Protocols for Authentication and Key Establishment

2005 CIMPA-UNESCO School IISc Bangalore

> Anish Mathuria DA-IICT

Main References

 Handbook of Applied Cryptography – Menezes, Oorschot and Vanstone (CRC)

 Protocol for Authentication and Key Establishment - Boyd and Mathuria (Springer)

Module Outline

- Lecture 1 (this lecture) » Key transport
- Lecture 2 (tomorrow, 11-1)
 - » Entity authentication
 - » Key agreement
- Lecture 3 (tomorrow, 2-4)
 - » Group key agreement
 - » Password-based protocols

Ideal Security Protocol

- Does the protocol meet the requirements? » N.B. requirements must be precise
- Not fragile
 - » Must work when adversary tries to break it
 - » Works even if environment changes
- Minimizes computational and/or communication cost
- Very difficult to satisfy all of these!

Key establishment

- Secure communications using cryptography requires use of (session) keys that must be shared by participants
- If participants do not physically meet, keys have to be established using a suitable protocol

Classification

- Key transport
 - » one party creates a shared secret, and securely transfers it to other(s)
- Key agreement
 - $\ensuremath{\mathsf{*}}$ parties jointly create a shared secret

Assumption 1

- The adversary can eavesdrop on all messages sent in a protocol
- Countermeasure
 - » Make K confidential by encrypting it with another key
- Long-term keys necessary
 » Symmetric key
 - » Private, public key pair

Part 1 — Key transport

Notations

- {M}_K: encryption of M with symmetric key K
 » Assume encryption provides both confidentiality and integrity
- E_X(M): encryption of M with public key of entity X
- sig_X(M): digital signature of M using the private key of entity X
 - Assume not a message-recovering signature (but it can be)

Part 1 — Key transport

Assumption 2

- The adversary can alter all messages sent in a protocol using any information available
- The adversary can re-route any message to any principal
- The adversary can generate and insert completely new messages

Part 1 — Key transport

Part 1 — Key transport

Authentication Property • Alice and Bob should have assurance of

- the identity of the other party who can obtain K
- How to achieve this?

Part 1 — Key transport

Third Protocol Attempt Alice Bob Server 1: A, B 2: $\{K, B\}_{K_{AS}}, \{K, A\}_{K_{BS}}$ 3: $\{K, A\}_{K_{BS}}$ • Bob's (Alice's) ID is bound to K » Proves that server will reveal K to Bob (Alice) only » Works only if encryption algorithm provides integrity • This protocol prevents the authentication attack

• Is it secure? See the next slide ...

Part 1 — Key transport

Freshness

- Alice and Bob should have assurance that K is newly generated
- One secure method for achieving freshness
 - » Challenge sent from Alice to Server
 - » Only server can provide the correct response
 - $\ensuremath{\mathrel{\times}}$ Challenge chosen so that replay is not possible
- For challenge, a random value or "number used once" (nonce)

Part 1 — Key transport

Final Protocol Attempt Bob Alice Server 1: B, N_B 2: A, B, N_A, N_B 4: {K, A, N_B} 3: {K, B, N_A}_{KAS}, {K, A, N_B}_{KBS} • N_A, N_B = nonces generated by A and B resp. • This protocol protects against replay attack

Security Assumption 5

- The adversary can start any number of parallel protocol runs between any principals including different runs involving the same principals and with principals taking the same or different protocol roles
- This is a common source of protocol failures

Part 1 — Key transport

Attack Strategies

- Replay
 - » Adversary records information in the protocol and sends it to the same, or a different, principal, possibly during a later protocol run
- Reflection
 - » Adversary sends protocol messages back to the principal who sent them
- Typing
 - » Adversary replaces a message field of one type with a message field of another type

Part 1 — Key transport

22

Attack Strategies (2)

- Denial of service
 - » Adversary prevents or hinders legitimate principals from completing the protocol
- Certificate manipulation
 - » Adversary chooses or modifies certification information
- Protocol interaction
 - » Adversary uses one protocol to attack another protocol

Part 1 — Key transport

