke(tok: item, k; : bytes, u: string,a: string, k : bytes) : -
tok= <BinarySecurityToken _>base64(xcert)</>,
check-x509(xcert k) = ki,
u = x509-user(xcert),
a = x509-alg(xcert),
k = x509-key(xcert).

isSigVa(sv: bytes, si: item, K : bytes,a: string) : -
a= rsa-shal,check-rsa-shal(c14n(si),svk) = k.

hasPathHeadde: item,ac,to,id : string,ea et, ei : item) : -
e= <Envelope><Header>headers/>_</>,
headere headers
header= <path _>ea et ef/>,
ea= <action _>ac</>,
et= <to _>to</>,
ei=<id _>id</>.

puting base. Otherwise, one should also carefully check that these hasx509SignedBodly: item, k; : bytes, u,ac, to, id : string,

pointers are well-defined and unambiguous.

Our specification captures the flexibility of WS-Security signatures.
The predicates for key derivatioms{UserTokenKéyare indepen-
dent from those interpreting the signature. So, we can compose
isSignaturewith some other keying material, such as an X.509 cer-
tificate. Similarly, we can support additional algorithms for com-
puting the actual signature by adding alternatives to the predicate
isSigVal—see SectioR.4.

FurthermoreisSignatureallows additional elements of the message

b,eaet, ei:item) : -
hasBodye, b),
hasPathHeadde, ac,to,id, ea et, ei),
hasSecurityHeadée, toks),
xtok e toks
isX509Toke(xtok kr,u, rsa-shal,k),
sig € toks
isSignaturésig, rsa-shal,k,b,ea et ei).

The message exchange for the X.509 signature protocol is al-

to be signed. Signing the username, nonce, or timestamp element$nost the same as the one in Sect®8, with two differences.
is not necessary with this particular signing-key derivation, but is First, the contents of the log entries is nawW S id Orderld
harmless, and becomes necessary with other kinds of keys (see Sedinstead ofu n t Orderld. Second, we use the top-level pred-
tion 3.5). In case there are several actions on the same server, or ificate hasX509SignedBogs k., u,W,S/id,b,ea et,ei) instead of

the same password is shared with two different (honest) servers,
then the path heade§ W) should also be signed (as in the next
section). Otherwise, the attacker might redirect an envelope from
one web service to another.

3.4 X.509 Signature

The next protocol does not depend on password-based authentic
tion. Instead, it uses public-key signatures based on X.509 certifi-
cates. We assume that the usdras a public/private key pair and
keeps the private key secret. We also assumeuthatiS agree on

the public keyk; of some X.509 certification authority, and that this
authority issued only one certificate forwith u's public key.

a’

hasUserSignedBodyVe now obtain the authentication property:

CLAIM 3. In the presence of an active Dolev-Yao attacker, if
<End>u W S id Orderld/> is logged by S, therBegin>u W S
id Orderld</> has been logged by I.

This claim can be read as “Baccepts a request from thenu, at
some point, sent this request$ So by signing the path header,
we obtain an additional authenticity guarantee as regasl-
tended targe{S W), and thus prevent some redirection attacks.
One can easily implement replay protection using the authenticated
message identifier. This supposes that clients do generate globally
unique id’s (although this is not actually required to obtain our cor-
respondence property). Alternatively, one may use a custom unique

In contrast with password-based signatures, X.509 signature tokensgdentifier in the envelope body.
cannot use fragments of the username token as message identi-

fier. Instead, they can sign the globally unique identifier included
in the path header of every SOAP message, as defined in WS-
Routing B0]. This is reflected by the following additional predi-
cates:

e isX509Toke(tok ki, u,a, k) means thatok is a binary token
that contains a certificate509(s, u, a, k) with certifier’s pub-
lic key kr = pk(sr).

e isSigVa(svsi,k,a) is extended with a clause that checks sig-
natures using thesa-shal algorithm.

3.5 Firewall-Based Authentication

By specifying the structure of security tokens, rather than their use,
WS-Security encourages a flexible approach to web service secu-
rity. For instance, a server may naturally accept both password-
based and X.509-based signatures for authentication, leaving that
choice to the client. This flexibility yields useful compositional
properties in our formal developments. For instance, a web service
that runs both protocols is formally equivalent to two web services
in parallel, one for each authentication mechanism.



