Inf 431 - Cours 9

Assertions et Programmes

jeanjacqueslevy.net

secrétariat de l'enseignement: Catherine Bensoussan cb@lix.polytechnique.fr Aile 00, LIX, 01 69 33 34 67

www.enseignement.polytechnique.fr/informatique/IF

Plan

- 1. Correction de programmes itératifs scalaires
- 2. Terminaison de programmes itératifs
- 3. Correction de programmes avec des tableaux
- 4. Logique de Hoare
- 5. Récursion et assertions
- 6. Ordres bien-fondés

La suite de Fibonacci (1/6)

• Récurrence linéaire d'ordre 2

```
u_0 = 0

u_1 = 1

u_n = u_{n-1} + u_{n-2}

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, ...
```

```
• static int fib (int n) {
   if (n < 2) return n;
   else return fib (n-1) + fib (n-2);
}</pre>
```

• ou en faisant un peu de programmation dynamique

```
static int fib1 (int n) {
  int[] res = new int[n+1];
  res[0] = 0; res[1] = 1;
  for (int i=2; i <= n; ++i)
    res[i] = res[i-1]+res[i-2];
  return res[n];
}</pre>
```

La suite de Fibonacci (2/6)

• ou en ne gardant que les deux dernières valeurs x et y

```
static int fibonacci (int n) {
  int x = 0;
  if (n != 0) {
    x = 1; int y = 0;
    for (int k=1; k != n; ++k) {
      int t = y;
      y = x;
      x = x + t;
    }
  }
  return x;
}
```

• On veut montrer que $n \ge 0 \Longrightarrow x = \mathrm{fib}(n)$ à la fin.

La suite de Fibonacci (3/6)

• ou en décomposant l'instruction for.

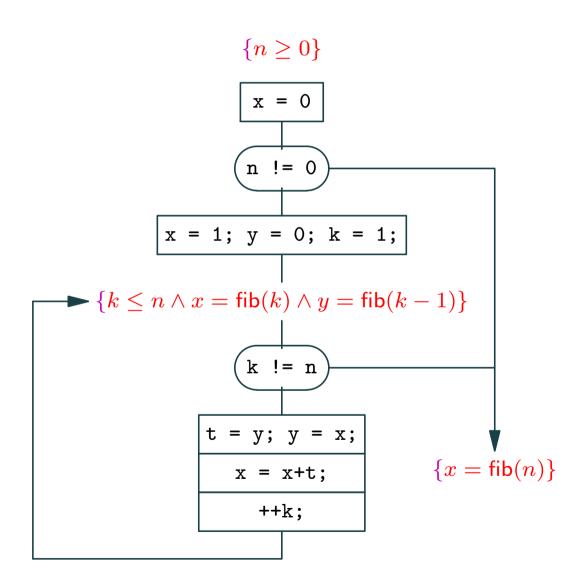
```
static int fibonacci (int n) {
  int x = 0;
  if (n != 0) {
    x = 1; int y = 0;
    int k = 1;
    while (k != n) {
      int t = y;
      y = x;
      x = x + t;
      ++k;
    }
  }
  return x;
}
```

La suite de Fibonacci (4/6)

```
• static int fibonacci (int n) {
     //\mathcal{P} = \{n \geq 0\}
     int x = 0;
     if (n != 0) {
        x = 1; int y = 0;
        int k = 1;
        //Q = \{k \le n \land x = \mathsf{fib}(k) \land y = \mathsf{fib}(k-1)\}
        while (k != n) {
          int t = y;
          y = x;
          x = x + t;
          ++k;
     //\mathcal{R} = \{x = \mathsf{fib}(n)\}
      return x;
```

- \mathcal{P} assertion d'entrée \mathcal{Q} assertion invariant de boucle \mathcal{R} assertion de fin
- Montrer que de \mathcal{P} , on peut dériver \mathcal{R} .

