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Abstract
We consider the problem of specifying and verifying cryptographic
security protocols for XML web services. The security specifica-
tion WS-Security describes a range of XML security tokens, such
as username tokens, public-key certificates, and digital signature
blocks, amounting to a flexible vocabulary for expressing protocols.
To describe the syntax of these tokens, we extend the usual XML
data model with symbolic representations of cryptographic values.
We use predicates on this data model to describe the semantics of
security tokens and of sample protocols distributed with the Mi-
crosoft WSE implementation of WS-Security. By embedding our
data model within Abadi and Fournet’s applied pi calculus, we for-
mulate and prove security properties with respect to the standard
Dolev-Yao threat model. Moreover, we informally discuss issues
not addressed by the formal model. To the best of our knowledge,
this is the first approach to the specification and verification of secu-
rity protocols based on a faithful account of the XML wire format.

Categories and Subject Descriptors:F.3.2 [Theory of Computa-
tion]: Logics and meanings of programs—Semantics of Program-
ming Languages

General Terms: Security, Languages, Theory, Verification

Keywords: Web Services, Applied Pi Calculus, XML Security

1 Motivations and Outline
Over the past few years, a growing list of specifications has been
defining aspects of XML web services. Security is a serious con-
cern and is addressed, in particular, by the recent WS-Security spec-
ification [3]. This specification provides an XML vocabulary for
designing cryptographic protocols, is widely implemented, and is
undergoing standardization at OASIS [28]. Still, it provides no for-
mal basis for stating security goals or reasoning about correctness.
The trouble is, new cryptographic protocols are often flawed, XML
or no XML.

Meanwhile, there has been a sustained and successful effort to de-
velop formalisms for expressing and verifying cryptographic proto-
cols ([5, 9, 10, 19, 22, 24, 31, 35] etc). Formal methods can verify
various security properties against a standard threat model based on
an opponent able to monitor and manipulate messages sent over the
network. Such verifications are typically of abstract versions of pro-
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tocols, expressed using fixed, high-level, ad-hoc message formats,
rather than the ordered-tree-with-pointers syntax of XML.

This paper brings these developments together. We introduce a
language-based model for XML security protocols, and establish
process calculus techniques for verifying authentication properties
for a wide class of WS-Security protocols.

Background: Web Services Security. Web services are a dis-
tributed systems technology based on network endpoints exchang-
ing SOAP [6] envelopes—XML documents with a mandatoryBody
element containing a request, response, or fault element, together
with an optionalHeader element containing routing or security
information. SOAP allows for network intermediaries—such as
routers or firewalls—to process an envelope, by adding or modify-
ing headers. Examples of web services include Internet-based ser-
vices for ordering books or invoking search engines, and intranet-
based services for linking enterprise applications.

A common technique for securing SOAP exchanges is to rely on a
lower-level secure tunnel between the endpoints, typically an SSL
connection. This works well in many situations, but has the usual
disadvantages of transport-level security: the secrecy or integrity
of messages can be guaranteed while in the tunnel, but not subse-
quently in files or databases, and they may not match the security re-
quirements of the application. Pragmatically, client authentication
is often performed by the application rather than by SSL. Besides,
SSL does not fit SOAP’s message-based architecture: intermedi-
aries cannot see the contents of the tunnel, and so cannot route or
filter messages.

To better support end-to-end security [32], WS-Security defines
how to sign or encrypt SOAP messages without relying on a se-
cure transport. A central—but informal—abstraction is thesecurity
token, which covers data making security claims, such as user iden-
tifiers, cryptographic keys, or certificates. WS-Security provides a
precise syntax for multiple token formats, such as XML username
tokens and XML-encoded binary tokens conveying X.509 public-
key certificates or symmetric keys. It also specifies syntax for ap-
plying encryption and signature to selected elements of SOAP mes-
sages. Like many traditional protocol specifications, WS-Security
details message formats—such as the names of XML tags—rather
than security goals and their enforcement, thereby focusing on in-
teroperability rather than security. Although it gives a syntax for a
broad range of protocols, WS-Security also emphasizes flexibility,
and does not define any particular protocol. As a result, for each
given WS-Security compliant protocol, security goals still have to
be carefully specified and validated.

Background: Security Protocol Verification. This paper ad-
dresses authentication properties of XML-based security protocols
against a standard threat model: an opponent able to read, replay,

1



redirect, and transform messages, but who cannot simply guess se-
crets. Needham and Schroeder describe such an opponent in their
pioneering work on cryptographic protocols [29]. The first formal-
ization was by Dolev and Yao [15]. A great many formal methods
have been deployed to verify protocols against this threat model,
with particular progress in the past few years.

This paper uses Abadi and Fournet’s applied pi calculus [1, 18]
as the underlying specification language for protocols, and relies
on proof techniques from concurrency theory. In this approach,
the opponent is simply an arbitrary context within the calculus; the
scoping rules of the pi calculus ensure that the opponent cannot
learn names representing secrets such as passwords.

We formalize authentication properties using standard correspon-
dence assertions [37], as embedded within the pi calculus by Gor-
don and Jeffrey [19]. These assertions are based on two kinds of
events, which can be thought of as logfile entries by protocol par-
ticipants. A begin-event marks the initiation of a run of a protocol,
while an end-event marks the commitment that a run has correctly
completed. Event labels include data identifying the run, such as
the names of the client and server, message identifier, and payload.
A protocol is safe if in every run, every end-event corresponds to
a previous begin-event with the same label. Moreover, a protocol
is robustly safe if it is safe in the presence of an arbitrary oppo-
nent process. Robust safety establishes message authentication, and
rules out a range of attacks.

This Paper. We tackle the problem of formal reasoning about
XML-encoded cryptographic protocols. The interest and novelty
in this problem arises not from the XML syntax itself, but from
the need to model low-level detail, in particular, the flexibility and
hierarchical structure of XML signatures [17], designed to tolerate
changes to the headers of a SOAP message over its lifetime.

We base our approach on three formalisms: a symbolic syntax for
XML with cryptography and a predicate language for defining ac-
ceptable messages—both defined in Section2—and a specialized
version of the applied pi calculus. We explain the purpose of each
of these in turn.

First, to represent XML messages with embedded cryptography,
we enrich the standard XML data model with an abstract syntax
for embedded byte arrays and cryptographic functions. Formally,
we define a many-sorted algebra with sorts for the usual constructs
of XML—strings, attributes, and so on—plus a new sort of sym-
bolic byte arrays, in the style of Dolev and Yao, to represent cryp-
tographic materials embedded in XML.

Second, to define the semantics of security tokens and validity con-
ditions on messages, we introduce a Prolog-like language of predi-
cates on XML data. By insisting on fidelity to the low-level XML
format, we are confronted with the difficulty of defining rather intri-
cate conditions of message acceptability, and hence we need some
language of predicates on XML. It may be possible to extend some
standard type system or query language for XML (such as DTDs,
XML Schema, or XPath) to express conditions on cryptographic
values. Instead, for the sake of simplicity and being self-contained,
we rely on a fairly standard Horn-clause logic.

Third, to describe complete protocols, we embed these messages
and predicates within the applied pi calculus. We state and prove
protocol properties against a large class of contexts representing at-
tackers. Applied pi is parameterized in general by an arbitrary equa-
tional theory of terms, which we specialize to our data model for
XML with cryptography. We obtain a calculus expressive enough
to implement our predicates, and to describe complex protocol con-
figurations.

In Section3, given these notations, we formalize the security goals
and message formats of a series of sample protocols. These proto-
cols illustrate a range of WS-Security concepts including message
identifiers, password digests, username tokens, X.509 public-key
certificates, XML signatures based on both password-derived keys
and certificates, and processing by SOAP intermediaries as well as
end-points. For each protocol, we give predicates describing ac-
ceptable messages, and state authentication goals using the usual
message-sequence notation. WS-Security itself defines a formal
syntax for messages, but gives only an informal account of the secu-
rity checks performed by compliant implementations, as each token
is processed in the SOAP protocol stack. Through formalizing the
series of protocols, we accumulate a collection of re-usable predi-
cates reflecting the semantics of these tokens. Hence, we obtain a
first formal semantics for a significant fragment of WS-Security.

In Section4, we formalize the message-sequence notation within
the applied pi calculus so as to verify our authentication goals. We
explain the structure of the proof of one of the sample protocols
from Section3. The proofs are compositional, and rely on identi-
fying a “trusted computing base” embodying the essential checks
underlying the protocol.

In Section5, we conclude, and discuss related and future work.

A technical report [4] provides details omitted in this version of the
paper, including sample SOAP messages obtained experimentally
for the protocols of Section3, a brief overview of the applied pi
calculus calculus, and detailed proof of all our protocols.