In this section, we illustrate this flexibility with a different com-  Thus, we obtain the same end-to-end authenticity guarantee as with
posite architecture that chains WS-Security authentication schemeghe password-based signature protocol of Se®i8nbut for a dif-
along a WS-Routing path. In addition to a ser@and a client ferentimplementation that does not requ#te knowu's password.
acting on behalf ofi, we consider an intermediate SOAP-level fire- We prove this claim by composing the correspondence property for
wall F. The firewall holds the password database, and is responsi-the password-based signature in Message 1 with that for the X.509
ble for authenticating access ${and possibly other servers). The signature in Message 2.

clientl sends a&etOrderrequest with a username signature (fpr . ]

to Svia F. The path header indicates Fothat the message is in- 4 A Pi Calculus Semantics

tended forS. The firewallF checks the password-based signature, . . . .

adds a newfirewall header indicating that it has authenticated Ihn qrder tfotk\]/alldai(.e .the tclalmz (.)f Se(t:.t'(ﬁln Wteh S.p‘.ac'f% the lie;
signs the message using its X.509 certificate, and forwards the mes- aviour of the participants (and in particular their implementation

sage t The servechecks the X.509 signature, and thus authen- ?;rp;edé%ag:e;) arsegéz(t:aet?ﬁsolfnt}whee(?arigﬂleudsp;ﬂcrlgluSbr\ll\/ttlemra???jr;;i)n[i-
ticates the original senderwithout knowledge ofr's password. . 9 P : Lo y
tions for processes and their semantics. Here, we use the sorts,

Next, we define (predicates on) the message forwarded by the fire-terms, and equations described in Sectpmwith coercion func-
wall. To indicate to the server that it has checked the credentials of tions from strings to items, and with additional sorts for commu-
the user, the firewall adds a new firewall header containing the user-nication channels7]. We always assume that terms, formulas,
name token, but with the password digest deleted. It then embedsprocesses, and contexts are well-sorted, but usually keep sort infor-
an X.509 signature that includes this header as well. The predicatesmation implicit.

for this message are: This section divides into the following parts. Sectibi describes

o isFirewallHeadeth, u,n,t) means that the envelopes a fire- our computational interpretation of formulas as certain nondeter-
wall header with the username tokem, t. ministic processes in the applied pi calculus. Secfid@introduces

e hasFWHeadde h,u,n,t) means that the envelopehas a formal notions of robust safety—that embedded correspondence as-
firewall headeh with u, n, t. sertions hold in spite of the presence of an attacker—and functional

. . adequacy—that a protocol may run to successful completion in the

e hasX509SignedBodyRevk;, f,u,n,t,b) is the top-level absence of an attacker. Sectiér8 uses these definitions to state

predicate checked by the server. It means that the envelope roqits ahout the username-signing protocol of Secign The-

has a firewall header with,n,t, bodyb, and is signed witha  5rem1 asserts that a process formalizing this protocol is robustly

valid certificate forf issued byk:. safe—our previous claim is a corollary. Moreover, Theot2as-
serts the formalization is functionally adequate. Sectighgives
the structure of our proof for Theoretywhich relies on a decom-
position of the protocol into simpler components.

isFirewallHeadeth : item, u : string, n : bytes,t : string) : -
h=<firewall _>uUtok</>,
utok= <UsernameToken>

<Username>U</> The technical report contains a brief overview of the applied pi cal-
<Nonce>base64(n)</> culus, detailed proofs of these two theorems and of their counter-
<Created>t</>. parts for the other protocols of SectiBnand an account of how to

hasFWHeadee, h: item, u ® string, n ® bytes, : string) : - generalize our results to a situation with multiple servers and users.