La suite de Fibonacci (5/6)



La suite de Fibonacci (6/6)

```
• static int fibonacci (int n) {
       \{n > 0\}
       int x = 0:
       \{n \geq 0 \land x = 0\}
      if (n != 0) {
          x = 1; int y = 0;
          \{n > 0 \land x = \mathsf{fib}(1) \land y = \mathsf{fib}(0)\}
          int k = 1:
          \{k \le n \land x = \mathsf{fib}(k) \land y = \mathsf{fib}(k-1)\}
          while (k != n)  {
             \{k < n \land x = \mathsf{fib}(k) \land y = \mathsf{fib}(k-1)\}
            int t = v;
             \{k < n \land x = \mathsf{fib}(k) \land y = \mathsf{fib}(k-1) \land t = \mathsf{fib}(k-1)\}
             y = x;
             \{k < n \land x = \mathsf{fib}(k) \land y = \mathsf{fib}(k) \land t = \mathsf{fib}(k-1)\}
            x = x + t;
             \{k < n \land x = \mathsf{fib}(k+1) \land y = \mathsf{fib}(k) \land t = \mathsf{fib}(k-1)\}
             ++k:
          \{k=n \land x = \mathsf{fib}(k) \land y = \mathsf{fib}(k-1)\}
       \{x = fib(n)\}
       return x;
```

Le PGCD (1/3)

• Un autre exemple itératif simple :

```
static int pgcd (int a, int b) {
  int x = a, y = b;
  while (x != y)
    if (x > y)
       x = x - y;
  else
      y = y - x;
  return x;
}
```

Le PGCD (2/3)

```
static int pgcd (int a, int b) {
     \{a > 0 \land b > 0\}
     int x = a, y = b;
     \{x > 0 \land y > 0 \land pqcd(x,y) = pqcd(a,b)\}
     while (x != y) {
        \{x > 0 \land y > 0 \land x \neq y \land pqcd(x, y) = pqcd(a, b)\}
       if (x > y) {
          \{x > 0 \land y > 0 \land x > y \land pqcd(x - y, y) = pqcd(a, b)\}
          x = x - y;
          \{x > 0 \land y > 0 \land pgcd(x, y) = pgcd(a, b)\}
       } else {
          \{x > 0 \land y > 0 \land x < y \land pgcd(x, y - x) = pgcd(a, b)\}
          y = y - x;
          \{x > 0 \land y > 0 \land pgcd(x, y) = pgcd(a, b)\}
     \{x > 0 \land x = y = pqcd(x, y) = pqcd(a, b)\}
     return x;
```

Exercice 1 Montrer que le raisonnement n'est plus valide avec $\{a \ge 0 \land b \ge 0\}$. Comment corriger le programme?

Le PGCD (3/3)

Exercice 2 Faire le raisonnement avec l'algorithme d'Euclide suivant avec $\{a \ge 0 \land b \ge 0\}$ comme assertion d'entrée.

```
static int pgcd (int a, int b) {
  int x = a, y = b;
  while (y != 0) {
    int r = x % y;
    x = y;
    y = r;
  }
  return x;
}
```

Exercice 3 Modifier les programmes pour qu'ils acceptent comme assertion d'entrée $\{a \in \mathbf{Z} \land b \in \mathbf{Z}\}.$

Assertions

- Les variables d'un programme itératif ont des valeurs modifiables.
- Une assertion est une proposition logique, décrivant une propriété d'un état mémoire des variables.
- Une assertion est attachée à un point d'un programme.
- Pour montrer l'implication de l'assertion de fin à partir de l'assertion d'entrée, on procède par implications successives grâce à des assertions intermédiaires.

Terminaison (1/2)

```
static int fibonacci (int n) {
 \{n \ge 0\}
 int x = 0;
 if (n != 0) {
   x = 1; int y = 0;
   int k = 1;
    \{\Omega(n,k) = n - k\}
   while (k != n) {
     int t = y;
     y = x;
     x = x + t;
      ++k;
  {x = fib(n)}
  return x;
En un tour de boucle comme (n,k) devient (n,k+1), on a
\Omega(n,k) = n - k > n - k - 1 = \Omega(n,k+1).
```

L'instruction while s'arrête donc.