Contributions. In summary, we make three main contributions:

(1) A new data model and predicate language for describing
XML-level cryptographic protocols.

Fidelity to the detailed messaging format enables us to ad-
dress its subtleties, such as the interpretation of compound
signatures.

(2) A collection of predicates defining a semantics for the security
tokens of WS-Security and related specifications.

We cover only a substantial fragment of WS-Security, but our
semantics does establish the feasibility of applying our formal
developments to a large class of protocols.

(3) Proofs for a series of concrete protocols drawn from the WSE
distribution.

At an abstract level, the protocols we consider are quite sim-
ple. Still, we have encountered vulnerabilities to XML rewrit-
ing attacks in implementations of these conceptually simple
protocols. So it is worth establishing correctness at this level,
and indeed the formal Dolev-Yao properties are non-trivial.

2 Symbolic Cryptography in XML
The core of our data model—or abstract syntax—for XML trees is
adapted from Siḿeon and Wadler’s grammar for XML [34].

XML Data Model: Standard Core

Tag ::= anyLegalXmlName XML name
str:string ::= any legal XML string XML string
a:att ::= Tag="str" attribute
as:atts ::= a as| ε attribute sequence
i : item ::= Elem| str item
is: items ::= i is | ε item sequence
Elem ::= <Tag as>is</Tag> element

Our data model represents valid, parsed XML. It resembles the
XML infoset recommendation [11] but with some differences. For
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the sake of clarity, we completely suppress information about XML
namespaces, and the document<?xml ...> directive. As a minor
technical convenience, we model an element’s attributes as an or-
dered sequence rather than a set. (This also reflects the capability
of an attacker to observe ordering information.)

Our syntax is intentionally close to the standard XML wire for-
mat, but for brevity we rely on three notational conventions. First,
although formally an element’s attributesas and bodyis are re-
cursively defined lists, we typically use a standard tuple notation
for fixed-length sequences. Second, instead of writing an element
<Envelope></Envelope>, say, in full, we drop the tag from the
closing bracket, and simply write<Envelope></>. Third, when
writing an element that spans several lines, we rely on indentation
(as in Haskell or Python) to delimit the body, and so omit the clos-
ing bracket.

Conventions for Sequences and Elements:

a1 . . . an
4= a1 (. . . (an ε)) :atts for n≥ 0; similarly for items.

<Tag as>is</>
4= <Tag as>is</Tag>

<Tag as>
i1...
in

 4= <Tag as>i1 · · · in</>

Formally, our data model is a many-sorted algebra, based on the
sortsstring, att, atts, item, items, plus a sortbytes for binary data.
We embed this algebra within the applied pi calculus as described
in Section4. The complete algebra is given by the “XML Data
Model” table above plus two more below.

We need the following general definitions. We letT, U , V range
over terms of arbitrary sort in the algebra, and writeT : string, for
example, to mean thatT belongs to the sortstring. Throughout
we assume that terms, predicates, and equations are well-sorted,
but for the sake of brevity keep the details implicit. In addition to
the syntax defined in this section, terms include sorted variables,
x,y,z, . . . .We letfv(T) be the set of variables occurring in a termT.
We say a termT is closedif and only if fv(T) = ∅. Otherwise, we
say the term isopen—an open term represents a closed term with
some undetermined subterms, represented by the variables. We let
σ range over parallel substitutions{x̃ = Ṽ} of the termsṼ for the

variablesx̃, and we definedom({x̃ = Ṽ}) 4= {x̃}. We say that a
substitutionσ is closedif and only if σ(x) is a closed term for each
x∈ dom(σ). We letṼ range over vectorsV1, . . . ,Vn of terms, and
similarly x̃ ranges over vectorsx1, . . . , xn of variables. We often
treat such vectors as sets.

Next, we extend the standard data model with a symbolic repre-
sentation of cryptography and related operations. We introduce a
sortbytes representing byte arrays, and extendstring with Base64-
encoded arrays (base64(x)). We assume there is an infinite set of
atomic, abstractnames, ranged over bys. Each name is either of
sortbytes or string. We use these names to represent arbitrary, un-
structured cryptographic materials such as passwords and keys. We
let fn(T) be the set of names occurring in a termT.

XML Data Model: Byte Arrays, Symbolic Cryptography

x:bytes ::= byte array (not itself XML)
s abstract name (key, nonce)
concat(x1,x2 :bytes) array concatenation
c14n(i : item) canonical bytes of an item
utf8(str:string) UTF8 representation of strings
sha1(x:bytes) cryptographic digest
p-sha1(pwd:string,salt:bytes) key from salted password

hmac-sha1(key,x:bytes) keyed hash
pk(kpriv :bytes) map from private to public key
rsa-sha1(x,kpriv :bytes) public key signature
x509(sr :bytes,u:string,a:string,kpub:bytes)

X.509 certificate

str:string ::= XML string
s abstract name (password)
base64(x:bytes) Base64-encoding of byte array
principal(pwd:string) map from password to principal

The exact choice of primitives is a little arbitrary; we include
enough operations here for the protocols of Section3. The term
concat(x1,x2) represents the concatenation of the two arraysx1 and
x2. The termc14n(i) represents the array obtained by canonical-
izing the XML represented byi, according to some standard algo-
rithm [7, 8]. (In fact, for our purposes,c14n is simply a way of
symbolically treating an XML item as a byte array; ourc14n does
not sort attribute lists, for example.) The termutf8(str) represents
the UTF8 encoding of the XML stringstr. The termsha1(x) repre-
sents the one-way SHA1 hash of thex array. The termp-sha1(pwd,
salt) represents a key obtained by hashing thepwd password and
thesalt array [14]. The termhmac-sha1(key,x) represents a keyed
hash of thex array using thekeyarray as the key [23]. The term
pk(kpriv) represents the public key associated with a private signing
key kpriv. The termrsa-sha1(x,kpriv) is a public-key signature of
x under the private keykpriv [21]. The termx509(sr ,u,a,k) repre-
sents a basic X.509 public-key certificate, wheresr is the private
signing key of the certifier andu, a, k are the signed user name,
algorithm, and key for a given principal. (Such binary certificates
can be embedded as XML items; they are used here to carry public
keys for the asymmetric signing algorithmrsa-sha1.) Finally, the
term principal(pwd) is used to represent a database of user names
associated with secrets, such as passwords, and is explained in Sec-
tion 3.2.

Our threat model is that SOAP messages may be intercepted, de-
composed, modified, assembled, and replayed by the attacker [15,
29]. The following selector functions and inverses symbolically
represent the ability of the attacker to decompose messages. It is
deliberate that there are no inverses for the three hash functions
(sha1, p-sha1, and hmac-sha1), and for the public-key (pk) and
user name (principal) maps; the attacker cannot reverse these one-
way functions.

XML Data Model: Selectors and Inverses

x:bytes ::= byte array
fst(x:bytes) left part ofconcat
snd(x:bytes) right part ofconcat
i-base64(str:string) inverse ofbase64
x509-key(cert:bytes) public key in X.509 certificate
check-x509(cert,kr :bytes) X.509 certificate verification
check-rsa-sha1(x,sig,kpub:bytes) public key verification

str:string ::= XML string
Tag.parm(a:att) string param ofTag-attribute
i-utf8(x:bytes) inverse ofutf8
x509-user(cert:bytes) name in X.509 certificate
x509-alg(cert:bytes) algorithm in X.509 certificate

a:att ::= attribute
hd(as:atts) head of a sequence

as:atts ::= attributes
Tag.att(i : item) attributes ofTag-element
tl(as:atts) tail of a sequence

i : item ::= item
hd(is: items) head of a sequence
i-c14n(x:bytes) inverse ofc14n
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is: items ::= items
Tag.body(i : item) body ofTag-element
tl(is: items) tail of a sequence

Most of these selectors are straightforward inverses with single ar-
guments. The two exceptions arecheck-x509 andcheck-rsa-sha1.
The termcheck-x509(cert,kr ) checks that the certificatecert is
signed with a private key associated with the public keykr , and
yields kr if this succeeds. The termcheck-rsa-sha1(x,sig,kpub)
checks thatsig is thersa-sha1 signature ofx under the private key
corresponding to the public keykpuband yieldskpub if this succeeds.
(Some of the inverses, such as the functionsfst andsnd, would be
impossible to implement in general, and we do not rely on them to
program compliant principals; they exist to represent the possibil-
ity of the attacker correctly guessing, for example, how to divide an
array obtained by concatenation into its original two halves.)

We represent evaluation of selectors and inverses by an equivalence,
U = V, the least sort-respecting congruence induced by the follow-
ing axioms.

