Verifying Web Services Security Configurations

Karthikeyan Bhargavan

Samoa Project
http://securing.ws
Microsoft Research Cambridge

Abstract. XML Web Services provide a flexible API for building dis-
tributed systems as a collection of endpoints that can send and receive
SOAP messages. These systems are secured using message-based cryp-
tographic mechanisms defined in a series of specifications developed by
Microsoft, IBM, and others. Such home-grown security protocols often
go wrong; they are prone to a well-known class of attacks, formalized by
Dolev and Yao, where an attacker can intercept, modify, and replay mes-
sages. The vulnerability is only increased by the flexible message formats
and complex trust configurations allowed by the standards. Our goal is
to verify the security of families of protocol configurations, such as those
deployed for Microsoft’s WSE and Indigo web services implementations.

‘We propose a new specification language for writing machine-checkable
descriptions of SOAP-based security protocol configurations and their
properties. Our TulaFale language is based on the pi calculus (for writ-
ing collections of SOAP processors running in parallel), plus XML syntax
(to express SOAP messaging), logical predicates (to construct and filter
SOAP messages), and correspondence assertions (to specify authentica-
tion goals of protocols). Our implementation compiles TulaFale into the
applied pi calculus, and then runs Blanchet’s resolution-based protocol
verifier. The TulaFale implementation is available for download.

We also describe a high-level link language for describing security con-
figurations, and demonstrate a tool that can automatically generate and
analyze executable security policy deployments for web services written
using WSE. This is the first tool we know of that can automatically an-
alyze cryptographic configurations to find real errors and demonstrable
attacks.

1 Introduction

Web services enable a server to provide authorized users with programmatic
access to data and software over the web. For instance, an e-commerce web site
may distribute to its customers client software that regularly connects to the
site and downloads the latest stock and price information (in XML) to update a
local database. This level of access exposes the server to increased security risks;
hence, our goal is to verify the security of such web service deployments.

This work was done in collaboration with A.D. Gordon, C. Fournet, R. Corin, and R. Pucella

The security configuration for such a server includes all its exported web ser-
vices, the corresponding clients, the customer database, and the security poli-
cies and application-level security at each client and service. Various emerging
web services security specifications define standard mechanisms for securing such
(and more complex) configurations; and emerging APIs such as Microsoft’s WSE
enable developers to use these standard mechanisms to secure their deployed web
services.

In the rest of this section, we present a brief introduction to web services
security specifications, providing additional references for the interested reader.
In the next section, we describe our approach toward the automated verification
of web services configurations; we outline our tools, referring to published papers
for details.

1.1 Web Services

Web services are a wide-area distributed systems technology, based on asyn-
chronous exchanges of XML messages conforming to the SOAP message for-
mat [BEKT00,W3C03]. A basic motivation for web services is to support pro-
grammatic access to web data. The HTML returned by a typical website is a
mixture of data and presentational markup, well suited for human browsing,
but the presence of markup makes HTML a messy and brittle format for data
processing. In contrast, the XML returned by a web service is just the data, with
some clearly distinguished metadata, well suited for programmatic access. For
example, search engines export web services for programmatic web search, and
e-commerce sites export web services to allow affiliated websites direct access to
their databases.

Generally, a broad range of applications for web services is emerging, from
the well-established use of SOAP as a platform and vendor neutral middleware
within a single organisation, to the proposed use of SOAP for device-to-device
interaction [ST04]. Still, the simplest and predominant application of web ser-
vices is to implement remote procedure calls over the web (HTTP) with argu-
ments and results serialized as XML. (However, RPCs are not their only appli-
cation [Vog03].)

1.2 Securing Web Services with Cryptographic Protocols

Web services specifications support SOAP-level security via a syntax for em-
bedding cryptographic materials in SOAP messages. The WS-Security stan-
dard [NKHBMO04] describes how to sign and encrypt portions of SOAP mes-
sages, so as to achieve end-to-end security. Hence, to meet their security goals,
web services and their clients can construct and check security headers in mes-
sages, according to the WS-Security format [IM02,NKHBMO04]. Related spec-
ifications such as WS-Trust [KNT04b] and WS-SecureConversation [KNT04a]
extend WS-Security with key-exchange mechanisms and session-level security.
WS-Security can provide message confidentiality and authentication inde-
pendently of the underlying transport, using, for instance, secure hash functions,

shared-key encryption, or public-key cryptography. WS-Security has several ad-
vantages compared to using a secure transport such as SSL, including scalabil-
ity, flexibility, transparency to intermediaries such as firewalls, and support for
non-repudiation. Significantly, though, WS-Security does not itself prescribe a
particular security protocol: each application must determine its security goals,
and process security headers accordingly.