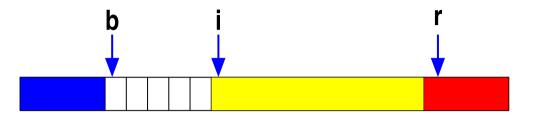
Terminaison (2/2)

```
static int pgcd (int a, int b) {
  {a>0 \land b>0}
  int x = a, y = b;
  \{x > 0 \land y > 0 \land \Omega(x, y) = \max(x, y)\}\
  while (x != y)
    if (x > y)
      x = x - y;
    else
      y = y - x;
  return x;
Ici encore en un tour de boucle, si x>y, on a
\Omega(x,y) = \max(x,y) > \max(x-y,y) = \Omega(x-y,y)
De même, si x < y, on a
\Omega(x,y) = \max(x,y) > \max(x,y-x) = \Omega(x,y-x)
```

L'instruction while s'arrête donc.

Exercice 4 Montrer la terminaison de l'algorithme d'Euclide.

Assertions et tableaux (1/3)



```
static void drapeauHollandais (int[] a) { [Dijkstra]
 int n = a.length; int b = 0, i = 0, r = n;
 while (i < r) {
   switch (a[i]) {
   case BLEU:
     int t = a[b]; a[b] = a[i]; a[i] = t;
     ++b; ++i;
     break;
   case BLANC:
     ++i;
     break;
   case ROUGE:
     --r;
     int u = a[r]; a[r] = a[i]; a[i] = u;
     break;
```

Assertions et tableaux (2/3)

```
static void drapeauHollandais (int[] a) {
      int n = a.length; int b = 0, i = 0, r = n;
      \{\phi(0, b, \mathtt{BLEU}) \land \phi(b, i, \mathtt{BLANC}) \land \phi(r, n, \mathtt{ROUGE}) \land i < r\}
      while (i < r) {
         switch (a[i]) {
         case BLEU:
             \{\phi(0, b, \mathtt{BLEU}) \land \phi(b, i, \mathtt{BLANC}) \land \phi(r, n, \mathtt{ROUGE}) \land a[i] = \mathtt{BLEU} \land i < r\}
            int t = a[b]; a[b] = a[i]; a[i] = t;
             \{\phi(0, b+1, \mathtt{BLEU}) \land \phi(b+1, i+1, \mathtt{BLANC}) \land \phi(r, n, \mathtt{ROUGE}) \land i < r\}
            ++b; ++i; break:
         case BLANC:
             \{\phi(0, b, \mathtt{BLEU}) \land \phi(b, i+1, \mathtt{BLANC}) \land \phi(r, n, \mathtt{ROUGE}) \land i < r\}
             ++i: break:
         case ROUGE:
             \{\phi(0, b, \mathtt{BLEU}) \land \phi(b, i, \mathtt{BLANC}) \land \phi(r, n, \mathtt{ROUGE}) \land a[i] = \mathtt{ROUGE} \land i < r\}
            --r:
            \{\phi(0,b,\mathtt{BLEU}) \land \phi(b,i,\mathtt{BLANC}) \land \phi(r+1,n,\mathtt{ROUGE}) \land a[i] = \mathtt{ROUGE} \land i \leq r\}
            int u = a[r]; a[r] = a[i]; a[i] = u;
            break:
      } }
      \{\phi(0, b, \mathtt{BLEU}) \land \phi(b, r, \mathtt{BLANC}) \land \phi(r, n, \mathtt{ROUGE})\}
où \phi(i, j, c) = \forall k. \ i < k < j \Rightarrow a[k] = c
```

Assertions et tableaux (3/3)

La terminaison du drapeau hollandais se montre en considérant l'ordinal $\Omega(b,i,r)=r-i.$

Exercice 5 Montrer la correction du tri par sélection suivant :

```
static void triSelection (int[] a) {
  int n = a.length;
  for (int i = 0; i < n - 1; ++i) {
    int min = i;
    for (int j = i+1; j < n; ++j)
        if (a[j] < a[min])
        min = j;
    int t = a[min]; a[min] = a[i]; a[i] = t;
}</pre>
```

Exercice 6 Montrer la correction du tri par insertion.