Equivalence of Terms of the Data Model:U = V

hd(a as) = a tl(a as) = as
hd(i is) = i tl(i is) = is
Tag.att(<Tag as>is</>) = as i-base64(base64(x)) = x
Tag.body(<Tag as>is</>) = is i-utf8(utf8(str)) = str
Tag.parm(Tag="str") = str i-c14n(c14n(i)) = i
fst(concat(x1,x2)) = x1 snd(concat(x1,x2)) = x2
x509-user(x509(sr ,u,a,k)) = u x509-alg(x509(sr ,u,a,k)) = a
x509-key(x509(sr ,u,a,k)) = k
check-x509(x509(sr ,u,a,k),pk(sr )) = pk(sr )
check-rsa-sha1(x, rsa-sha1(x,kpriv),pk(kpriv)) = pk(kpriv)

In the absence of additional equivalences between terms, we im-
plicitly assume that our cryptographic operations have no addi-
tional interactions. For instance, the hash functionssha1, p-sha1,
hmac-sha1, andrsa-sha1 are independent here. This can be infor-
mally checked from their cryptographic specifications [16, 14, 23,
21], or modelled as a refinement of the term equivalence, as in [1].

We end this section by defining a logical notation for predicates on
XML terms. Formally, we present a Horn logic over our many-
sorted algebra, with primitive formulas for equality and list mem-
bership, but no recursively-defined predicates. Our notation is sim-
ple, and suffices for reasoning about security; other languages fea-
ture more expressive pattern-matching for XML, but their seman-
tics would be harder to formalize.

We assume there is a fixed, finite set ofpredicates, ranged over
by p. For each predicatep, we assume there is a single definition
p(x̃) :-Φ1∨·· ·∨Φn, where eachΦi is aformula, andn> 0. (When
n > 1, we usually present each clausep(x̃) :- Φi separately, in the
style of Prolog.) Next, we define the syntax of formulas.

Syntax of Formulas and Predicate Definitions:

Φ ::= formula
V = T term comparison
U ∈V list membership
p(Ṽ) predicate instance
Φ1,Φ2 conjunction

p(x̃) :- Φ1∨·· ·∨Φn definition of predicatep with n > 0

We assume that formulas are well-sorted according to the following
rules: inV = T both terms belong to the same sort; inU ∈V either
U : item andV : items or U : att andV : atts; in p(Ṽ) whenp(x̃) :-
Φ1∨ ·· ·∨Φn, the length and sorts of̃V match the length and sorts
of x̃.

Let p contribute toq if and only if an instancep(Ṽ) occurs in one
of the disjuncts definingq. We stipulate that this relation is well-
founded, to avoid recursively-defined predicates. We letfv(Φ) be
the free variables of all the terms occurring inΦ, and in particular,

fv(p(V1, . . . ,Vn))
4= fv(V1)∪ ·· · ∪ fv(Vn). In any clausep(x̃) :- Φ,

we say that eachz∈ fv(Φ) \ x̃ is a local variable. By convention,
each occurrence in a clause of the wildcard symbolis short for
the only occurrence of a fresh local variable. Local variables are
existentially quantified in our semantics; we identify clauses up to
the consistent renaming of local variables.

Semantics of Formulas:|= Φ where fv(Φ) = ∅

|= V =T
4= (V =T)

|= U ∈V
4= (V = U1 . . . Ui U V ′)

for someU1, . . . ,Ui , V ′, with i ≥ 0

|= p(Ṽ) 4= |= Φi{x̃ = Ṽ}{z̃= Ũ}
for somei ∈ 1..n and closed terms̃U
wherep(x̃) :- Φ1∨·· ·∨Φn andz̃= fv(Φi)\ x̃

|= Φ1,Φ2
4= |= Φ1 and|= Φ2

A formula Φ is valid if we have|= Φσ wheneverfv(Φσ) = ∅.

For open formulas, we introduce a logical equivalence.

Logical Equivalence of Formulas:

Two formulasΦ, Φ′ arelogically equivalentwhen, for all substitu-
tionsσ such thatΦσ andΦ′σ are closed, we have|= Φσ iff |= Φ′σ.

3 Example Protocols
This section describes some WS-Security protocols, whose goal is
to authenticate access to a basic web service. We first present a
typical (unauthenticated) web service, then successively refine it by
introducing password-based digests, signatures, X.509 certificates,
and a firewall intermediary. The first four protocols are taken from
the samples provided with WSE 1.0 [26]; we used the actual SOAP
messages produced by this implementation to experimentally val-
idate our model. (The technical report includes sample messages
produced by WSE.)

3.1 An (Unauthenticated) Web Service
We consider a typical e-commerce website application where cus-
tomers can browse and purchase items [25]. The orders are stored
on a database server, and can be retrieved and viewed on later vis-
its. For security, customers are required to login, with username
and password, before placing and retrieving orders. In addition to
the standard website interface, the server provides a SOAP web ser-
vice GetOrderthat a customer may invoke to retrieve their order in
XML format, to save it as a receipt, for instance. Our aim is to pro-
vide the same level of security for this web service as the website
login.

A call to GetOrderconsists of a SOAP request and a SOAP re-
sponse. We introduce predicates to describe these messages. As a
first example, a valid SOAP message is an XMLEnvelope, con-
taining aHeader and aBody. The predicatehasBody(e,b) below
meansb is the body of envelopee (the wildcard matches any-
thing):

hasBody(e : item,b : item) :-
e= <Envelope><Header> </>b</>,
b = <Body > </>.

The SOAP request forGetOrder is an envelope, where the body
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encodes the parameters of the call. The resulting SOAP response
has a body containing the order, in XML:

isGetOrder(b : item,OrderId : string) :-
b = <Body >

<GetOrder>
<orderId>OrderId</>

isGetOrderResponse(b : item,OrderId : string,u : string) :-
b = <Body >

<GetOrderResponse>
<orderId>OrderId</>
<date> </>
<userId>u</>

We suppose there is a single server, identified by the URLS, hosting
the GetOrderweb service, identified by the URIW, and multiple
client computers that may connect toS on behalf of users. Here
is a protocol for a client computer, identified by its IP addressI ,
to request information about order numberOrderId from the web
serviceW on serverS, on behalf of a human useru.

Message 1: I → S,W e
wherehasBody(e,b), isGetOrder(b,OrderId)

Message 2: S→ I e′

wherehasBody(e′,b′),
andisGetOrderResponse(b′,OrderId,u′)

• Message 1 is an HTTP POST request to the URLS, with
an HTTP headerSOAPAction: W, and with the SOAP en-
velope e as its content. The predicateshasBody(e,b) and
isGetOrder(b,OrderId) specify the behaviour of both client
and server: that is, a client will only send Message 1, and a
server will only accept it, if the messagee is a suitably for-
matted request for some orderOrderId. We implicitly specify
that if the server receives a message that does not satisfy these
predicates, it will reject the message.

• Message 2 is the HTTP response, containing the SOAP en-
velope e′. The predicateshasBody(e′,b′) and isGetOrder-
Response(b′,OrderId,u′) constrain the server to send a reply
that concerns the orderOrderId requested in Message 1. In
this first protocol, the useru whose client computer sends the
request need not be the same as the useru′ who is associated
with the order.

It is not a goal here to fully specify the correct behaviour of ei-
ther client or server. We are only concerned about security prop-
erties, and authentication in particular, and suppress other infor-
mation. For example, we suppress the rest of the response, which
includes details such as the credit card type, number and expiration
date, billing and shipping addresses, and the sequence of line items
in the order.

Our predicates express constraints on messages sent and received
by compliant implementations of our protocols. On the sender side,
they express post-conditions for every outgoing message. On the
receiver side, they express pre-conditions that must be checked be-
fore incoming messages are processed. In the presence of an active
attacker, it is essential that the receiver dynamically check these
conditions, even if the sender enforces them. Our first protocol
offers no protection against active attacks, since any well-formed
envelope is accepted by the server.

3.2 Password Digest
Username tokens with a cryptographic digest provide a first, basic
mechanism for authenticating web service requests. Such tokens

include a username identityu, together with a digest of a password
and a fresh timestamp. We assume that each passwordpwdu is a
shared, unguessable secret betweenu andS, so that onlyu (or S,
in principle) can generate a valid digest—this hypothesis excludes
dictionary attacks, for instance. (To justify this assumption, pass-
words need to be strong cryptographic secrets; one might also mod-
ify the protocol to encrypt the digest of a weak password, but we
do not pursue this alternative.) Moreover, as in other applications
of the applied pi calculus, we abstractly relate the password and the
user using the special one-way functionprincipal from passwords to
users: we letu stand forprincipal(pwdu).