€= <Envelope _><Header>headers/>_</>, 4.1 Interpretation of Formulas
h € headers )
isFirewallheadeth, u,n,t). We describe a (partial) implementation of our logic in the applied

pi calculus. We inductively define processes of the ffitrar ¢ —
y in P, where the variableg are bound inP and get assigned to
terms making the formule true. When the formula is an equality

hasX509SignedBodyKer: item, k; : bytes, f,u: string,
hasBodye, b), n: bytes,t : string,b: item) : -

hasFWHeadde, h,u,n,t), V =T we assume that one of the terms is known, and that the other
hasSecurityHeadée,toks), can be treated as a pattern, matching variables to known subterms
xtoke toks in the known term. In the following formal definitions, we always
isX509Tokefxtok k;, f, rsa-shal, p), assume that is the known term, and thatis the pattern, butin our
sig € toks ' example predicates we allow either of the terms to be the pattern.
isSignaturésig, rsa-shal, p,b, h). For a pattern to be implementable, there must be an inverse term for
each bound variable, able to compute the value of the variable from
The protocol involves three messages, as follows: the known term.
Event1: | logs<Begin>unt Orderlck/> Patterns:
. I 1
Messagel: | -FW e The equalityV = T binds variablesy with patternT, written
wherehasUserSignedBodg, u, pwd n,t, b) V=T —§, when (1)y C f(T)\f(V), and (2)T hasinverse

Message2: F —SW ¢

wherehasX509SignedBodyfa, k, f,u,n,t,b) termsS, with fv(S) C {x},wfn(S) = @, and, for all terms/,W, if

andisGetOrdetb, Orderld) V =T{y=Wj}, thenW = S{x=V}. ,
Event2: Slogs<tEnd>u nt Orderlck/>
Message 3: S—1 ¢’ For instance, the patteisase64(y) has inverses = i-base64(x);
wherehasBodye’, b') for all V andW, if V = base64(W) thenW = S{x =V} = i-base64(
andisGetOrderResponge, Orderld, u) base64(W)). On the other hand, the pattestral(y) has no inverse,

CLaiM 4. In the presence of an active Dolev-Yao attacker, if and therefore would not satisfy point (2).

<End>u n t Orderlk/> is logged by S, then  The following table is the partial inductive definition fiter & —
<Begin>u nt Orderlck/> has been logged by I. y in P. If such a process is defined by the following rules, we say



that the formulab is implementablavith bound variable§. When

capture the occurrence of one of these events, we define a notion of

filter @ — yin Pis defined and closed, we intend that it seeks closed observation of messages on free channels. We wxiter (weak)

termsV such that= ®{y =V}, and acts a®{y =V }. We refer to
the technical report for a formal statement of this property.

Formula Implementation: filter ® — ¥ in Pwheny C fv(®)
I

filter V=T —yin P
lety=S{x=V}inif V=T thenP_
whenV =T — y with inverse term$

filterxeVi—xinP
vs,C.(c(x).P | 3(V) | !s(z) filter z=h t — h,t in (t(h) | 5(t)))
whenx ¢ fv(V) and with{s,c} Nfn(P) = &

filter p(V) — yin P ~
VS.(8(€) | MMie1.nS(~ )filter ®i{X=V}—y7inP)
whenp(X) : = @1 V-V P, s¢ fn(P)
and,Vi € 1.n,fv(®;) = XwZz and(fv(V) Ufv(P))

filter 1, P2 —yin P
filter d1 — (YNfv(Pq)) in (filter P2 — (Y\ fv(P1)) in P)

|

NZ=o

WhenV =T —y, with inverse terms filter V=T — yin Pbinds
the variableg/ of the patternT to components of the term, and

observational congruence in applied pi.

Observation: A>a{V)

I

A outputsV on channeb, writtenA>a(V), whenA~aVv) | A'.
|

Much as in Gordon and Jeffrey’s formulation of correspondence
assertions]9], we define safety and robust safety: a process is safe
if every end-event has a matching begin-event, and is robustly safe
if it is safe in the presence of any opponent. We writé for a
series of reduction steps.

Safety and Robust Safety:

A is safeif and only if, wheneverA —* B, B>endV) |mp||es
B>beginV).

Ais robustly saféf and only if, for all evaluation contexts where
Ithe channelbeginandenddo not occurE[A| is safe.

Intuitively, E represents any active attacker (in the applied pi cal-
culus) that controls both the network and the client application be-
haviour, A is the initial configuration of the protocol being con-

sidered, and represents any reachable state of the protocol, after

verifies that hence the pattern matches the term. If so, the matchinterleaving any number of sessions.

succeeds, anB runs. Otherwise, the match fails, and the imple-
mentation deadlocks.

