
An Improved Equivalence
Algorithm
BERNARD A. GALLER AND MICHAEL J. FISHER
University of Michigan, Ann Arbor, Michigan

An algorithm for assigning storage on the basis of EQUIV-
ALENCE, DIMENSION and COMMON declarations is pre-
sented. The algorithm is based on a tree structure, and has
reduced computation time by 40 percent over a previously
published algorithm by identifying all equivalence classes
with one scan of the EQUIVALENCE declarations. The method
is applicable in any problem in which it is necessary to identify
equivalence classes, given the element pairs defining the
equivalence relation.

An algorithm for the assignment of storage on the basis
of the EQUIVALENCE declaration found in such lan-
guages as FORTRAN and MAD was presented in [1]. The
algorithm given here, which uses a tree structure, is a
considerable improvement over the previous one, and
the two algorithms furnish a clear-cut example of the
ben:fits which can be realized through the use of such
metkods. (Comparison tests have shown that the new
method reduces the execution time of the algorithm by as
much as 40 percent.) The notation and statement of the
problem have been made as similar to that of [1] as possible
to facilitate comparison, and is reviewed here for com-
pleteness.

Figure 1 shows a general equivalence algorithm, suitable
for identification of equivalence classes in any context.
Figures 2 and 3 use this same algorithm for the address
assignment problem considered in [1], retaining additional
information (D, d, do, R, H and H ') during the con-
struction of the trees to facilitate the address assignment
at the end.

The problem may then be stated as follows: In some
algebraic (or any other) languages, one may write EQUIV-
ALEIX~CE declarations of the form:

EQUIVALENCE (X, Y, Zi), (Z, Ws), (V, V) (1)

where the entries consist of names of variables, subscripted
array names or unsubscripted array names (which are
assumed to represent the element of the array which has
subscript zero). Some of the variables or arrays which
occur here may have already been assigned to specific
locations in storage; others have not yet been assigned.
The entries are grouped by means of parentheses, the
groups being separated by commas. For example, state-
ment (1) would assign X, Y and Z1 to the same location,
then Z(~ Z0) and W5 to another location, and U and V
to yet another location (unless either U or V is made
equivalent to one of the other variables or arrays by some

Presented at the ACM National Conference, Denver, Colorado,
1963.

other EQUIVALENCE declaration). We must exhibit
an algorithm which will result in a storage assignment for
each variable and array occurring in any EQUIVALENCE
statement.

Of course, the groups may be highly linked, such as in the
following statement.

EQUIVALENCE (X, Y2), (Q, J, K), (Y3, Z1),
(U, V), (Y, Q), (U3, M10, N) (2)

We shall use this example to illustrate the algorithm
presented here. Assume that K has been assigned to loca-
tion 100 by some other declaration and that the dimensions
of Y, Z, M and U are 10, 4, 12 and 5, respectively. (In
other words, since the zero subscript is allowed here,
the highest subscripts occurring for Y, Z, M and U are
9, 3, 11 and 4, respectively.) There is no loss in generality
if we assume (and we do) that every other variable is
also an array of dimension 1.

The algorithm has as input a collection of n groups
of subscripted array names. We shall call the groups
G1, " " , Gn, and for the group Gi , we shall label the
mi array names gil, gi2, • • • , gimi • Associated with each
array name glj will be its subscript s(gii) and its dimen-
sion d(gii). I t will be convenient to use five auxiliary
vectors, called the E, R, S, H, and H ' vectors, respectively.
These vectors must be large enough to hold all distinct
array names appearing in the EQUIVALENCE state-
ments. The number of entries in the E-vector will be

• " = •

F

t = i T

¢5
Fm. 1

Volume 7 / Number 5 / May, 1964 C o m m u n i c a t i o n s o f t h e ACM 301

denoted by E, and the address assigned to an array B will
be denoted a (B) . We will assume tha t for any array B
not yet assigned an address, a (B) = 0. The first available
address will be denoted a0, and arrays will be assumed to be
stored "backwards," as in FORTRAN I I and MAD. A
similar algorithm would work if arrays were stored "for-
ward."

For the example (2) above, we shall let a0 = 2000.
In this example, we have G1 = {X, Y}, G2 = {Q, J, K},
G~ = {Y, Z}, G4 = {U,V}, G5 = {Y, Q}, G6 = {V, M, N},
with s(gn) = 0, s(g,2) = 2, . . . , s(g62) = 10, s(g63) = 0.
Also, d(gn) = 1, d(g,2) = 10, . . . , d(g62) = 12, d(g6a) =
1. The desired address assignment would then be as
follows, remembering that a (K) = 100 by some earlier
declaration.

X 98

Y I 0 0

Q I 0 0

d I 0 0

K I00

Z 98

U 2 0 0 4

V 2 0 0 4

M 2011

N 2001

choose the first one encountered.) The span for the class
will be associated with the root by remembering H and H ' ,
the distance needed above and below the root element,
respectively. The sum H + H ' is thus the span for the
class.

The tree structure is given by a successor vector S,
in which each node is linked to the node just above it in the
tree. I t will be seen tha t most nodes are linked directly
to the root, so that traversing of paths is reduced con-
siderably.

The table representing the tree is constructed in a
single pass over the groups G i . Each element of each
group is examined in turn. I f it does not yet appear in the
table, it is entered as the root of a new tree consisting of a
single node. Then if the element is par t of an equivalence
class already identified, this new tree must be combined
with the tree already under construction. If, on the other
hand, it is the first element of a new group, then this step
is unnecessary, since it is legitimately the root of a new
tree.

