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An algorithm for assigning storage on the basis of EQUIV- 
ALENCE, DIMENSION and COMMON declarations is pre- 
sented. The algorithm is based on a tree structure, and has 
reduced computation time by 40 percent over a previously 
published algorithm by identifying all equivalence classes 
with one scan of the EQUIVALENCE declarations. The method 
is applicable in any problem in which it is necessary to identify 
equivalence classes, given the element pairs defining the 
equivalence relation. 

An algorithm for the assignment of storage on the basis 
of the EQUIVALENCE declaration found in such lan- 
guages as FORTRAN and MAD was presented in [1]. The 
algorithm given here, which uses a tree structure, is a 
considerable improvement over the previous one, and 
the two algorithms furnish a clear-cut example of the 
ben:fits which can be realized through the use of such 
metkods. (Comparison tests have shown that  the new 
method reduces the execution time of the algorithm by as 
much as 40 percent.) The notation and statement of the 
problem have been made as similar to that  of [1] as possible 
to facilitate comparison, and is reviewed here for com- 
pleteness. 

Figure 1 shows a general equivalence algorithm, suitable 
for identification of equivalence classes in any context. 
Figures 2 and 3 use this same algorithm for the address 
assignment problem considered in [1], retaining additional 
information (D, d, do, R, H and H ' )  during the con- 
struction of the trees to facilitate the address assignment 
at the end. 

The problem may then be stated as follows: In some 
algebraic (or any other) languages, one may write EQUIV- 
ALEIX~CE declarations of the form: 

EQUIVALENCE (X, Y, Zi), (Z, Ws), (V, V) (1) 

where the entries consist of names of variables, subscripted 
array names or unsubscripted array names (which are 
assumed to represent the element of the array which has 
subscript zero). Some of the variables or arrays which 
occur here may have already been assigned to specific 
locations in storage; others have not yet  been assigned. 
The entries are grouped by means of parentheses, the 
groups being separated by commas. For example, state- 
ment (1) would assign X, Y and Z1 to the same location, 
then Z( ~ Z0) and W5 to another location, and U and V 
to yet  another location (unless either U or V is made 
equivalent to one of the other variables or arrays by some 
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other EQUIVALENCE declaration). We must exhibit 
an algorithm which will result in a storage assignment for 
each variable and array occurring in any EQUIVALENCE 
statement. 

Of course, the groups may be highly linked, such as in the 
following statement. 

EQUIVALENCE (X, Y2 ), (Q, J, K), (Y3, Z1 ), 
(U, V), (Y, Q), (U3, M10, N) (2) 

We shall use this example to illustrate the algorithm 
presented here. Assume that  K has been assigned to loca- 
tion 100 by some other declaration and that  the dimensions 
of Y, Z, M and U are 10, 4, 12 and 5, respectively. (In 
other words, since the zero subscript is allowed here, 
the highest subscripts occurring for Y, Z, M and U are 
9, 3, 11 and 4, respectively.) There is no loss in generality 
if we assume (and we do) that  every other variable is 
also an array of dimension 1. 

The algorithm has as input a collection of n groups 
of subscripted array names. We shall call the groups 
G1, " " ,  Gn, and for the group Gi ,  we shall label the 
mi array names gil,  gi2, • • • , gimi • Associated with each 
array name glj will be its subscript s(gii) and its dimen- 
sion d(gii). I t  will be convenient to use five auxiliary 
vectors, called the E, R, S, H, and H '  vectors, respectively. 
These vectors must be large enough to hold all distinct 
array names appearing in the EQUIVALENCE state- 
ments. The number of entries in the E-vector will be 
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denoted by  E, and the address assigned to an array B will 
be denoted a (B) .  We will assume tha t  for any array B 
not yet  assigned an address, a ( B )  = 0. The first available 
address will be denoted a0, and arrays will be assumed to be 
stored "backwards," as in FORTRAN I I  and MAD. A 
similar algorithm would work if arrays were stored "for- 
ward."  

For  the example (2) above, we shall let a0 = 2000. 
In  this example, we have G1 = {X, Y}, G2 = {Q, J, K}, 
G~ = {Y, Z}, G4 = {U,V}, G5 = {Y, Q}, G6 = {V, M, N}, 
with s(gn) = 0, s(g,2) = 2, . . .  , s(g62) = 10, s(g63) = 0. 
Also, d(gn)  = 1, d(g,2) = 10, . . . ,  d(g62) = 12, d(g6a) = 
1. The desired address assignment would then be as 
follows, remembering that  a ( K )  = 100 by  some earlier 
declaration. 

X 98  

Y I 0 0  

Q I 0 0  

d I 0 0  

K I00  

Z 98  

U 2 0 0 4  

V 2 0 0 4  

M 2011 

N 2001 

choose the first one encountered.) The span for the class 
will be associated with the root by  remembering H and H ' ,  
the distance needed above and below the root element, 
respectively. The sum H + H '  is thus the span for the 
class. 

The tree structure is given by  a successor vector S, 
in which each node is linked to the node just above it in the 
tree. I t  will be seen tha t  most nodes are linked directly 
to the root, so that  traversing of paths is reduced con- 
siderably. 