Whenx ¢ fv(V), filter x e V — x in PoutputsV on a fresh channg]

and runs the process(k).filter z=ht+ h,t in (t(h) | 5(t)) which

bindsh =V, andt =V ... V&, providedV =V1 V, ... V€ with

n > 1, then outputé onc, andt on the fresh chann«sl The effect
of this replication is to output each of the terMs ..., V, on the
fresh channet. The process(x).P is the only listener ow; so the
outcome isP{x =V, } for somei € 1..n. If, in fact, V is the empty
list, the implementation deadlocks.

Whenp(X) :- ®1V -V ®y, filter p(V) — ¥ in P generates a sep-
arate process(_).filter ®;{X=V} — ¥,7 in P) for each clause

i € 1..n, wherez are the local variables for clauseWe make an
internal choice of which to run by arranging all to listen on the fresh
channek, on which only a single message is sent.

The implementatiofilter @1, ®, — ¥y in Pworks by evaluatingpy
then®, before runningdP.

As an example, we show an implementatiorhatBodye, b):

filter hasBodye, b) — b in [-]
vs.(s(g) | s(-).

filter e = <Envelope><Header>y1</>b</>—yp,bin
filter b= <Body Yo>Y3</> > Yo,y3in [-])

vs.(s(e) | s(-).

let y; : items = Header.body(hd(Envelope.body(€))) in
let b: item = hd(tl(Envelope.body(e))) in
if @ = <Envelope><Header>y1</> b e</>then

let y» : atts = Body.att(b) in

let y5 : items = Body.body(b) in

if b = <Body y2>y3</> then[-])

4.2 Safety Properties, Functional Properties

To formalize the authenticity properties claimed in Sectipnve

mark the progress of the client and server processes with begin- and

end-events, represented as message outputs on the chidegials
andend respectively. Hence, our authenticity properties become
non-injective correspondence assertic3¥ between messages. To

In addition to security properties such as robust safety, one should
check that the protocol works as intended and may indeed succeed,
at least in the absence of an attacker:

Functlonal Adequacy:

A is functionally adequate for WhenA —* B with B>endV) for

someB. |

The next lemma states that our main security properties can be es-
tablished using the theory of observational equivalence in the ap-
plied pi calculus.

LEMMA 1. Suppose Az B. If A is robustly safe then so is B.
Moreover, if A is functionally adequate for V then so is B.

Moreover, logical equivalence, when lifted to processes, also pre-
serves robust safety.

Logical Equivalence of Processes:

Two processes are logically equivalent when they only differ in their
Ichoices of implementable, logically-equivalent predicates.

LEMMA 2. Logical equivalence preserves robust safety.

4.3 Stating Password-Based Authentication

We are now ready to formulate and prove Cla2mof Section3.3

for envelopes with password-based signatures, with or without a
password digest. (The other claims in the paper are handled simi-
larly.) For the sake of simplicity, we focus on protocol configura-
tions Q with a single useu, with initiator procesd, and a single
servers, that share a secret password with that user, represented as
a restricted namepy,g. The two parts of the protocol also share a
communication channehttp. Sincehttp is not restricted, an envi-
ronment that enclose3 can also read, modify, and write any SOAP
message.

Protocol Configurations: Q (parameterized by Envelopg
I . .

Q VSpwd- ({u = principal (Spwd) } | lu | Su)

Iy linity(n,t, b).(beginu nt b | http(Envelopé)

Thttp(e).filter hasUserSignedBods, u’,spwd, n,t,b)

| —u ntbinendu ntb) |

1>

1>




The initiator, |, repeatedly receives high-level requests on a con- Si 2 <SignedInfo>

trol channeinit,. Using that control channel, the environment can <CanonicalizationMethod Algorithm="cl4n"></>
thus initiate any number of requests on behaltipfor any terms <SignatureMethod Algorithm="hmac-shal"></>
N,T,B. These requests are “genuine”: they are echoed on channel <Reference URI="#body">

begin The process, is also parameterized by a teinvelopehat <Transforms>

determines the actual SOAP envelopes constructed and sent by the <Transform Algorithm="cl4n"></>

initiator. <DigestMethod Algorithm="shal"></>

The server repeatedly receives low-level envelopes on chéttpgl <DigestValue>base64(shal(c14n(b)))</>

filters them using the top-level predicate defined in Se@i8one THEOREM 2. The envelope § with T and S| defined above is
easily checks that this predicate is implementable) and finally sendssafe and, for any ground terms Noytes, T : string, B : item with
a message on chanreidfor each accepted envelope. (More gen- B = <gody Id="body">_</>, the configuratiorinity(N, T, B) | Q

erally, we would represent a server that accepts requests from usersyith that envelope is functionally adequate for the term u N T B.