To model this protocol, we develop predicates for describing WS-
Security headers and embedded username tokens. (Our predicate
definitions are not specific to this protocol, and can be re-used for
any protocol relying on these tokens.) First, we define a predicate to
extract the security tokens from some security header of the enve-
lope: the predicatehasSecurityHeader(e, toks) means thattoksis a
sequence of security tokens attached to messagee. The first formula
in the predicate body extracts the list of headers (headers: items)
from the envelope. The second formula,header∈ headers, means
that headeris some member of the header list. The third formula
means thatheadermust be a security header, and extracts the secu-
rity tokens from it.

hasSecurityHeader(e : item, toks: items) :-
e= <Envelope><Header>headers</> </>,
header∈ headers,
header= <Security>toks</>.

With username tokens, the unique identifier of a message is a pair
(n : bytes, t : string) wheren is a nonce—some byte array—and
t is a timestamp represented as a string. The predicateisDigest-
UserToken(tok,u,pwd,n, t) means thattok is a username token for
useru with passwordpwd, identifier(n, t), and a valid digest.

isDigestUserToken(tok : item,u,pwd: string,n : bytes, t : string) :-
tok= <UsernameToken >

<Username>u</>
<Password Type="PasswordDigest">base64(d)</>
<Nonce>base64(n)</>
<Created>t</>,

u = principal(pwd),
d = sha1(concat(n,concat(utf8(t),utf8(pwd)))).

Finally, a top-level authentication predicate,hasUserTokenDigest,
gathers all the conditions checked on envelopes received by the
server. hasUserTokenDigest(e,u,pwd,n, t,b) means that the enve-
lopeewith bodyb contains a valid username token foru,pwd,n, t.

hasUserTokenDigest(e : item,u,pwd: string,
n : bytes, t : string,b : item) :-

hasSecurityHeader(e, toks),
utok∈ toks,
isDigestUserToken(utok,u,pwd,n, t),
hasBody(e,b).

The following protocol description includes both SOAP messages
and additional begin- and end-events, in the style of Woo and
Lam [37]. We use these events to express the authentication guar-
antee obtained by the server from running this protocol.
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Event 1: I logs<Begin>u n t</>
Message 1: I → S,W e

wherehasUserTokenDigest(e,u,pwd,n, t,b),
andisGetOrder(b,OrderId)

Event 2: S logs<End>u n t</>
Message 2: S→ I e′

wherehasBody(e′,b′),
andisGetOrderResponse(b′,OrderId,u)

We interpret events in the abstract log as follows: before issuing a
request, the initiator logs its intent as an entry<Begin>u n t</> that
contains the user nameu and the message identifier. Conversely, af-
ter checking an envelope, the server logs<End>u n t</> to manifest
that it accepts a request with these parameters. In any case, the at-
tacker cannot log entries. Ideally, begin- and end-events should be
in direct correspondence, but this is clearly not the case if the at-
tacker can delete, reorder, or replayu’s messages. Instead, we have
the following correspondence property:

CLAIM 1. In the presence of an active Dolev-Yao attacker, if
<End>u n t</> is logged by S, then<Begin>u n t</> has been
logged by I.

This is a fairly weak authentication property, which can be read
as “if S accepts a request fromu, then u recently sent some re-
quest”. The two requests are not necessarily the same: for in-
stance, an active attacker can intercept the envelope, modify its
body, and pass it to the server. In many settings, it may be suit-
able to have a richer correspondence betweenu and S’s actions,
for example between entries<Begin>u S W n t OrderId</> and
<End>u S W n t OrderId</>.

Although the password digest is optional in WS-Security username
tokens, our claim would clearly not hold if the server accepted
tokens without checking the digest, since the attacker could then
forge a message with any identifier(n, t) irrespective of the user’s
requests.

In itself, our protocol does not eliminate replays. (Technically,
our correspondence assertion is non-injective.) However, since the
identifier is authenticated, the application can safely use it to filter
duplicate or expired messages.

3.3 Password-based Signature
In order to achieve more precise authentication properties under the
same assumptions—a shared password betweenu andS—one can
use an XML digital signature on selected elements of the enve-
lope [17]. In addition to the username token, we add a signature
token that signs (for instance) the envelope body, with a signing
key derived from the password and the username token.

A hash-based signature of itemsx1, . . . , xn using a keyk, may be
roughly pictured as follows.

<Signature>
<SignedInfo>
<Reference> . . .hash ofx1 . . .</>
. . .
<Reference> . . .hash ofxn . . .</>

<SignatureValue>
. . .hash ofSignedInfo element with keyk. . .

See Section4.3 for a full example of a signed envelope. Next, we
define the additional predicates needed for our modified protocol,
including predicates defining the various parts of a signature.

• isUserTokenKey(tok,u,pwd,n, t,k) means thattok is a user-
name token for useru with passwordpwd, unique identifier

(n, t), and derived keyk. The key derivation uses ap-sha1
keyed hash salted with the message identifier.

• isSigVal(sv,si,k,a) means thatsv is the digital signature com-
puted on the itemsi with key k using algorithma (which for
password-based signatures ishmac-sha1).

• ref(t, r) means that the itemr is a reference containing the
digest of itemt. (We use the three wildcards to match
certain attributes and elements irrelevant to security here.)

• isSigInfo(si,a,x1, . . . ,xn) means that the signed information
si, for signature algorithma, contains a list of references of
which the firstn are for the itemsx1, . . . ,xn. After these refer-
ences,si may contain any number of references to other items
(represented in the predicate by an). This flexibility in the
predicate enables the client to sign additional items even if not
required by the server (to conform to a uniform send policy,
for example).

• isSignature(sig,a,k,x1, . . . ,xn) means that the signaturesig
signsx1, . . . ,xn with algorithma and verification keyk.

• hasUserSignedBody(e,u,pwd,n, t,b) is the top-level predi-
cate. It means that the envelopee contains a username token
for u,pwd,n, t, and that the bodyb of e is signed by the key
derived from the token.

isUserTokenKey(tok : item,u,pwd: string,
n : bytes, t : string,k : bytes) :-

tok= <UsernameToken >
<Username>u</>
<Nonce>base64(n)</>
<Created>t</>,

u = principal(pwd),
k = p-sha1(pwd,concat(n,utf8(t))).

isSigVal(sv: bytes,si : item,k : bytes,a : string) :-
a = hmac-sha1,
sv= hmac-sha1(k,c14n(si)).

ref(t : item, r : item) :-
r = <Reference >

<DigestValue>base64(sha1(c14n(t)))</>.

(for eachn≥ 1)
isSigInfo(si : item,a : string,x1, . . . ,xn : item) :-

si = <SignedInfo>
<SignatureMethod Algorithm="a"></>

r1 . . . rn ,
ref(x1, r1), . . . , ref(xn, rn).

isSignature(sig : item,a : string,k : bytes,x1, . . . ,xn : item) :-
sig= <Signature>si <SignatureValue>base64(sv)</> </>,
isSigInfo(si,a,x1, . . . ,xn),
isSigVal(sv,si,k,a).

hasUserSignedBody(e : item,u : string,pwd: string,
n : bytes, t : string,b : item) :-

hasBody(e,b),
hasSecurityHeader(e, toks),
utok∈ toks,
isUserTokenKey(utok,u,pwd,n, t,k),
sig∈ toks,
isSignature(sig,hmac-sha1,k,b).

The message exchange is much as in Section3.2, with two differ-
ences: each log entry now containsu n t OrderId instead of just
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u n t; we use the top-level predicatehasUserSignedBody(e,u,pwd,
n, t,b) instead ofhasUserTokenDigest(e,u,pwd,n, t,b). We obtain
a similar, but stronger authentication property:

CLAIM 2. In the presence of an active Dolev-Yao attacker, if
<End>u n t OrderId</> is logged by S,<Begin>u n t OrderId</>
has been logged by I.

This claim can be read as “ifS accepts a request fromu, thenu
recently sent this request”. As before, we can rely on the identifier
(n, t) for replay protection.

We make two observations concerning these predicates. First,
isUserTokenKeydoes not check the presence or validity of the op-
tional username token digest. In fact, checking the password digest
would not provide any additional authentication guarantee here.
Conversely, its (potential) occurrence in the envelope slightly com-
plicates our proofs in the next section. Arguably, the initiator should
not include both a digest and a signature, since this may facilitate
a dictionary attack on the password, unless it does not know which
evidence will be considered by the server.

Second, although each referencer typically provides a pointer to the
digested element, either as a fragment URI or as an XPath expres-
sion, we do not rely on this information in theref predicate. Instead,
we check that the actual item we are interested in—the bodyb—is
targeted by the reference. In general, this approach is preferable,
since it leaves the resolution of pointers outside the trusted com-
puting base. Otherwise, one should also carefully check that these
pointers are well-defined and unambiguous.

Our specification captures the flexibility of WS-Security signatures.
The predicates for key derivation (isUserTokenKey) are indepen-
dent from those interpreting the signature. So, we can compose
isSignaturewith some other keying material, such as an X.509 cer-
tificate. Similarly, we can support additional algorithms for com-
puting the actual signature by adding alternatives to the predicate
isSigVal—see Section3.4.

