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PART 0

INTRODUCTION
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CRYPTOGRAPHIC PROTOCOLS

A model checking problem:
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AUTOMATIC VERIFICATION

Why automatic ?

Verification of many small variants of a protocol. (Nonce
implementation, memory constraints, bandwidth
constraints,...)

Refine the model: include more properties of the
primitives, depending on the encryption algorithms (e.g.
malleability, encryption and decryption commute... See
F. Morain’s lecture).

Alternative: use machine assisted proofs Paulson 97 – 04.
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THE TWO APPROACHES

The security problem is Π1
1-hard: there is no decision and

even no semi-decision algorithm.

This result holds even under strong additional hypotheses
(see Ramanujam lecture).

The two approaches:

Pessimistic : try to find an attack

Optimistic : use upper approximations, trying to find a proof.
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THE OPTIMISTIC APPROACH

ProVerif (See C. Fournet’s lecture)

The EVA project: LSV, VERIMAG, TRUSTED LOGIC.

Many others CAPSL, ...

Many papers and results, using various techniques: Clauses, Set
constraints, Tree automata,... (See Ramanujam lecture)

Weaknesses:

A failure doesn’t mean that there is an attack

A success means no attack, assming some hypothesis on the
cryptographic primitives. Difficult to take algebraic properties into
account.

There is a huge variety of security properties, whose proofs can
hardly be automatized
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BOUNDED NUMBER OF SESSIONS

We fix the number of protocol instances ; no guarantee that the protocol
is secure for more instances.
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BOUNDED NUMBER OF SESSIONS

We fix the number of protocol instances ; no guarantee that the protocol
is secure for more instances.

M. Rusinowitch and M. Turuani, 2001: security is co-NP-complete for a
bounded number of sessions, In the Dolev-Yao model (perfect
cryptography)
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We fix the number of protocol instances ; no guarantee that the protocol
is secure for more instances.

M. Rusinowitch and M. Turuani, 2001: security is co-NP-complete for a
bounded number of sessions, In the Dolev-Yao model (perfect
cryptography)

The PROUVÉ project: LSV, VERIMAG, LORIA, FRANCE TELECOM, CRIL

Case studies: Electronic money, Vote. Properties are not reduced to
secrecy and authentication.
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BOUNDED NUMBER OF SESSIONS

We fix the number of protocol instances ; no guarantee that the protocol
is secure for more instances.

M. Rusinowitch and M. Turuani, 2001: security is co-NP-complete for a
bounded number of sessions, In the Dolev-Yao model (perfect
cryptography)

The PROUVÉ project: LSV, VERIMAG, LORIA, FRANCE TELECOM, CRIL

Case studies: Electronic money, Vote. Properties are not reduced to
secrecy and authentication.

Many tools based on model checking, boundind the number of sessions
and often also the instances: CSP/FDR, ATHENA, CASRUL, AVISPA, ...
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GOALS OF THE LECTURES

Design proof strategies which are

Refutation complete

complete for a fixed number of sessions

work for various intruder theories

can take into account several algebraic theories for
cryptographic primitives
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EXAMPLES OF PROTOCOLS

TMN:
1. A → S : A, B, {KA}pub(S)

2. S → B : A

3. B → S : A, {KB}pub(S)

4. S → A : B, KB ⊕ KA

NS:
1. A → B : {< A, NA >}pub(B)

2. B → A : {< NA, NB >}pub(A)

3. A → B : {NB}pub(B)

SPORE – the protocol library

//www.lsv.ens-cachan.fr/spore/
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SUMMARY OF THE LECTURES

Part 0: introduction

Part 1:local theories

1. Tractable Decision problems HORNSAT

2. Tractable inference systems: LOCAL THEORIES. Mc Allester 93
3. Examples of local theories: the Dolev-Yao intruder deduction systems
4. Exercises

Part 2: proof normalization

1. Protocols: A quick reminder of the trace semantics
2. Proof systems; the particular case of a bounded number of sessions
3. Protocols rules as intruder oracles
4. A normal proof result in the simplest case
5. co-NP completeness in the case of a bounded number of sessions.

Rusinowitch and Turuani, 2001
6. Extensions to other intruder theories
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SUMMARY OF THE LECTURES (CNTD)

Part 3: algebraic properties

1. Basic on rewriting and narrowing
2. Another local theory
3. Computing variants
4. Locality and variants.
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PART 1:

LOCAL THEORIES
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THE HORNSAT DECISION PROBLEM

Data : a finite set of propositional Horn clauses : there is at
most one positive litteral in each clause

Question : is the set of clauses satisfiable ?

Theorem 1 HORNSAT is decidabable in linear time and is
PTIME-complete

Many equivalent problems (under constant space
reductions):

AND/OR graph reachability

Tree automata emptiness
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PROOF OF THE THEOREM (I)

Reduce first the problem to a fixed point computation, separating the
purely negative clauses from the others.