U, ...,Un as a parallel compositioffic1. n Sy-) Conversely, by Theorert, if we haveifity(N,T,B) | Q —* A and
The scope restriction os,,,g Mmodels our secrecy assumption on Asendu N’ T/ B'), thenu,N’, T/,B' = u,N, T,B.

the password, essentially supposing that it is a strong secret shared

between the initiator and the server and used only in this kind of

envelope. 4.4 Proving Password-Based Authentication
The active substitutiofiu = principal(Spwd) } binds the variable to We present the structure of the proof for TheorgmWe refer to-
the expressioprincipal(Spwg), and exportsi (but notsyyg) to the the technical report for additional lemmas and proofs. An intuition
environment. behind the proof is that the security property relies only on a few

elements in the envelope. For instance, the signature bytes are suffi-
cient for authentication, whereas the other elements in the envelope
only provide the server with (untrusted) hints to verify the signa-

ture. Hence, to establish robust safety, we rely on a stronger, more

Crucially, we do not want our robust safety result to depend on
every detail of the envelope. Instead, we express minimal require-
ments as follows:

ISafe Envelopes: | specific lemma about a core protocol that explicitly deals only with
A safe envelopis a term of the fornEnvelope= T¢ with these bytes.
o _ The proof is in two stages. First, we show how the password-based
¢ = {d __S:al(corr:cel‘t(n’ cr]o'lcat(Uth(t)’Ut:8(spt‘?’g)t)))’ signature protocol can be decomposed into a “core protocol” that
SV=hmac-sha (E_lszlnezs(l?))\?mconca (n,utf8(t))), deals with authentication and an XML wrapper. The XML wrap-

per has no access to the password, and need not be trusted: for-
for some terms T,SI such that spwg ¢ fn(T,SI) and mally, it becomes part of the hostile environment. We show that it
isSigInfqSI, hmac-shal, b) is valid. is enough to prove robust safety for the core protocol (Lemnin

L I the second stage, we prove that the core protocol itself is robustly
To elaborate, as regards safety properttesyelopemay be any safe (Lemma7) by exhibiting an invariant on its reachable states
XML term, as long as the password occurs at most in the digest (Lemmas).

and signature values. Similarly, most of the subterms in the signa- .
ture information are irrelevant for safety, even if they happen to be we decomposehasUserSignedBodg u,pwdn,t,b) — u,n.t,b

signed inS| into two implementable formulas

hasUserSignatureEviden@su, n,t, b, svsi) — u,n,t,b,svsi,

THEOREM 1. For any safe envelope, the configurati@his ro- checkEvidend@ysi, u, pwd n,t,b) s &

bustly safe.
hasUserSignatureEvidengearses the envelope and extracts the
bits that are needed to verify the signature; it has no access to
the password. (We refer to the technical report for details.) All
For functional adequacy, the structure of the envelope is more con-the authentication-related checks are containechgckEvidence

From this theorem and the definitionisfGetOrde(b, orderld), we
easily derive the more specific claim of Sect@®aB.

strained. For exampld, andSI can be instantiated as follows: which is defined as follows:
N checkEvidendsv: bytes, si: item, u, pwd: string,n : bytes,
T = <Envelope> t:string,Xq,...,Xm :item) :—
<Header> isSigInfdsi,hmac-shal,X1,...,Xm),
<Security> u = principal(pwd),
<UsernameToken Id="utoken"> k = p-shal(pwd, concat(n, utf8(t))),
<Username>U</> isSigVa(sv si,k, hmac-shal).
<Password Type="PasswordDigest">
base64(d) We can state the correctness of this decomposition in terms of logi-
<Nonce>base64(n)</> cal equivalence.
fcreated>t</> LeEmMMA 3. The formula hasUserSignedBdeyu, pwd n,t,b)
<Signature> . . " ; ;
sl and its decomposition defined above are logically equivalent.
<SignatureValue>base64(sv)</> Using this decomposition, We.define the core protoco! configuration
<KeyInfo> Q?, a counterpart of) for the simpler predicateheckEvidencthat
<SecurityTokenReference> binds no variables, and for replicated proced§emndS; that com-
<Reference URI="4utoken"></> municate with the environment on channelands, respectively,
b instead of channdittp.
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Core Protocol Configurations: Q°
I o . . o
Q' VSpwd- ({u = principal(spwa) } | 15 | S5 | [-])
I linity(n,t,b).(begiu nt b) | t(d,svSl,u,n,t,b)¢)