Furthermore,isSignatureallows additional elements of the message
to be signed. Signing the username, nonce, or timestamp elements
is not necessary with this particular signing-key derivation, but is
harmless, and becomes necessary with other kinds of keys (see Sec-
tion 3.5). In case there are several actions on the same server, or if
the same password is shared with two different (honest) servers,
then the path header (S,W) should also be signed (as in the next
section). Otherwise, the attacker might redirect an envelope from
one web service to another.

3.4 X.509 Signature
The next protocol does not depend on password-based authentica-
tion. Instead, it uses public-key signatures based on X.509 certifi-
cates. We assume that the useru has a public/private key pair and
keeps the private key secret. We also assume thatu andSagree on
the public keykr of some X.509 certification authority, and that this
authority issued only one certificate foru, with u’s public key.

In contrast with password-based signatures, X.509 signature tokens
cannot use fragments of the username token as message identi-
fier. Instead, they can sign the globally unique identifier included
in the path header of every SOAP message, as defined in WS-
Routing [30]. This is reflected by the following additional predi-
cates:

• isX509Token(tok,kr ,u,a,k) means thattok is a binary token
that contains a certificatex509(sr ,u,a,k) with certifier’s pub-
lic key kr = pk(sr ).

• isSigVal(sv,si,k,a) is extended with a clause that checks sig-
natures using thersa-sha1 algorithm.

• hasPathHeader(e,ac, to, id,ea,et,ei) means that envelopee
has a path header with actionac, destinationto, and message
identifier id in elementsea, et, andei, respectively.

• hasX509SignedBody(e,kr ,u,ac, to, id,b,ea,et,ei) is the top-
level predicate. It means that the envelopee has an X.509
token foru certified bykr whose public key signs the bodyb
and a path headerea,et,ei containingac, to, id.

isX509Token(tok : item,kr : bytes,u : string,a : string,k : bytes) :-
tok= <BinarySecurityToken >base64(xcert)</>,
check-x509(xcert,kr ) = kr ,
u = x509-user(xcert),
a = x509-alg(xcert),
k = x509-key(xcert).

isSigVal(sv: bytes,si : item,k : bytes,a : string) :-
a = rsa-sha1,check-rsa-sha1(c14n(si),sv,k) = k.

hasPathHeader(e : item,ac, to, id : string,ea,et,ei : item) :-
e= <Envelope><Header>headers</> </>,
header∈ headers,
header= <path >ea et ei</>,
ea= <action >ac</>,
et = <to >to</>,
ei = <id >id</>.

hasX509SignedBody(e : item,kr : bytes,u,ac, to, id : string,
b,ea,et,ei : item) :-

hasBody(e,b),
hasPathHeader(e,ac, to, id,ea,et,ei),
hasSecurityHeader(e, toks),
xtok∈ toks,
isX509Token(xtok,kr ,u,rsa-sha1,k),
sig∈ toks,
isSignature(sig,rsa-sha1,k,b,ea,et,ei).

The message exchange for the X.509 signature protocol is al-
most the same as the one in Section3.3, with two differences.
First, the contents of the log entries is nowu W S id OrderId
(instead ofu n t OrderId). Second, we use the top-level pred-
icate hasX509SignedBody(e,kr ,u,W,S, id,b,ea,et,ei) instead of
hasUserSignedBody. We now obtain the authentication property:

CLAIM 3. In the presence of an active Dolev-Yao attacker, if
<End>u W S id OrderId</> is logged by S, then<Begin>u W S
id OrderId</> has been logged by I.

This claim can be read as “ifSaccepts a request fromu, thenu, at
some point, sent this request toS”. So by signing the path header,
we obtain an additional authenticity guarantee as regardsu’s in-
tended target(S,W), and thus prevent some redirection attacks.
One can easily implement replay protection using the authenticated
message identifier. This supposes that clients do generate globally
unique id’s (although this is not actually required to obtain our cor-
respondence property). Alternatively, one may use a custom unique
identifier in the envelope body.

3.5 Firewall-Based Authentication
By specifying the structure of security tokens, rather than their use,
WS-Security encourages a flexible approach to web service secu-
rity. For instance, a server may naturally accept both password-
based and X.509-based signatures for authentication, leaving that
choice to the client. This flexibility yields useful compositional
properties in our formal developments. For instance, a web service
that runs both protocols is formally equivalent to two web services
in parallel, one for each authentication mechanism.
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In this section, we illustrate this flexibility with a different com-
posite architecture that chains WS-Security authentication schemes
along a WS-Routing path. In addition to a serverS and a clientI
acting on behalf ofu, we consider an intermediate SOAP-level fire-
wall F . The firewall holds the password database, and is responsi-
ble for authenticating access toS (and possibly other servers). The
client I sends aGetOrderrequest with a username signature (foru)
to S via F . The path header indicates toF that the message is in-
tended forS. The firewallF checks the password-based signature,
adds a newfirewall header indicating that it has authenticatedu,
signs the message using its X.509 certificate, and forwards the mes-
sage toS. The serverSchecks the X.509 signature, and thus authen-
ticates the original senderu without knowledge ofu’s password.

Next, we define (predicates on) the message forwarded by the fire-
wall. To indicate to the server that it has checked the credentials of
the user, the firewall adds a new firewall header containing the user-
name token, but with the password digest deleted. It then embeds
an X.509 signature that includes this header as well. The predicates
for this message are:

• isFirewallHeader(h,u,n, t) means that the envelopeh is a fire-
wall header with the username tokenu,n, t.

• hasFWHeader(e,h,u,n, t) means that the envelopee has a
firewall headerh with u,n, t.

• hasX509SignedBodyFw(e,kr , f ,u,n, t,b) is the top-level
predicate checked by the server. It means that the envelopee
has a firewall header withu,n, t, bodyb, and is signed with a
valid certificate forf issued bykr .

isFirewallHeader(h : item,u : string,n : bytes, t : string) :-
h = <firewall >utok</>,
utok= <UsernameToken>

<Username>u</>
<Nonce>base64(n)</>
<Created>t</>.

hasFWHeader(e,h : item,u : string,n : bytes, t : string) :-
e= <Envelope ><Header>headers</> </>,
h∈ headers,
isFirewallheader(h,u,n, t).

hasX509SignedBodyFw(e : item,kr : bytes, f ,u : string,
n : bytes, t : string,b : item) :-

hasBody(e,b),
hasFWHeader(e,h,u,n, t),
hasSecurityHeader(e, toks),
xtok∈ toks,
isX509Token(xtok,kr , f ,rsa-sha1, p),
sig∈ toks,
isSignature(sig,rsa-sha1, p,b,h).

The protocol involves three messages, as follows:

Event 1: I logs<Begin>u n t OrderId</>
Message 1: I → F,W e

wherehasUserSignedBody(e,u,pwd,n, t,b)
Message 2: F → S,W e′

wherehasX509SignedBodyFw(e′,kr , f ,u,n, t,b)
andisGetOrder(b,OrderId)

Event 2: S logs<End>u n t OrderId</>
Message 3: S→ I e′′

wherehasBody(e′′,b′)
andisGetOrderResponse(b′,OrderId,u)

CLAIM 4. In the presence of an active Dolev-Yao attacker, if
<End>u n t OrderId</> is logged by S, then
<Begin>u n t OrderId</> has been logged by I.

Thus, we obtain the same end-to-end authenticity guarantee as with
the password-based signature protocol of Section3.3, but for a dif-
ferent implementation that does not requireSto knowu’s password.
We prove this claim by composing the correspondence property for
the password-based signature in Message 1 with that for the X.509
signature in Message 2.

4 A Pi Calculus Semantics
In order to validate the claims of Section3, we specify the be-
haviour of the participants (and in particular their implementation
of predicates) as processes in the applied pi calculus. We refer to [1]
for a general presentation of the calculus, and rely on their defini-
tions for processes and their semantics. Here, we use the sorts,
terms, and equations described in Section2, with coercion func-
tions from strings to items, and with additional sorts for commu-
nication channels [27]. We always assume that terms, formulas,
processes, and contexts are well-sorted, but usually keep sort infor-
mation implicit.

This section divides into the following parts. Section4.1describes
our computational interpretation of formulas as certain nondeter-
ministic processes in the applied pi calculus. Section4.2introduces
formal notions of robust safety—that embedded correspondence as-
sertions hold in spite of the presence of an attacker—and functional
adequacy—that a protocol may run to successful completion in the
absence of an attacker. Section4.3 uses these definitions to state
results about the username-signing protocol of Section3.3. The-
orem1 asserts that a process formalizing this protocol is robustly
safe—our previous claim is a corollary. Moreover, Theorem2 as-
serts the formalization is functionally adequate. Section4.4 gives
the structure of our proof for Theorem1, which relies on a decom-
position of the protocol into simpler components.