Web services may be vulnerable to many of the well-documented classes of
attack on ordinary websites [SS02,HL03]. Moreover, unlike typical websites, web
services relying on SOAP-based cryptographic protocols may additionally be
vulnerable to a new class of XML rewriting attacks: a range of attacks in which an
attacker may record, modify, replay, and redirect SOAP messages, but without
breaking the underlying cryptographic algorithms. Flexibility comes at a price
in terms of security, and it is surprisingly easy to misinterpret the guarantees
actually obtained from processing security headers. XML is hence a new setting
for an old problem going back to Needham and Schroeder’s pioneering work
on authentication protocols; SOAP security protocols should be judged safe,
or not, with respect to an attacker who is able to “interpose a computer on
all communication paths, and thus can alter or copy parts of messages, replay
messages, or emit false material” [NS78]. XML rewriting attacks are included
in the WS-I threat model [DHK"04]. We have found a variety of replay and
impersonation attacks in practice.

1.3 Configuring Web Services Security with Policy

Rather than using APIs for manipulating security tokens, application writers
are encouraged to state their security requirements in configuration files. WS-
SecurityPolicy [DLHBH"02], built on the WS-Policy [BCH'03] and WS-Policy-
Assertion [BHK™T03], is a declarative XML format for programming how web
services implementations construct and check WS-Security headers. By express-
ing security checks as XML metadata instead of imperative code, policy-based
web services conform to the general principle, when building secure systems, of
isolating security checks from other aspects of message processing, to aid hu-
man review of security. Moreover, coding security checks as XML metadata aids
interoperability since the metadata may easily be exchanged between different
implementations on different platforms.

Still, driving web services security from WS-SecurityPolicy is no panacea.
First, despite its name, WS-SecurityPolicy drives low-level mechanisms that
build and check individual security headers; we need a way to relate policies
to more abstract, application-level goals such as message authentication or se-
crecy. Second, the configuration files, including WS-SecurityPolicy files, of a
SOAP-based system largely determine its vulnerability to XML rewriting at-
tacks; WS-SecurityPolicy gives freedom to invent new cryptographic protocols,
which are hard to get right, in whatever guise.

2 Verifying Web Services Security

The use of formal methods to analyze traditional cryptographic protocols and
their vulnerabilities began with work by Dolev and Yao [DY83]. In the past few
years there has been intense research on the Dolev-Yao model, leading to the
development of numerous formalisms and tools.

Our work builds on the line of research using the pi calculus. The pi cal-
culus [Mil99] is a general theory of interaction between concurrent processes.
Several variants of the pi calculus, including spi [AG99], and a generalization,
applied pi [AF01], have been used to formalize and prove properties of cryp-
tographic protocols. A range of compositional reasoning techniques is available
for proving protocol properties, but proofs typically require human skill and
determination. Recently, however, Blanchet [Bla01,Bla02] has proposed a range
of automatic techniques, embodied in his theorem prover ProVerif, for checking
certain secrecy and authentication properties of the applied pi calculus. ProVerif
works by compiling the pi calculus to Horn clauses and then running resolution-
based algorithms.

2.1 TulaFale: A Security Tool for Web Services

TulaFale is a new scripting language for specifying SOAP security protocols, and
verifying the absence of XML rewriting attacks:

TulaFale = processes + XML + predicates + assertions

The pi calculus is the core of TulaFale, and allows us to describe SOAP proces-
sors, such as clients and servers, as communicating processes. We extend the pi
calculus with a syntax for XML plus symbolic cryptographic operations; hence,
we can directly express SOAP messaging with WS-Security headers. We declara-
tively specify the construction and checking of SOAP messages using Prolog-style
predicates; hence, we can describe the operational details of SOAP processing.
Independently, we specify security goals using various assertions, such as corre-
spondences for message authentication and correlation.

It is important that TulaFale can express the detailed structure of XML sig-
natures and encryption so as to catch low-level attacks on this structure, such
as copying part of an XML signature into another; more abstract representa-
tions of message formats, typical in the study of the Dolev-Yao model and used
for instance in previous work on SOAP authentication protocols [GP03], are
insensitive to such attacks.

Our methodology when developing TulaFale has been to study particular
web services implementations, and to develop TulaFale scripts modelling their
security aspects. Our experiments have been based on the WSE development
kit [Mic02], a particular implementation of WS-Security and related specifica-
tions. We have implemented the running example protocol of this paper using
WSE, and checked that the SOAP messages specified in our script faithfully
reflect the SOAP messages observed in this implementation. For a discussion of

What TulaFale does

b (@
TulaFale predicate
script libra
Existing implementation of o % P ¢ ‘ 14
WS-Security RO J’ R
, ..--"‘ . «+*" TulaFale
_.“" J intermediate pi-calculus {
ProVerif OK, or
SOAP No because...
processing

Fig. 1. Modelling WS-Security protocols with TulaFale

the implementation of related protocols, including logs of SOAP messages, see
the technical report version of an earlier paper [BFG04a).