Y Is(svsi, U, n,t, b) filter checkEvidence
(svsi,U', Spwd, N, t,b) — @ inendu’ nt b)

[I>

We write Q° for Q°[0] (the initial state of the core protocol).
Lemma4 shows that this core protocol is logically equivalent, un-
der an evaluation context, to the original protocol. This implies that
if Q° is robustly safe, soig.

LEMMA 4 (XML/CoORE). For any safe envelope, there exists an
evaluation context g[-] where the names begin, end do not oc-
cur and a process)°* logically equivalent toQ such thatQ® =~

EqlQ’]-

To prove robust safety for the core protocol, we first define the valid

5 Conclusions and Future Work

In this paper, we introduced a framework for reasoning about the
security of SOAP protocols and their cryptographic implementa-
tions in terms of WS-Security tokens. We illustrated our framework
using a series of simple authentication protocols. Surprisingly, per-
haps, these XML-based protocols can be studied at the same (syn-
tactic) level of abstraction:

e formally, using a faithful, predicate-based implementation in
the applied pi calculus with proofs of correspondence proper-
ties against a Dolev-Yao adversary;

e experimentally, using sample programs and SOAP traces on
top of the WSE toolkit 26).
This should provide a principled basis for testing compliant imple-
mentations, and also reduce the risk of attacks in concrete refine-
ments of correct, abstract protocols.

As can be expected, this also complicates the formal model, with

states of the core protocol in an evaluation context. Valid states arefor example a large syntax and equational theory for terms in the

our correctness invariant. They describe protocol states reachabl
from Q° in which no secrets have been leaked and only message
sent by the client have been accepted by the server.

Valid States for the Core Protocol:

I(1) ¢; is adapted fromp in the definition of safe envelopes with
variablesd;, sv, n;, tj, bj and termSi instead ofd, svn,t,b andSl.

(2) A session states a process of the for@; = begin(u n t; b;) |

¢; | J where J; is any parallel composition of processes from
{endu n t b))} uP{endu n t; b))} UB{} (with free variables
ni,ti, by and defined variabled;, sv). (The operatogp represents
internal choice over a set of processes.)

(3) Aninternal stateis a parallel composition of session stafes
[Mi<nGi, for somen > 0.

(4) A valid stateis a closed process of the forn= E[Q °[C]] where
E[-] is an evaluation context whebeginandenddo not occur and
Cis aninternal state.

For a given internal stat€, let oc be the (ordinary) substitution
obtained by composingu = principal(spwg) } and eachp; for i =
0...n—1. By definition, the frame obtained fro@°[C], which
represents the attacker's knowledge alspyt, is ¢c = VSpwd.Oc.

The next lemma states that if a message is received in a valid stat
of the protocol, and it satisfies the predicateeckEvidencehen it
must have been sent by the client.

LEMMA 5 (checkEvidences SAFE). Let C be an internal state
with n> 0 sessions. Let’ be a substitution that ranges over open
terms where the name,g does not appear such that= o’ | oc

is closed.

If |= checkEvidendsysi, U, spwg,n,t,b)o, then there exists& n
such that(u’, sy si,n,t,b = u,sv, Sk, n;, i, bj)o.

eapplied pi calculus. However, our experience suggests that a mod-

sular definition of predicates, together with standard compositional
techniques in the pi calculus, should enable a good reuse of the
proof effort for numerous WS-Security protocols.

Our choice of authentication protocols stresses that small varia-
tions in WS-Security envelope formats may lead to much weaker
correspondence properties. Each service should therefore clearly
prescribe (and enforce) the intended property. Specifically, a pru-
dent practice in the selection of XML signatures is to request that
all potentially relevant headers be jointly authenticated—not just
the message identifier or its body. In the case authentication relies
on username tokens, this strongly suggests the use of a signature
instead of a digest. Moreover, XML signatures have a complex
structure, which should be used with caution. Specifically, authen-
tication should not rely on signed elements whose interpretation
depends on an unsigned context.