The technical report contains a brief overview of the applied pi cal-
culus, detailed proofs of these two theorems and of their counter-
parts for the other protocols of Section3, and an account of how to
generalize our results to a situation with multiple servers and users.

4.1 Interpretation of Formulas
We describe a (partial) implementation of our logic in the applied
pi calculus. We inductively define processes of the formfilter Φ 7→
ỹ in P, where the variables̃y are bound inP and get assigned to
terms making the formulaΦ true. When the formula is an equality
V = T we assume that one of the terms is known, and that the other
can be treated as a pattern, matching variables to known subterms
in the known term. In the following formal definitions, we always
assume thatV is the known term, and thatT is the pattern, but in our
example predicates we allow either of the terms to be the pattern.
For a pattern to be implementable, there must be an inverse term for
each bound variable, able to compute the value of the variable from
the known term.

Patterns:

The equalityV = T binds variables̃y with pattern T, written
V =T 7→ ỹ, when (1) ỹ ⊆ fv(T) \ fv(V), and (2) T has inverse
termsS̃, with fv(S̃) ⊆ {x}, fn(S̃) = ∅, and, for all termsV,W̃, if
V = T{ỹ = W̃}, thenW̃ = S̃{x = V}.

For instance, the patternbase64(y) has inverseS
4= i-base64(x);

for all V andW, if V = base64(W) thenW = S{x=V}= i-base64(
base64(W)). On the other hand, the patternsha1(y) has no inverse,
and therefore would not satisfy point (2).

The following table is the partial inductive definition offilter Φ 7→
ỹ in P. If such a process is defined by the following rules, we say

8



that the formulaΦ is implementablewith bound variables̃y. When
filter Φ 7→ ỹ in P is defined and closed, we intend that it seeks closed
termsṼ such that|= Φ{ỹ = Ṽ}, and acts asP{ỹ = Ṽ}. We refer to
the technical report for a formal statement of this property.

Formula Implementation: filter Φ 7→ ỹ in Pwhen ỹ⊆ fv(Φ)

filter V =T 7→ ỹ in P
4=

let ỹ = S̃{x = V} in if V = T then P
whenV = T 7→ ỹ with inverse terms̃S

filter x∈V 7→ x in P
4=

νs,c.(c(x).P | s〈V〉 | !s(z).filter z=h t 7→ h, t in (c〈h〉 | s〈t〉))
whenx 6∈ fv(V) and with{s,c}∩ fn(P) = ∅

filter p(Ṽ) 7→ ỹ in P
4=

νs.(s〈ε〉 | ∏i∈1..ns( ).filter Φi{x̃ = Ṽ} 7→ ỹ, z̃i in P)
whenp(x̃) :- Φ1∨·· ·∨Φn, s /∈ fn(P)
and,∀i ∈ 1..n,fv(Φi) = x̃] z̃i and(fv(Ṽ)∪ fv(P))∩ z̃i = ∅

filter Φ1,Φ2 7→ ỹ in P
4=

filter Φ1 7→ (ỹ∩ fv(Φ1)) in (filter Φ2 7→ (ỹ\ fv(Φ1)) in P)

WhenV = T 7→ ỹ, with inverse terms̃S, filter V =T 7→ ỹ in Pbinds
the variables̃y of the patternT to components of the termV, and
verifies that hence the pattern matches the term. If so, the match
succeeds, andP runs. Otherwise, the match fails, and the imple-
mentation deadlocks.

Whenx 6∈ fv(V), filter x∈V 7→ x in PoutputsV on a fresh channels,
and runs the process !s(z).filter z=h t 7→ h, t in (c〈h〉 | s〈t〉) which
bindsh = V1 andt = V2 . . . Vn ε, providedV = V1 V2 . . . Vn ε with
n≥ 1, then outputsh on c, andt on the fresh channels. The effect
of this replication is to output each of the termsV1, . . . ,Vn on the
fresh channelc. The processc(x).P is the only listener onc; so the
outcome isP{x = Vi} for somei ∈ 1..n. If, in fact, V is the empty
list, the implementation deadlocks.

Whenp(x̃) :- Φ1∨ ·· · ∨Φn, filter p(Ṽ) 7→ ỹ in P generates a sep-
arate processs( ).filter Φi{x̃ = Ṽ} 7→ ỹ, z̃i in P) for each clause
i ∈ 1..n, wherez̃i are the local variables for clausei. We make an
internal choice of which to run by arranging all to listen on the fresh
channels, on which only a single message is sent.

The implementationfilter Φ1,Φ2 7→ ỹ in Pworks by evaluatingΦ1
thenΦ2 before runningP.

As an example, we show an implementation ofhasBody(e,b):

filter hasBody(e,b) 7→ b in [-]
= νs.(s〈ε〉 | s( ).

filter e= <Envelope><Header>y1</>b</> 7→ y2,b in
filter b = <Body y2>y3</> 7→ y2,y3 in [-])

= νs.(s〈ε〉 | s( ).
let y1 : items = Header.body(hd(Envelope.body(e))) in
let b : item = hd(tl(Envelope.body(e))) in
if e = <Envelope><Header>y1</> b ε</> then

let y2 : atts = Body.att(b) in
let y3 : items = Body.body(b) in
if b = <Body y2>y3</> then[-])

4.2 Safety Properties, Functional Properties
To formalize the authenticity properties claimed in Section3, we
mark the progress of the client and server processes with begin- and
end-events, represented as message outputs on the channelsbegin
andend, respectively. Hence, our authenticity properties become
non-injective correspondence assertions [37] between messages. To

capture the occurrence of one of these events, we define a notion of
observation of messages on free channels. We write≈ for (weak)
observational congruence in applied pi.

Observation: A.a〈V〉
A outputsV on channela, writtenA.a〈V〉, whenA≈ a〈V〉 | A′.

Much as in Gordon and Jeffrey’s formulation of correspondence
assertions [19], we define safety and robust safety: a process is safe
if every end-event has a matching begin-event, and is robustly safe
if it is safe in the presence of any opponent. We write→∗ for a
series of reduction steps.

Safety and Robust Safety:

A is safe if and only if, wheneverA →∗ B, B.end〈V〉 implies
B.begin〈V〉.
A is robustly safeif and only if, for all evaluation contextsE where
the channelsbeginandenddo not occur,E[A] is safe.

Intuitively, E represents any active attacker (in the applied pi cal-
culus) that controls both the network and the client application be-
haviour, A is the initial configuration of the protocol being con-
sidered, andB represents any reachable state of the protocol, after
interleaving any number of sessions.

In addition to security properties such as robust safety, one should
check that the protocol works as intended and may indeed succeed,
at least in the absence of an attacker:

Functional Adequacy:

A is functionally adequate for VwhenA→∗ B with B.end〈V〉 for
someB.

The next lemma states that our main security properties can be es-
tablished using the theory of observational equivalence in the ap-
plied pi calculus.

LEMMA 1. Suppose A≈ B. If A is robustly safe then so is B.
Moreover, if A is functionally adequate for V then so is B.

Moreover, logical equivalence, when lifted to processes, also pre-
serves robust safety.

Logical Equivalence of Processes:
Two processes are logically equivalent when they only differ in their
choices of implementable, logically-equivalent predicates.

LEMMA 2. Logical equivalence preserves robust safety.

4.3 Stating Password-Based Authentication
We are now ready to formulate and prove Claim2 of Section3.3
for envelopes with password-based signatures, with or without a
password digest. (The other claims in the paper are handled simi-
larly.) For the sake of simplicity, we focus on protocol configura-
tions Q with a single useru, with initiator processIu and a single
serverSu that share a secret password with that user, represented as
a restricted namespwd. The two parts of the protocol also share a
communication channel,http. Sincehttp is not restricted, an envi-
ronment that enclosesQ can also read, modify, and write any SOAP
message.

Protocol Configurations: Q (parameterized byEnvelope)
Q 4= νspwd.

(
{u = principal(spwd)} | Iu | Su

)
Iu

4= !initu(n, t,b).(begin〈u n t b〉 | http〈Envelope〉)

Su
4= !http(e).filter hasUserSignedBody(e,u′,spwd,n, t,b)

7→ u′,n, t,b in end〈u′ n t b〉
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The initiator, Iu, repeatedly receives high-level requests on a con-
trol channelinitu. Using that control channel, the environment can
thus initiate any number of requests on behalf ofu, for any terms
N,T,B. These requests are “genuine”: they are echoed on channel
begin. The processIu is also parameterized by a termEnvelopethat
determines the actual SOAP envelopes constructed and sent by the
initiator.