16-Automatic Verification of Cryptographic Protocols
Cimpa school, Feb 2005

PROOF OF THE THEOREM (I)

Reduce first the problem to a fixed point computation, separating the
purely negative clauses from the others.

Assume the data are organized in two arrays:

A1 is indexed by propositional variables and A1[P ] = (s(P ), LC(P ))

where s(P ) is a status flag and LC(P ) is the list of clauses in which
P occurs negatively.

A2 is indexed by clauses and A2[C] = (n(C), H(C)) where n(C) is
an integer, initially set to the number of distinct negative litterals in
C. H(C) is the litteral in the head.

16-Automatic Verification of Cryptographic Protocols



Cimpa school, Feb 2005

PROOF OF THE THEOREM (I)

Reduce first the problem to a fixed point computation, separating the
purely negative clauses from the others.

Assume the data are organized in two arrays:

A1 is indexed by propositional variables and A1[P ] = (s(P ), LC(P ))

where s(P ) is a status flag and LC(P ) is the list of clauses in which
P occurs negatively.

A2 is indexed by clauses and A2[C] = (n(C), H(C)) where n(C) is
an integer, initially set to the number of distinct negative litterals in
C. H(C) is the litteral in the head.

The array computation can be done in linear time. (Note: numbers can
be written in base 1).

In addition, we consider a list M , which is initially empty (the least
model) and a stack σ.
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PROOF OF THEOREM (II)

First scan A2 once:
for every clause do

if n(C) = 0 then

let P = H(C) in

if s(P ) = 0 then push P on σ; set s(P ) to 1
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PROOF OF THE THEOREM (III)

while σ is not empty do

Pop a proposition P from σ

For every C ∈ LC(P ),

decrement n(C)

ifn(C) = 0 then

let P = H(C) in if s(P ) = 0 then

push P on σ

set s(P ) to 1.

Exercise 1 (level 2): show that every variable is pushed at most once on the stack.
Conclude that the algorithm works in linear time (assuming decrementation can be done
in constant time).
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INFERENCE SYSTEMS
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INFERENCE SYSTEMS

φ1 · · · φn

φ

@
@@R

XXXXXXXXXXz

premisses

-conclusion

φ1, . . . , φn, φ are formulas in a term algebra T (F , X).
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INFERENCE SYSTEMS

φ1 · · · φn

φ

@
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XXXXXXXXXXz

premisses
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conclusion

¡
¡

¡¡ª

Side condition

φ1, . . . , φn, φ are formulas in a term algebra T (F , X).

ψ is one step derivable from ψ1, . . . , ψn if there is a θ such
that φiθ = ψi, φθ = ψ and θ |= γ.
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LOCALITY

I is a finite set of inference rules, `I the (many-steps)
deduction relation.

Given a function F : 2T (F) → 2T (F) An inference system I is
F -local if, for every formula φ such that φ1, . . . , φn `I φ, there
is a proof of φ, which only involves formulas of
F ({φ1, . . . , φn, φ}).
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ORDER OF AN INFERENCE RULE

An inference rule r has order k ∈ N if there are expressions
e1, . . . , ek such that each ei is a subexpression of some
formula in r and every (meta)-variable of r occurs in some ei.

The inference rule

T ` k−1 T ` {x}k

T ` x

has order
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ORDER OF AN INFERENCE RULE

An inference rule r has order k ∈ N if there are expressions
e1, . . . , ek such that each ei is a subexpression of some
formula in r and every (meta)-variable of r occurs in some ei.

The inference rule

T ` k−1 T ` {x}k

T ` x

has order 1 (and any larger integer)
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TRACTABILITY OF LOCAL INFERENCE SYSTEMS

The size of a term (resp. a set of terms) is the number of its distinct
subterms.

Theorem 2: If

F is computable in linear time (resp. polynomial time),

I is F -local and

every rule as order k

then, given a finite set of formulas S and a formula φ, we can decide
whether S `I φ in time O(nk). (resp. ), where n = |S| + |φ|.
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TRACTABILITY OF LOCAL INFERENCE SYSTEMS

The size of a term (resp. a set of terms) is the number of its distinct
subterms.

Theorem 2: If

F is computable in linear time (resp. polynomial time),

I is F -local and

every rule as order k

then, given a finite set of formulas S and a formula φ, we can decide
whether S `I φ in time O(nk). (resp. ), where n = |S| + |φ|.

Proof: Compute T = F (S ∪ {φ}), each of them is a propositional variable.
Compute for each inference rule the O(nk) Horn clauses obtained by
solving the k matching equations for every t ∈ T . Use HORNSAT
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TRACTABILITY OF LOCAL INFERENCE SYSTEMS

The size of a term (resp. a set of terms) is the number of its distinct
subterms.

Theorem 2: If

F is computable in linear time (resp. polynomial time),

I is F -local and

every rule as order k

then, given a finite set of formulas S and a formula φ, we can decide
whether S `I φ in time O(nk). (resp. O(nm×k)), where n = |S| + |φ|.