Fig. 1 illustrates our methodology. On the left, we have the user-supplied
code for implementing a web services protocol, such as the one of this paper, on
top of the WSE library. On the right, we have the TulaFale script modelling the
user-supplied code, together with some library predicates modelling operations
performed by WSE. Also on the right, we have the TulaFale tool, which compiles
its input scripts into the pure applied pi calculus, which is then analyzed via
ProVerif.

TulaFale is a direct implementation of the pi calculus described in a previ-
ous formal semantics of web services authentication [BFG04a]. Details of the
TulaFale syntax and implementation have been published elsewhere [BFGP04],
and the implementation is available for download (http://securing.ws). We
have successfully used TulaFale to specify and prove (or find errors in) various
SOAP security protocols [BFGP04,BCFG04].

2.2 Verifying Policy Configurations

In using TulaFale to verify a specific configuration, we manually model the se-
curity checks performed by the client and service deployments in the high-level
specification language (the dotted lines in Figure 1). Ideally, however, we would
like to directly and automatically verify the configuration files that drive these
implementations. Hence, we propose a new language and two new tools to ad-
dress this problem.

In the absence of an existing XML schema for writing high-level security
goals, we design our own simple format for secure links between SOAP endpoints
hosting sets of principals acting as clients and servers. The link language is

e Our tools for verifying
olicy configurations
secure link poley g
Existing policy-driven ‘ Security Y
implementation configuration Joas
of WS-Security generator C(-) - -
configuration
compiler S(-,-)

e) D (@ D

non- Policy ‘/

. (& (@ D

security 2l - predicate TulaFale script

code cL) ;

o IR library S(c(L).L)
\ ; ot "‘ i * *
.
System SOAP F’roVerif OK, or
processing (pi caleulus) | po pecause..

Fig. 2. Generating and Checking Web Services Security Policy Deployments

considerably more abstract (and less expressive) than policies, so that reviewing
the security of a link specification is much easier than understanding the security
implications of every detail in a configuration.

Both our new tools take a link specification L as input. The first (“config-
uration generator” in Figure 2) generates WSE policy configurations C(L) to
implement L. The second (“configuration compiler” in Figure 2) generates a Tu-
laFale script S(C, L), which consists of a formal model of the policy configuration
C, plus security goals extracted from L.

For any L, we can check correct generation of C(L) by compiling to the script
S(C(L), L), and running the TulaFale verifier. Alternatively, we can use a dif-
ferent (or a modified) configuration C’, for instance by handwriting some of the
policies, and check that the amended configuration still meets the original secu-
rity goals, by verifying the script S(C’, L). In this case, we automatically verify
formal security guarantees, without the need to manipulate TulaFale scripts. For
instance, one could run the verifier whenever the configuration is edited, before
committing the changes to a live system.

We have used these tools to analyze and find errors in several policy con-
figurations. Details of the design and implementation of the tools have been
published elsewhere [BFG04b).

3 Further Reading

The TulaFale language and implementation is presented through a detailed ex-
ample in [BFGP04]. The TulaFale implementation is available for download (http:
//securing.ws). The design and implementation of the policy configuration
analysis tools are described in [BFG04b].

A longer case study of the TulaFale language and implementation analyzes
several scenarios corresponding to the WS-Trust and WS-SecureConversation
specifications [BCFGO04]. The scripts used in this study are available online.

An earlier work [BFGO04a] introduces a preliminary version of TulaFale, de-
fines its semantics via translation into the applied pi calculus [AF01], illustrates
TulaFale via several single-message protocols, and describes hand-crafted cor-
rectness proofs.

References

AFO01.

AG99.

BCFGO04.

BCH™'03.

BEK™00.

BFGO4a.

BFGO04b.

BFGPO04.

BHK03.

Bla01.

Bla02.

M. Abadi and C. Fournet. Mobile values, new names, and secure com-
munication. In 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 104-115, 2001.

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Information and Computation, 148:1-70, 1999.

K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Secure
sessions for web services. In Proceedings of the 2004 ACM Work-
shop on Secure Web Services. ACM Press, October 2004. Full ver-
sion available at http://research.microsoft.com/projects/samoa/
secure-sessions-with-scripts.pdf.