The server repeatedly receives low-level envelopes on channelhttp,
filters them using the top-level predicate defined in Section3.3(one
easily checks that this predicate is implementable) and finally sends
a message on channelendfor each accepted envelope. (More gen-
erally, we would represent a server that accepts requests from users
u1, . . . ,un as a parallel composition∏i∈1..nSui .)

The scope restriction onspwd models our secrecy assumption on
the password, essentially supposing that it is a strong secret shared
between the initiator and the server and used only in this kind of
envelope.

The active substitution{u= principal(spwd)} binds the variableu to
the expressionprincipal(spwd), and exportsu (but notspwd) to the
environment.

Crucially, we do not want our robust safety result to depend on
every detail of the envelope. Instead, we express minimal require-
ments as follows:

Safe Envelopes:
A safe envelopeis a term of the formEnvelope= Tϕ with

ϕ 4= {d = sha1(concat(n,concat(utf8(t),utf8(spwd)))),
sv= hmac-sha1(p-sha1(spwd,concat(n,utf8(t))),

c14n(SI))}

for some terms T,SI such that spwd 6∈ fn(T,SI) and
isSigInfo(SI,hmac-sha1,b) is valid.

To elaborate, as regards safety properties,Envelopemay be any
XML term, as long as the password occurs at most in the digest
and signature values. Similarly, most of the subterms in the signa-
ture information are irrelevant for safety, even if they happen to be
signed inSI.

THEOREM 1. For any safe envelope, the configurationQ is ro-
bustly safe.

From this theorem and the definition ofisGetOrder(b,orderId), we
easily derive the more specific claim of Section3.3.

For functional adequacy, the structure of the envelope is more con-
strained. For example,T andSI can be instantiated as follows:

T
4= <Envelope>

<Header>
<Security>
<UsernameToken Id="utoken">
<Username>u</>
<Password Type="PasswordDigest">

base64(d)
<Nonce>base64(n)</>
<Created>t</>

<Signature>
SI
<SignatureValue>base64(sv)</>
<KeyInfo>
<SecurityTokenReference>
<Reference URI="#utoken"></>

b

SI
4= <SignedInfo>

<CanonicalizationMethod Algorithm="c14n"></>
<SignatureMethod Algorithm="hmac-sha1"></>
<Reference URI="#body">
<Transforms>
<Transform Algorithm="c14n"></>

<DigestMethod Algorithm="sha1"></>
<DigestValue>base64(sha1(c14n(b)))</>

THEOREM 2. The envelope Tϕ with T and SI defined above is
safe and, for any ground terms N: bytes, T : string, B : item with
B = <Body Id="body"> </>, the configurationinitu〈N,T,B〉 | Q
with that envelope is functionally adequate for the term u N T B.

Conversely, by Theorem1, if we haveinitu〈N,T,B〉 | Q →∗ A and
A.end〈u′ N′ T ′ B′〉, thenu′,N′,T ′,B′ = u,N,T,B.

4.4 Proving Password-Based Authentication
We present the structure of the proof for Theorem1. We refer to
the technical report for additional lemmas and proofs. An intuition
behind the proof is that the security property relies only on a few
elements in the envelope. For instance, the signature bytes are suffi-
cient for authentication, whereas the other elements in the envelope
only provide the server with (untrusted) hints to verify the signa-
ture. Hence, to establish robust safety, we rely on a stronger, more
specific lemma about a core protocol that explicitly deals only with
these bytes.

The proof is in two stages. First, we show how the password-based
signature protocol can be decomposed into a “core protocol” that
deals with authentication and an XML wrapper. The XML wrap-
per has no access to the password, and need not be trusted: for-
mally, it becomes part of the hostile environment. We show that it
is enough to prove robust safety for the core protocol (Lemma4). In
the second stage, we prove that the core protocol itself is robustly
safe (Lemma7) by exhibiting an invariant on its reachable states
(Lemma6).

We decomposehasUserSignedBody(e,u,pwd,n, t,b) 7→ u,n, t,b
into two implementable formulas

hasUserSignatureEvidence(e,u,n, t,b,sv,si) 7→ u,n, t,b,sv,si,
checkEvidence(sv,si,u,pwd,n, t,b) 7→∅

hasUserSignatureEvidenceparses the envelope and extracts the
bits that are needed to verify the signature; it has no access to
the password. (We refer to the technical report for details.) All
the authentication-related checks are contained incheckEvidence,
which is defined as follows:

checkEvidence(sv: bytes,si : item,u,pwd: string,n : bytes,
t : string,x1, . . . ,xm : item) :-

isSigInfo(si,hmac-sha1,x1, . . . ,xm),
u = principal(pwd),
k = p-sha1(pwd,concat(n,utf8(t))),
isSigVal(sv,si,k,hmac-sha1).

We can state the correctness of this decomposition in terms of logi-
cal equivalence.

LEMMA 3. The formula hasUserSignedBody(e,u,pwd,n, t,b)
and its decomposition defined above are logically equivalent.

Using this decomposition, we define the core protocol configuration
Q ◦, a counterpart ofQ for the simpler predicatecheckEvidencethat
binds no variables, and for replicated processesI◦u andS◦u that com-
municate with the environment on channelsc ands, respectively,
instead of channelhttp.
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Core Protocol Configurations: Q ◦

Q ◦[-] 4= νspwd.
(
{u = principal(spwd)} | I◦u | S◦u | [-]

)
I◦u

4= !initu(n, t,b).(begin〈u n t b〉 | c〈d,sv,SI,u,n, t,b〉ϕ)

S◦u
4= !s(sv,si,u′,n, t,b).filter checkEvidence

(sv,si,u′,spwd,n, t,b) 7→∅ in end〈u′ n t b〉

We write Q ◦ for Q ◦[0] (the initial state of the core protocol).
Lemma4 shows that this core protocol is logically equivalent, un-
der an evaluation context, to the original protocol. This implies that
if Q ◦ is robustly safe, so isQ .

LEMMA 4 (XML/CORE). For any safe envelope, there exists an
evaluation context EQ [-] where the names begin, end do not oc-
cur and a processQ • logically equivalent toQ such thatQ • ≈
EQ [Q ◦].

To prove robust safety for the core protocol, we first define the valid
states of the core protocol in an evaluation context. Valid states are
our correctness invariant. They describe protocol states reachable
from Q ◦ in which no secrets have been leaked and only messages
sent by the client have been accepted by the server.

Valid States for the Core Protocol:
(1) ϕi is adapted fromϕ in the definition of safe envelopes with
variablesdi ,svi ,ni , ti ,bi and termSIi instead ofd,sv,n, t,b andSI.
(2) A session stateis a process of the formCi = begin〈u ni ti bi〉 |
ϕi | Ji where Ji is any parallel composition of processes from
{end〈u ni ti bi〉}∪

L
{end〈u ni ti bi〉}∪

L
{} (with free variables

ni , ti ,bi and defined variablesdi ,svi). (The operator
L

represents
internal choice over a set of processes.)
(3) An internal stateis a parallel composition of session statesC =
∏i<nCi , for somen≥ 0.
(4) A valid stateis a closed process of the formA= E[Q ◦[C]] where
E[-] is an evaluation context wherebeginandenddo not occur and
C is an internal state.

For a given internal stateC, let σC be the (ordinary) substitution
obtained by composing{u = principal(spwd)} and eachϕi for i =
0. . .n− 1. By definition, the frame obtained fromQ ◦[C], which
represents the attacker’s knowledge aboutspwd, is ϕC = νspwd.σC.

The next lemma states that if a message is received in a valid state
of the protocol, and it satisfies the predicatecheckEvidence, then it
must have been sent by the client.

LEMMA 5 (checkEvidenceIS SAFE). Let C be an internal state
with n≥ 0 sessions. Letσ′ be a substitution that ranges over open

terms where the name spwd does not appear such thatσ 4= σ′ | σC
is closed.

If |= checkEvidence(sv,si,u′,spwd,n, t,b)σ, then there exists i< n
such that(u′,sv,si,n, t,b = u,svi ,SIi ,ni , ti ,bi)σ.

Using this lemma, we can show that all reachable configurations of
the core protocol are valid states.

LEMMA 6 (INVARIANT LEMMA ). If A is a valid state and A→
T then T∼ A′ for some valid state A′.

As a corollary, we can show robust safety for the core protocol.

LEMMA 7 (CORE ROBUST SAFETY). Q ◦ is robustly safe.

Theorem1 follows as a corollary. By Lemma7, Q ◦ is robustly
safe (RS). By Lemma4, Q • ≈ EQ [Q ◦] and, by hypothesis onEQ ,
EQ [Q ◦] is RS. By Lemma1, Q • is RS. Finally,Q • is logically
equivalent toQ , and thus, by Lemma2, Q is RS.