Related Work. There have been many formal studies of remote
procedure call (RPC) security mechanisms. The earliest we are
aware of is the formalization within the BAN logi@] of Secure
RPC B3] in the Andrew distributed computing environment. More
recently, process calcul2] have been used to formalize the secure
dmplementation of programming abstractions such as communica-
tion channels and network objec&q].

We are aware of very little prior formal work on XML security pro-
tocols. Gordon and Pucell2(] implement and verify attribute-
driven SOAP-level security protocols, but do not use the WS-Secu-
rity syntax. Their representation of SOAP messages abstracts many
details of the XML wire format, and hence would be blind to any
errors in the detailed structure of names or signatures. Daraiani

al. [12] describe an access control model for SOAP messages, but
rely on a secure transport rather than WS-Security; a subsequent

Using this lemma, we can show that all reachable configurations of Paper [L3] discusses connections between SOAP security and au-

the core protocol are valid states.

LEMMA 6 (INVARIANT LEMMA). If A is a valid state and A~
T then T~ A’ for some valid state’A

As a corollary, we can show robust safety for the core protocol.
LEMMA 7 (COREROBUSTSAFETY). Q? is robustly safe.

Theoreml follows as a corollary. By Lemmd, Q° is robustly
safe (RS). By Lemmd, Q* ~ Eq[Q’°] and, by hypothesis 0B,
Eq[Q’°] is RS. By Lemmal, Q° is RS. Finally,Q* is logically
equivalent toQ, and thus, by Lemm3, Q is RS.
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thorization languages such as SAML and XACML.

Future Work. Our approach to authenticity properties should eas-
ily extend to complementary security properties, such as secrecy
and anonymity. Similarly, we should be able to deal with more
complex protocols (with series of related messages) and configura-
tions (with more principals and roles). Our predicate structure is
quite modular, with predicates being re-used in different protocols.
Hence, we are hopeful that the method will scale up. Moreover,
our semantics appears to be suitable for automation, and we are
investigating how to automate the proofs using Blanchet's recent
logic-based tool for applied p8].



At this stage, we are exploring the range of WS-Security protocols, [17]
rather than attempting its thorough description. Our fragment of

WS-Security omits certain features such as Kerberos tokens and

encryption but we see no fundamental barrier to modelling all of
WS-Security.

Finally, although all the protocols are implemented using WSE, our
goal has not been to verify the WSE implementation itself. Still, we
are investigating ways of verifying at least parts of that implemen-
tation by relating it to our semantics.

Acknowledgements. We thank Tony Hoare, Riccardo Pucella, and
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Appendix: The Applied Pi Calculus (Overview) Further, we extend processes wétttive substitutions

The applied pi calculus is a simple, general extension of the pi cal- Grammar for Extended Processes:

culus with value passing, primitive fur_wtion symb(_)ls, and equations IA, B,C,I,K,S:= extended processes
between terms. Abadi and Fourné},[introduce this calculus, de- plain process

yelop semantics and proof techniques, and apply those te(_:hni_ques AlB parallel composition
in reasoning about some security protocols. This appendix gives

: . - Vn.A name restriction
only a brief overview derived fromlg]. VSA variable restriction
In the applied pi calculus, the constructs of the classic pi calculus | x=T} active substitution

can be used to represent concurrent systems that communicate on
channels, and function symbols can be used to represent crypto-
graphic operations and other operations on data. Large classes o
important attacks can also be expressed in the applied pi calculus
as contexts. These include the typical attacks for which a symbolic,
mostly “black-box” view of cryptography suffices (but not for ex-
ample some lower-level attacks that depend on timing behaviour
or dictionary attacks). Some of the properties of the protocol can
be nicely captured in the form of equivalences between processes
Moreover, some of the properties are sensitive to the equations sat
isfied by the cryptographic functions upon which the protocol re-
lies. The applied pi calculus is well-suited for expressing those
equivalences and those equations.