Proof: Compute T = F (S ∪ {φ}), each of them is a propositional variable.
Compute for each inference rule the O(nk) Horn clauses obtained by
solving the k matching equations for every t ∈ T . Use HORNSAT
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EXERCISE 2 (LEVEL 1)

Theorem 2 essentially assumes that there are no side conditions in the
inference rules. What must be changed if we allow side conditions ?
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DOLEV-YAO LIKE THEORIES

F be pub(_), priv(_), {_}_, < _, _ >, [_]_ and constants.

x y

< x, y >

x y

{x}y

x y

[x]y

< x, y >

x

< x, y >

y

[x]y y

x

{x}pub(y) priv(y)

x

x

pub(x)
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DOLEV-YAO RULES ARE F -LOCAL

Theorem Let F (T ) be the set of subterms of T . Then the set
of Dolev-Yao rules is F -local.
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DOLEV-YAO RULES ARE F -LOCAL

Theorem Let F (T ) be the set of subterms of T . Then the set
of Dolev-Yao rules is F -local.

We divide the rules into two sets: the constructor rules, which build new
terms and the decomposition rules, which consist of the other 5 rules. We
prove, by induction on the length of a minimal size proof that, if T `I t then

1. if the last rule is a construction rule, then all terms in the proof are in
F (T ) ∪ F ({t})

2. otherwise, all terms in the proof are in F (T ).

In case the proof contains no inference step, t ∈ T and all terms in the
proof are in F (T ).
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LOCALITY PROOF (CNTD)

If the last inference rule is a construction rule, use induction hypothesis.

Π1

t1 · · ·

Πn

tn

f(t1, . . . , tn)
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LOCALITY PROOF (CNTD)

If the last inference rule is a construction rule, use induction hypothesis.

Π1

t1 · · ·

Πn

tn

f(t1, . . . , tn)

If it is unpairing, then the last rule of Π cannot be a pairing rule:

Π1

u

Π2

v

< u, v >

u

is not minimal in size: Π1 is a shorter proof of the same term. Then we use
induction hypothesis.
The other unpairing rule yields a similar proof.
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LOCALITY PROOF (CNTD)

If it is a symmetric decryption:
Π1

[u]v

Π2

v

u

The last rule of Π1 is not a construction. We use induction hypothesis twice and
closure of F (T ) by subterm.
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LOCALITY PROOF (CNTD)

If it is a symmetric decryption:
Π1

[u]v

Π2

v

u

The last rule of Π1 is not a construction. We use induction hypothesis twice and
closure of F (T ) by subterm.

If it is an asymetric decryption of {u}pub(v):

Π1

{u}pub(v)

Π2

priv(v)

u
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LOCALITY PROOF (CNTD)

If it is a symmetric decryption:
Π1

[u]v

Π2

v

u

The last rule of Π1 is not a construction. We use induction hypothesis twice and
closure of F (T ) by subterm.

If it is an asymetric decryption of {u}pub(v):

Π1

{u}pub(v)

Π2

priv(v)

u

The last rule of Π1 is not a construction rule. By induction hypothesis, all terms in
Π1 belong to F (T ). In particular, u, pub(v) ∈ F (T ). Next, there is no construction
rule yielding priv(v), hence apply the induction hypothesis.
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PASSIVE ATTACKS ARE EASY TO FIND

Corollary Deducibility can be decided in linear time for the Dolev-Yao
rules.

Exercise 3 (level 2) In early papers, the following procedure was
proposed for the intruder deduction problem: given t1, . . . , tn, t

1. First decompose as much as possible t1, . . . , tn: compute the fixed
point by decryption and unpairing.

2. Next try to build the term t using encryption and pairing from the set
obtained in the first step

Why is this procedure incomplete (Give an example) ? Under which
additional hypotheses is it complete ?
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MORE EXERCISES

Exercise 4 (level 2) Assume we add the following rule

{x}priv(y) pub(y)

x

Show that this yields also a local theory (possibly using another function
F )

Exercise 5 (level 3)
Assume we add the following rule, which is assumed to model some
kind of cipher-block chaining property:

{< x, y >}z

{x}z

Again, show that we get a local theory.
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MORE EXERCISES (CNTD)

Exercise 6 (level 3)
Show that, if S is a recognizable tree language, then the set of terms
deducible from S in the DY inference system is also a recognizable tree
language.
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EXCLUSIVE OR AXIOMS

x ⊕ x ⊕ y → y x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

x ⊕ x → 0 x ⊕ y = y ⊕ x

x ⊕ 0 → x

The rewrite system is AC-convergent: there are unique normal forms t ↓,
up to AC.
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EXTENDING DY WITH EXCLUSIVE OR

Add to DY the following rule(s):

x1 · · · xn

(x1 ⊕ . . . ⊕ xn) ↓

Exercise 7 (level 4). Show that the new inference system, with exclusive
or, is F -local. (Ind: consider for F the set of subterms, when ⊕ is viewed
as a varyadic symbol).
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