Exercice 7 Montrer la correction du tri par bulles. (cf. cours 1ère année)

Quelques principes logiques

• On a toujours $\{P(E)\}\ \mathbf{x} = E;\ \{P(x)\}$

- Pour montrer $\{P\}$ if (E) S else S' $\{Q\}$ il faut montrer $\{P \wedge E\}$ S $\{Q\}$ et $\{P \wedge \neg E\}$ S' $\{Q\}$
- Pour montrer $\{P\}$ while (E) S $\{Q\}$ il faut deviner l'invariant I, et montrer $P\Rightarrow I$ et $I\wedge \neg E\Rightarrow Q$ et $\{I\wedge E\}$ S $\{I\}$

cf. logique de Floyd-Hoare.

Dans le triplet $\{P\}$ S $\{Q\}$, on appelle P et Q des pré-condition et post-condition de S.

Logique de Hoare

Les formules sont des triplets $\{P\}S\{Q\}$.

Les prémisses d'une règle d'inférence sont au dessus de la barre.

La conclusion d'une règle d'inférence est en dessous.

Un axiome est une règle sans prémisse.

Correction partielle – Correction totale

- $\{P\}$ S $\{Q\}$ vrai montre que si P est vrai, alors Q l'est aussi. Tout dépend donc de ce qu'on veut prouver avec Q. Par exemple, on peut ne s'intéresser qu'à la valeur d'une seule variable, sans se soucier du reste.
- $\{P\}$ S $\{Q\}$ vrai ne donne aucune indication de terminaison, puisque Q n'est vrai que si S termine. On dit qu'il y a correction partielle.
- seuls des ordinaux Ω qui décroissent dans les boucles assurent la terminaison. Alors on a correction totale.
- assertions \(\neq \) spécifications. Faire la correspondance entre spécifications (« le cahier des charges ») et programmes est plus complexe et souvent imprécis.
- la correspondance entre spécifications et programmes peut se faire progressivement : programmation par raffinements successifs (stepwise refinement).
- les spécifications sont parfois formelles (B, TLA, Coq, Isabelle, HOL, PVS, etc); on peut alors formaliser la correspondance entre spécifications et programmes (« méthodes formelles »).

Implémentation des assertions (1/2)

Java 1.4 : l'instruction assert lève AssertionError si l'assertion n'est pas vérifiée. Beaucoup de langages ont cette facilité : Caml, C, C++.

```
static void drapeauHollandais (int[] a) {
 int n = a.length; int b = 0, i = 0, r = n;
 assert phi(a,0,b,BLEU) && phi(a,b,i,BLANC) && phi(a,r,n,ROUGE)
     && i <= r:
 while (i < r) {
   switch (a[i]) {
    . . .
   assert phi(a,0,b,BLEU) && phi(a,b,i,BLANC) && phi(a,r,n,ROUGE);
 assert phi(a,0,b,BLEU) && phi(a,b,r,BLANC) && phi(a,r,n,ROUGE);
static boolean phi (int[] a, int i, int j, int c) {
 return i >= j || a[i] == c && phi(a, i+1, j, c);
```

• javac -source 1.4 DutchFlag.java java -enableassertions DutchFlag 0 1 2

Implémentation des assertions (2/2)

• On peut l'implémenter en Java 1.1.8 par :

```
class AssertionError extends Error { }

public class Assertion {
  public static void check (boolean e) {
    if (!e) throw new AssertionError();
  }
}
```

- On peut passer en argument de Assertion.check une expression booléenne quelconque correspondant à l'assertion à tester.
- Bien sûr, les assertions avec des quantificateurs ∀ ou ∃ sont plus dures à tester!