I f the new element is found to be in the table already,
then we are either adding to a previously constructed
tree (if the new element begins a group), or we must again

After this assignment we should have ao = 2012 as the
next available address.

Each equivalence class will be represented by a tree,
each node of the tree denoting an array in the equivalence
class. I t will be convenient, in discussing the algorithm,
to introduce the signed distance between successive nodes
of a tree. Since the equivalence declaration might specify,
for example, tha t A(2) and B(5) are to be equivalent,
the base elements A(0) and B(0) will actually be assigned
storage locations whose addresses differ by 3. We shall
call the (signed) distance from one node to another the
number tha t nmst be added to the address of the first
one to obtain the address of the second. In this example
the distance from A to B is 3, while the distance from
B to A is --3, since arrays are stored backwards. I t
follows tha t one may compute the distance between any
two nodes of a tree representing an equivalence class by
adding algebraically the distances along any pa th connect-
ing the two nodes. We shall use this fact later.

In assigning addresses to elements of an equivalence
class, there are two possibilities: (1) the entire class is
tied to a previous address specification for some element
of the class, or (2) the class is to be assigned to the next
available region in storage, and the total span of the
region must be determined. In this algorithm each tree
has a root which is one of the elements of the class. (Any
element may be chosen to be the root, and we shall simply

F[J>~i

iE t =D

S t = t O

z% = ~(H t,~t +D)

FIG. 2

302 C o m m u n i c a t i o n s o f the ACM Volume 7 / Number 5 / May, 1964

combine two trees, e.g., the one currently under construc-
tion and the one indicated by the earlier appearance in
the table. For example, at one stage in constructing the
table for (2) above, there would be one tree Tx containing
X, Y and Z, with root X, another tree TQ containing
Q, J and K, with root Q, and another tree Tu containing
U and V, with root U. Then the group (Y, Q) is en-
countered. Since Y is in the table, T x is the "current
tree." However, when Q is found in the table, it becomes
apparent that Tx and TQ are to be combined.

When two trees are to be combined, either may be
linked to the other. The assigning of addresses is simplified,
however, if the higher-numbered root (i.e. the root appear-
ing later in the table) is linked to the lower-numbered
root, so tha t the root of any tree is always the first element
encountered in a scan of the table. This makes the assign-
ment of addresses possible using one pass over the table
(as in Figure 3).

Assuming that a decision has been made to at tach one
tree to another, the distance between the root and the
node to be added (the old root of the other tree) must be
computed. Thus, suppose F and G are nodes in trees
TH and TL, with roots H and L, respectively. Suppose,
also, that because F and G are declared equivalent,
TL is to be attached to T u . The distance from L to H may
be computed as the algebraic sum of the distances from
L to G, G to F (which may be zero or nonzero, depending
on their subscripts in the equivalence declaration), and
F t o H .

In the example discussed above, where T x is to be
combined with TQ, we would add Q to T x , and the
distance from Q to X is the sum of the distances from
Q to Y (zero, in this case), and Y to X.

Any address which is assigned to a tree because some
element in the tree has a previous address assignment, is
stored with the root. I f such an address is present when
two trees are linked together, the appropriate new ad-
dress is computed and stored with the new root. I f both
old roots have previous assignments, the declared equiva-

&-4 a=a°

I~(Ei =~l'~

Fro. 3

lence is either redundant or contradictory. The former
is the case only if the difference between the addresses
equals the computed distance.

Another kind of redundancy or contradiction is possible,
also, when two elements declared equivalent are already
on the same tree. This is recognized when the two roots
are the same at the time one a t tempts to link the trees
involved. I f the roots are the same, the distance is com-
puted as usual, and a nonzero distance indicates a con-
tradiction, while a zero distance indicates a redundancy.

Line E R S H H' A

l X 98 1 8 2 98

2 Y i00 l l0 0 i00

3 Q i00 l 1 0 i00

4 J lO0 3 1 0 i00

5 K i00 3 1 0 i00

6 Z , 9~ 1 4 0 9 ~

U 2004 7 5 7 2004
V 2004 7 i 0 2004

9 M 2011 7 12 0 2011

i0 N 2001 7 i 0 2001

FIG. 4

The actual assignment of addresses is accomplished
in a single pass over the table. When a root is encountered,
it is assigned an address if a previous specification had
occurred for some element in the tree. Such a specifica-
tion implies an address assignment for the root, and this
in turn determines an address for each other element in
the equivalence class (depending on its distance from
the root). I f not, the span information, which is stored
with the root, allows the reservation of a block of storage
of appropriate size for the entire equivalence class. When-
ever a node which is not a root is encountered in the table,
its address is computed by a single subtraction of the
distance to the next higher node from the address assigned
to tha t node. Since tha t node appears earlier in the table,
its address must have been assigned already. Figure 4
shows the tree structure and the relevant table entries
after addresses have been assigned on the basis of (2)
above.

RECEIVED OC:rOBER, 1963

REFERENCE

1. ARDEN, B. W., GALL~R, B. A., AND GRAHAM, R.M. An algo-
rithm for equivalence declarations. Comm. A C M 4, 7 (July
1961), 310-314.

Volume 7 / Number 5 / May, 1964 Communications of the ACM 303