5 Conclusions and Future Work
In this paper, we introduced a framework for reasoning about the
security of SOAP protocols and their cryptographic implementa-
tions in terms of WS-Security tokens. We illustrated our framework
using a series of simple authentication protocols. Surprisingly, per-
haps, these XML-based protocols can be studied at the same (syn-
tactic) level of abstraction:

• formally, using a faithful, predicate-based implementation in
the applied pi calculus with proofs of correspondence proper-
ties against a Dolev-Yao adversary;

• experimentally, using sample programs and SOAP traces on
top of the WSE toolkit [26].

This should provide a principled basis for testing compliant imple-
mentations, and also reduce the risk of attacks in concrete refine-
ments of correct, abstract protocols.

As can be expected, this also complicates the formal model, with
for example a large syntax and equational theory for terms in the
applied pi calculus. However, our experience suggests that a mod-
ular definition of predicates, together with standard compositional
techniques in the pi calculus, should enable a good reuse of the
proof effort for numerous WS-Security protocols.

Our choice of authentication protocols stresses that small varia-
tions in WS-Security envelope formats may lead to much weaker
correspondence properties. Each service should therefore clearly
prescribe (and enforce) the intended property. Specifically, a pru-
dent practice in the selection of XML signatures is to request that
all potentially relevant headers be jointly authenticated—not just
the message identifier or its body. In the case authentication relies
on username tokens, this strongly suggests the use of a signature
instead of a digest. Moreover, XML signatures have a complex
structure, which should be used with caution. Specifically, authen-
tication should not rely on signed elements whose interpretation
depends on an unsigned context.

Related Work. There have been many formal studies of remote
procedure call (RPC) security mechanisms. The earliest we are
aware of is the formalization within the BAN logic [9] of Secure
RPC [33] in the Andrew distributed computing environment. More
recently, process calculi [2] have been used to formalize the secure
implementation of programming abstractions such as communica-
tion channels and network objects [36].

We are aware of very little prior formal work on XML security pro-
tocols. Gordon and Pucella [20] implement and verify attribute-
driven SOAP-level security protocols, but do not use the WS-Secu-
rity syntax. Their representation of SOAP messages abstracts many
details of the XML wire format, and hence would be blind to any
errors in the detailed structure of names or signatures. Damianiet
al. [12] describe an access control model for SOAP messages, but
rely on a secure transport rather than WS-Security; a subsequent
paper [13] discusses connections between SOAP security and au-
thorization languages such as SAML and XACML.

Future Work. Our approach to authenticity properties should eas-
ily extend to complementary security properties, such as secrecy
and anonymity. Similarly, we should be able to deal with more
complex protocols (with series of related messages) and configura-
tions (with more principals and roles). Our predicate structure is
quite modular, with predicates being re-used in different protocols.
Hence, we are hopeful that the method will scale up. Moreover,
our semantics appears to be suitable for automation, and we are
investigating how to automate the proofs using Blanchet’s recent
logic-based tool for applied pi [5].
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At this stage, we are exploring the range of WS-Security protocols,
rather than attempting its thorough description. Our fragment of
WS-Security omits certain features such as Kerberos tokens and
encryption but we see no fundamental barrier to modelling all of
WS-Security.

Finally, although all the protocols are implemented using WSE, our
goal has not been to verify the WSE implementation itself. Still, we
are investigating ways of verifying at least parts of that implemen-
tation by relating it to our semantics.

Acknowledgements. We thank Tony Hoare, Riccardo Pucella, and
the anonymous reviewers for their comments.
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Appendix: The Applied Pi Calculus (Overview)
The applied pi calculus is a simple, general extension of the pi cal-
culus with value passing, primitive function symbols, and equations
between terms. Abadi and Fournet [1], introduce this calculus, de-
velop semantics and proof techniques, and apply those techniques
in reasoning about some security protocols. This appendix gives
only a brief overview derived from [18].

In the applied pi calculus, the constructs of the classic pi calculus
can be used to represent concurrent systems that communicate on
channels, and function symbols can be used to represent crypto-
graphic operations and other operations on data. Large classes of
important attacks can also be expressed in the applied pi calculus,
as contexts. These include the typical attacks for which a symbolic,
mostly “black-box” view of cryptography suffices (but not for ex-
ample some lower-level attacks that depend on timing behaviour
or dictionary attacks). Some of the properties of the protocol can
be nicely captured in the form of equivalences between processes.
Moreover, some of the properties are sensitive to the equations sat-
isfied by the cryptographic functions upon which the protocol re-
lies. The applied pi calculus is well-suited for expressing those
equivalences and those equations.

Abstractly, asignatureΣ consists of a finite set of function sym-
bols, such asconcat andsha1, each with an integer arity. Given a
signatureΣ, an infinite set of names, and an infinite set of variables,
the set oftermsis defined by the grammar:

Grammar for Terms:

T,U,V,SI,Envelope::= terms
begin,end,http, init,c,s name (for channels)
spwd,sr ,su name (for secrets)
b,e,n,x,y, t,u variable
f (T1, . . . ,Tl ) function application

where f ranges over the function symbols ofΣ and l matches the
arity of f . We use metavariablesv andw to range over both names
and variables.

The grammar forprocessesis similar to the one in the pi calcu-
lus, except that here messages can contain terms (rather than only
names) and that names need not be just channel names:

Grammar for Processes:

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
νs.P name restriction (“new”)
if U = V then P else Q conditional
v(x).P message input
v〈T〉.P message output

The null process0 does nothing;P |Q is the parallel composition of
P andQ; the replication !P behaves as an infinite number of copies
of P running in parallel. The processνs.P makes a new names then
behaves asP. The conditional constructif U = V then P else Qis
standard, but we should stress thatU = V represents equality in the
equational theory, rather than strict syntactic identity. We abbrevi-
ate itif U =V then PwhenQ is 0. Finally, the input processv(x).P
is ready to input from channelv, then to runP with the actual mes-
sage replaced for the formal parameterx, while the output process
v〈T〉.P is ready to output messageT on channelv, then to runP.
In both of these, we may omitP when it is0. WhenX is a set of
processes{Pi | i ∈ I} indexed by some finite setI = {i1, . . . , in}, we
write ∏i∈I X as an abbreviation forPi1 | . . . | Pin | 0.

Further, we extend processes withactive substitutions:

Grammar for Extended Processes:

A,B,C, I ,K,S::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νs.A variable restriction
{x = T} active substitution

We write {x = T} for the substitution that replaces the variablex
with the termT. The substitution{x = T} typically appears when
the termT has been sent to the environment, but the environment
may not have the atomic names that appear inT; the variablex is
just a way to refer toT in this situation. The substitution{x = T}
is active in the sense that it “floats” and applies to any process that
comes into contact with it. In order to control this contact, we may
add a variable restriction:νx.({x = T} | P) corresponds exactly to
let x= T in P. Although the substitution{x = T} concerns only
one variable, we can build bigger substitutions by parallel compo-
sition. We always assume that our substitutions are cycle-free. We
also assume that, in an extended process, there is at most one substi-
tution for each variable, and there is exactly one when the variable
is restricted.

A frameis an extended process built up from active substitutions by
parallel composition and restriction. Informally, frames represent
the static knowledge gathered by the environment after communi-
cations with an extended process. Anevaluation context E[-] is an
extended process with a hole in the place of an extended process.
As usual, names and variables have scopes, which are delimited by
restrictions and by inputs. WhenX is any expression,fv(X) and
fn(X) are the sets of free variables and free names ofX, respec-
tively.

We rely on a sort system for terms and extended processes [1, Sec-
tion 2]. We always assume that terms and extended processes are
well-sorted and that substitutions and context applications preserve
sorts.

Given a signatureΣ, we equip it with an equational theory (that is,
with an equivalence relation on terms with certain closure proper-
ties). We write simplyU =V to mean the termsU andV are related
by the equational theory associated withΣ.

Structural equivalences, written A≡ B, relate extended processes
that are equal by any capture-avoiding rearrangements of parallel
compositions, restrictions, and active substitutions, and by equa-
tional rewriting of any terms in processes.

Reductions, writtenA→ B, represent steps of computation (in par-
ticular, internal message transmissions and branching on condition-
als). Reductions are closed by structural equivalence, hence by
equational rewriting on terms.

Observational equivalences, written A ≈ B, relate extended pro-
cesses that cannot be distinguished by any evaluation context in the
applied pi calculus, with any combination of messaging and term
comparisons. (We let≈ be the largest weak bisimulation on ex-
tended processes for reductions that preserves all potential obser-
vation of input or output on free names and that is closed by ap-
plication of evaluation contexts [1].) The applied pi calculus has a
useful, general theory—parameterized byΣ and its equational the-
ory [1]—of observational equivalence.
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