Récursion et assertions (1/3)

• On veut montrer $\{n \ge 0\}$ $\mathbf{r} = \mathbf{fact(n)}$; $\{fact(n) = n!\}$ Pour cela, on suppose (comme pour les boucles) que les appels (récursifs) utilisés vérifient déjà cette formule.

```
• static int fact (int n) {
    int r;
    \{n \geq 0 \land \forall n \; fact(n) = n! \;\}
    if (n == 0) {
        \{n = 0\}
        r = 1;
        \{n = 0 \land r = 1 = 0!\}
    } else {
        \{n - 1 \geq 0 \land fact(n - 1) = (n - 1)!\}
        r = n * fact(n-1);
        \{r = n(n-1)! = n!\}
    }
    return r;
}
```

A nouveau, il s'agit de correction partielle.
 Un autre argument montre la terminaison.

Récursion et assertions (2/3)

• On veut montrer $\{n \ge 0\}$ r = f(n); $\{f(n) = \text{if } n > 100 \text{ then } n-10 \text{ else } 91\}$

```
• static int f (int n) { // — fonction 91 [McCarthy]
      int r:
      \{n \ge 0 \land \forall n' \ f(n') = \text{if } n' > 100 \ \text{then } n' - 10 \ \text{else } 91\}
      if (n > 100) {
        {n > 100}
        r = n-10;
        \{n > 100 \land r = n - 10\}
      } else {
         \{n \le 100 \land \forall n' \ f(n') = \text{if } n' > 100 \ \text{then } n' - 10 \ \text{else } 91\}
        r = f(f(n+11));
        \{n \le 100 \land r = \Phi(n)\} \quad \leftrightarrow \quad \{n \le 100 \land r = 91\}
      \{r = \text{if } n > 100 \text{ then } n - 10 \text{ else } 91\}
      return r;
   } Exécution
     \Phi(n) = f(\text{if } n + 11 > 100 \text{ then } n + 1 \text{ else } 91)
            = if n > 90 then f(n+1) else f(91)
            = if n \geq 90 then if n \geq 100 then n-9 else 91 else 91
            = if n > 100 then n - 9 else 91
```

Récursion et assertions (3/3)

Considérons l'insertion dans une liste triée

```
static Liste inserer (int x, Liste a) {
  int r;
  if (a == null || x < a.val) {
    r = new Liste(x, a);
  } else if (a.val < x) {
    r = new Liste(a.val, inserer(x, a.suiv));
  } else
    r = a;
  return r;
}</pre>
```

Considérons les propositions

```
\{\mathit{ord}(a) = (a = \mathsf{null} \lor a.\mathit{suiv} = \mathsf{null} \lor a.\mathit{val} < a.\mathit{suiv}.\mathit{val} \land \mathit{ord}(a.\mathit{suiv}))\}
```

On cherche à montrer

```
\{ord(a)\}\ r = inserer(x,a);\ \{ord(inserer(x,a))\}
```

Exercice 8 Le démontrer... Indication : se servir de la formule

```
\{prem(x,a) = (a = \mathsf{null} \lor inserer(x,a).val = x \lor inserer(x,a).val = a.val)\}
```

Ordres bien-fondés et terminaison (1/3)

irréflexive
$$x \not\prec x$$
 transitive $x \prec y \prec z \Rightarrow x \prec z$

• Un ordre bien fondé est une relation d'ordre qui n'admet pas de chaîne infinie descendante $x_0 \succ x_1 \succ x_2 \succ \cdots x_n \succ \cdots$.