e write {x = T} for the substitution that replaces the variakle

ith the termT. The substitutiox = T} typically appears when

the termT has been sent to the environment, but the environment
may not have the atomic names that appedr;ithe variablex is

just a way to refer td in this situation. The substitutiofx =T}

is active in the sense that it “floats” and applies to any process that
comes into contact with it. In order to control this contact, we may
add a variable restrictiorux.({x =T} | P) corresponds exactly to

let x=T in P. Although the substitutiofx = T} concerns only

one variable, we can build bigger substitutions by parallel compo-
sition. We always assume that our substitutions are cycle-free. We
also assume that, in an extended process, there is at most one substi-
Abstractly, asignatureZ consists of a finite set of function sym-  tution for each variable, and there is exactly one when the variable
bols, such asoncat andshal, each with an integer arity. Given a s restricted.

signaturex, an infinite set of names, and an infinite set of variables,

the set otermsis defined by the grammar: A frameis an extended process built up from active substitutions by

parallel composition and restriction. Informally, frames represent

IGrammar for Terms: : the static knowledge gathered by the environment after communi-

T,U,V,SI,Envelope:= terms cations with an extended process. évaluation context ] is an
begin end http, init, c,s name (for channels) extended process with a hole in the place of an extended process.
Spwds S+ Su name (for secrets) As usual, names and variables have scopes, which are delimited by
pwas ~x - - - .
b,e,n,xy,t,u variable restrictions and by inputs. Whex is any expressionfy(X) and
f(To,....T) function application fn(X) are the sets of free variables and free nameX,ofespec-

L I tively.

where f ranges over the function symbols Bfandl matches the
arity of f. We use metavariablesandw to range over both names
and variables.

We rely on a sort system for terms and extended proce$s&e¢-

tion 2]. We always assume that terms and extended processes are
well-sorted and that substitutions and context applications preserve
The grammar foprocessess similar to the one in the pi calcu-  sorts.

lus, except that here messages can contain terms (rather than onl

names) and that names need not be just channel names: Given a sighatur&, we equip it with an equational theory (that is,

with an equivalence relation on terms with certain closure proper-
Grammar for Processes: ties). We write simplyJ =V to mean the termd andV are related
by the equational theory associated with

I 1

PQR:= processes (or plain processes)
0 null process Structural equivalenceswritten A = B, relate extended processes
P|Q parallel composition that are equal by any capture-avoiding rearrangements of parallel
P replication compositions, restrictions, and active substitutions, and by equa-
vs.P name restriction (“new”) tional rewriting of any terms in processes.
if U=V then P else Q conditional Reductionswritten A — B, represent steps of computation (in par-
Y(X)-P message input ticular, internal message transmissions and branching on condition-

(TP message output , als). Reductions are closed by structural equivalence, hence by

equational rewriting on terms.
The null proces® does nothingP | Q is the parallel composition of
P andQ; the replication P behaves as an infinite number of copies
of P running in parallel. The process.P makes a new nansthen
behaves aP. The conditional construdt U =V then P else Qs
standard, but we should stress thlat- V represents equality in the
equational theory, rather than strict syntactic identity. We abbrevi-
ate itif U =V then PwhenQis 0. Finally, the input procesgx).P
is ready to input from channe| then to runP with the actual mes-
sage replaced for the formal parametewhile the output process
V(T).P is ready to output messadeon channeb, then to runP.
In both of these, we may omR when it is0. WhenX is a set of
processe$P, | i € |} indexed by some finite sét= {iy,...,in}, we
write [Tie) X as an abbreviation fd®, | ... | R, | O.

Observational equivalencgsvritten A =~ B, relate extended pro-
cesses that cannot be distinguished by any evaluation context in the
applied pi calculus, with any combination of messaging and term
comparisons. (We let: be the largest weak bisimulation on ex-
tended processes for reductions that preserves all potential obser-
vation of input or output on free names and that is closed by ap-
plication of evaluation contextd].) The applied pi calculus has a
useful, general theory—parameterized>gnd its equational the-

ory [1]—of observational equivalence.

13



	Motivations and Outline
	Symbolic Cryptography in XML
	Example Protocols
	An (Unauthenticated) Web Service
	Password Digest
	Password-based Signature
	X.509 Signature
	Firewall-Based Authentication

	A Pi Calculus Semantics
	Interpretation of Formulas
	Safety Properties, Functional Properties
	Stating Password-Based Authentication
	Proving Password-Based Authentication

	Conclusions and Future Work
	References