The table representing the tree is constructed in a 
single pass over the groups G i .  Each element of each 
group is examined in turn. I f  it does not yet  appear  in the 
table, it is entered as the root of a new tree consisting of a 
single node. Then if the element is par t  of an equivalence 
class already identified, this new tree must  be combined 
with the tree already under construction. If, on the other 
hand, it is the first element of a new group, then this step 
is unnecessary, since it is legitimately the root of a new 
tree. 

I f  the new element is found to be in the table already, 
then we are either adding to a previously constructed 
tree (if the new element begins a group),  or we must  again 

After this assignment we should have ao = 2012 as the 
next available address. 

Each equivalence class will be represented by  a tree, 
each node of the tree denoting an array in the equivalence 
class. I t  will be convenient, in discussing the algorithm, 
to introduce the signed distance between successive nodes 
of a tree. Since the equivalence declaration might specify, 
for example, tha t  A(2)  and B(5)  are to be equivalent, 
the base elements A(0)  and B(0)  will actually be assigned 
storage locations whose addresses differ by  3. We shall 
call the (signed) distance from one node to another  the 
number  tha t  nmst  be added to the address of the first 
one to obtain the address of the second. In  this example 
the distance from A to B is 3, while the distance from 
B to A is --3,  since arrays are stored backwards. I t  
follows tha t  one may  compute the distance between any 
two nodes of a tree representing an equivalence class by  
adding algebraically the distances along any pa th  connect- 
ing the two nodes. We shall use this fact later. 

In  assigning addresses to elements of an equivalence 
class, there are two possibilities: (1) the entire class is 
tied to a previous address specification for some element 
of the class, or (2) the class is to be assigned to the next 
available region in storage, and the total  span of the 
region must  be determined. In  this algorithm each tree 
has a root which is one of the elements of the class. (Any 
element may  be chosen to be the root, and we shall simply 
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combine two trees, e.g., the one currently under construc- 
tion and the one indicated by the earlier appearance in 
the table. For example, at  one stage in constructing the 
table for (2) above, there would be one tree Tx  containing 
X, Y and Z, with root X, another tree TQ containing 
Q, J and K, with root Q, and another tree Tu containing 
U and V, with root U. Then the group (Y, Q) is en- 
countered. Since Y is in the table, T x  is the "current  
tree." However, when Q is found in the table, it becomes 
apparent  that  Tx  and TQ are to be combined. 

When two trees are to be combined, either may  be 
linked to the other. The assigning of addresses is simplified, 
however, if the higher-numbered root (i.e. the root appear- 
ing later in the table) is linked to the lower-numbered 
root, so tha t  the root of any tree is always the first element 
encountered in a scan of the table. This makes the assign- 
ment  of addresses possible using one pass over the table 
(as in Figure 3). 

Assuming that  a decision has been made to at tach one 
tree to another, the distance between the root and the 
node to be added (the old root of the other tree) must  be 
computed. Thus, suppose F and G are nodes in trees 
TH and TL,  with roots H and L, respectively. Suppose, 
also, that  because F and G are declared equivalent, 
TL is to be attached to T u .  The distance from L to H may  
be computed as the algebraic sum of the distances from 
L to G, G to F (which may  be zero or nonzero, depending 
on their subscripts in the equivalence declaration), and 
F t o H .  

In  the example discussed above, where T x  is to be 
combined with TQ, we would add Q to T x ,  and the 
distance from Q to X is the sum of the distances from 
Q to Y (zero, in this case), and Y to X. 

Any address which is assigned to a tree because some 
element in the tree has a previous address assignment, is 
stored with the root. I f  such an address is present when 
two trees are linked together, the appropriate new ad- 
dress is computed and stored with the new root. I f  both 
old roots have previous assignments, the declared equiva- 
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lence is either redundant  or contradictory. The former 
is the case only if the difference between the addresses 
equals the computed distance. 

Another kind of redundancy or contradiction is possible, 
also, when two elements declared equivalent are already 
on the same tree. This is recognized when the two roots 
are the same at the time one a t tempts  to link the trees 
involved. I f  the roots are the same, the distance is com- 
puted as usual, and a nonzero distance indicates a con- 
tradiction, while a zero distance indicates a redundancy. 

Line E R S H H' A 

l X 98 1 8 2 98 

2 Y i00 l l0 0 i00 

3 Q i00 l 1 0 i00 

4 J lO0 3 1 0 i00 

5 K i00 3 1 0 i00 

6 Z , 9~ 1 4 0 9 ~ 

U 2004 7 5 7 2004 
V 2004 7 i 0 2004 

9 M 2011 7 12 0 2011 

i0 N 2001 7 i 0 2001 

FIG. 4 

The actual assignment of addresses is accomplished 
in a single pass over the table. When a root is encountered, 
it is assigned an address if a previous specification had 
occurred for some element in the tree. Such a specifica- 
tion implies an address assignment for the root, and this 
in turn determines an address for each other element in 
the equivalence class (depending on its distance from 
the root).  I f  not, the span information, which is stored 
with the root, allows the reservation of a block of storage 
of appropriate size for the entire equivalence class. When- 
ever a node which is not a root is encountered in the table, 
its address is computed by a single subtraction of the 
distance to the next higher node from the address assigned 
to tha t  node. Since tha t  node appears  earlier in the table, 
its address must  have been assigned already. Figure 4 
shows the tree structure and the relevant table entries 
after addresses have been assigned on the basis of (2) 
above. 
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