D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin,
N. Nagaratnam, M. Nottingham, C. von Riegen, and J. Shewchuk. Web
services policy framework (WS-Policy), May 2003.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. Nielsen, S. Thatte, and D. Winer. Simple Object Access Proto-
col (SOAP) 1.1, 2000. W3C Note, at http://www.w3.org/TR/2000/
NOTE-SO0AP-20000508/.

K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web ser-
vices authentication. In 31st ACM Symposium on Principles of Program-
ming Languages (POPL’04), pages 198-209, 2004. An extended version
appears as Microsoft Research Technical Report MSR-TR-2003-83.

K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying policy-based
security for web services. In Proceedings of the 11th ACM conference
on Computer and communications security, pages 268-277. ACM Press,
2004.

K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. TulaFale:
A security tool for web services. In International Symposium on Formal
Methods for Components and Objects (FMCO’03), volume 3188 of LNCS,
pages 197-222. Springer, 2004.

D. Box, M. Hondo, C. Kaler, H. Maruyama, A. Nadalin, N. Nagarat-
nam, P. Patrick, C. von Riegen, and J. Shewchuk. Web services policy
assertions language (WS-PolicyAssertions), May 2003.

B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In 14th IEEE Computer Security Foundations Workshop
(CSFW-14), pages 82-96. IEEE Computer Society, 2001.

B. Blanchet. From Secrecy to Authenticity in Security Protocols. In
9th International Static Analysis Symposium (SAS’02), volume 2477 of
Lecture Notes on Computer Science, pages 342-359. Springer, 2002.

DHK ' 04.

DLHBH'02.

DY83.

GPO03.

HLO3.

IMO02.

KN'04a.

KN*04b.

Mic02.

Mil99.

NKHBMO4.

NST78.

St04.

SS02.
Vog03.

W3C03.

M. Davis, B. Hartman, C. Kaler, A. Nadalin, and J. Schwarz. WS-I
Security Scenarios, February 2004. Working Group Draft Version
0.15, at http://www.ws-i.org/Profiles/BasicSecurity/2004-02/
SecurityScenarios-0.15-WGD.pdf.

G. Della-Libera, P. Hallam-Baker, M. Hondo, T. Janczuk, C. Kaler,
H. Maruyama, N. Nagaratnam, A. Nash, R. Philpott, H. Prafullchan-
dra, J. Shewchuk, E. Waingold, and R. Zolfonoon. Web services security
policy language (WS-SecurityPolicy), December 2002.

D. Dolev and A.C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT—29(2):198-208, 1983.

A. D. Gordon and R. Pucella. Validating a web service security abstrac-
tion by typing. In ACM Workshop on XML Security 2002, pages 18-29,
2003. An extended version appears as Microsoft Research Technical Re-
port MSR-TR-2002-108.

M. Howard and D. LeBlanc. Writing secure code. Microsoft Press, second
edition, 2003.

IBM Corporation and Microsoft Corporation. Security in a
web services world: A proposed architecture and roadmap. At
http://msdn.microsoft.com/library/en-us/dnwssecur/html/
securitywhitepaper.asp, April 2002.

C. Kaler, A. Nadalin, et al. Web Services Secure Conversation Lan-
guage (WS-SecureConversation), May 2004. Version 1.1. At http:
//msdn.microsoft.com/ws/2004/04/ws-secure-conversation/.

C. Kaler, A. Nadalin, et al. Web Services Trust Language (WS-Trust)
Version 1.1, May 2004. At http://msdn.microsoft.com/ws/2004/04/
ws-trust/.

Microsoft Corporation. Web Services Enhancements for Microsoft
.NET, December 2002. At http://msdn.microsoft.com/webservices/
building/wse/default.aspx.

R. Milner. Communicating and Mobile Systems: the w-Calculus. Cam-
bridge University Press, 1999.

A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. ~OASIS
Web Services Security: SOAP Message Security 1.0 (WS-Security 2004),
March 2004. At http://www.oasis-open.org/committees/download.
php/5941/0asis-200401-wss-soap-message-security-1.0.pdf.

R.M. Needham and M.D. Schroeder. Using encryption for authenti-
cation in large networks of computers. Communications of the ACM,
21(12):993-999, 1978.

J. Schlimmer et al. A Proposal for UPnP 2.0 Device Architecture, May
2004. At http://msdn.microsoft.com/library/en-us/dnglobspec/
html/devprof .asp.

J. Scambay and M. Shema. Hacking Web Applications Exposed. McGraw-
Hill/Osborne, 2002.

W. Vogels. Web services are not distributed objects. IEEE Internet
Computing, 7(6):59-66, 2003.

W3C. SOAP Version 1.2, 2003. W3C Recommendation, at http://www.
w3.org/TR/soap12.