Exemples d'ordre bien fondés

- \bullet $\langle \mathbf{N}, < \rangle$
- ordre lexicographique : $\langle \mathbf{N} \times \mathbf{N}, <_{lex} \rangle$

$$(x,y) <_{lex} (x',y')$$
 SSi $x < x' \lor (x = x' \land y < y')$

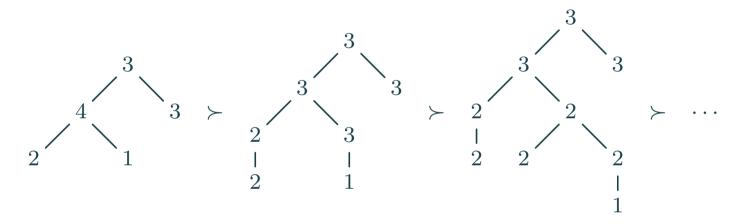
$$(4,3) >_{lex} (4,2) >_{lex} (3,15) >_{lex} (3,6) >_{lex} (3,4) >_{lex} (3,2) >_{lex} (2,21) >_{lex} (2,19) >_{lex} (2,12) >_{lex} (1,90) \dots$$

• ordre des multi-ensembles : $\langle \mathcal{P}(\mathbf{N}), <_{mul} \rangle$

$$E <_{mul} E'$$
 SSi $E = F \uplus \{y_1, y_2, \dots y_n\}, E' = F \uplus \{x\}$ $(y_i < x, n \ge 0)$
 $\{4, 5, 5\} >_{mul} \{3, 5, 5\} >_{mul} \{3, 4, 4, 4, 5\} >_{mul} \{3, 4, 4, 5\} >_{mul} \{3, 2, 2, 2, 1, 4, 5\} >_{mul} \{3, 1, 0, 2, 2, 1, 4, 5\} >_{mul} \{3, 1, 4, 5\} >_{mul} \dots$

Ordres bien-fondés et terminaison (2/3)

• ordre de simplication : $\langle \mathcal{A}(\mathbf{N}), \prec \rangle$ $\mathcal{A}(\mathbf{N})$ arbres étiquetés par des entiers naturels $t = n(t_1, t_2, \cdots t_n) \succ u = m(u_1, u_2, \cdots u_p)$ si n > m et $t \succ u_1, t \succ u_2, \cdots t \succ u_p$ $t = n(\cdots, t_i, \cdots) \succ u = n(\cdots, \cdots)$



Théorie des w.q.o. (well quasi orderings) [Kruskal, Nash-Williams, Plaisted, Dershowitz] Théorie des systèmes de réécriture Démonstration automatique.

En fait tout ordre \succ sur les arbres étiquetés par un ensemble fini $E \subset \mathbf{N}$ vérifiant :

$$\begin{array}{l} t=n(t_1,t_2,\cdots t_n)\succ u=n(u_1,u_2,\cdots u_p) \ \text{ si } \ t_i\succ u_i \ \text{ pour un } i\\ t=n(\cdots,\ t_i,\ \cdots)\succ u=n(\cdots,\ \cdots) \end{array}$$

est bien fondé.

Ordres bien-fondés et terminaison (3/3)

Exercice 9 Trouver les ordres bien-fondés qui permettent de conclure à la terminaison de ces deux fonctions récursives (fonction 91 de [McCarthy] ou de [Ackermann]).

```
static int ack (int m, int n) {
  if (m == 0)
    return n + 1;
  else
    if (n == 0)
      return ack (m - 1, 1);
    else
      return ack (m - 1, ack (m, n - 1));
} Exécution
```

Indications : considérer l'ordre lexicographique pour Ackermann et l'ordre partiel suivant pour 91 :

$$0 \succ 1 \succ 2 \succ \cdots \succ 98 \succ 99 \succ 100 \succ x$$

où x quelconque tel que x > 100.

Exercices

Exercice 10 Montrer la correction de Quicksort.

Exercice 11 Montrer la correction de la fusion de listes triées.

Exercice 12 Montrer la correction du test d'acyclicité des graphes par depth-first-search.

Exercice 13 Montrer que la terminaison peut être une propriété aussi dure à montrer que la correction.