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Abstract

We present in this document a few fundamental structures useful for computational
linguistics.

The central structure is that of lexical tree, or trie. A crucial observation is that
a trie is isomorphic to the state space of a deterministic acyclic automaton. More
complex finite-state automata and transducers, deterministic or not, and cyclic or not,
may be represented as tries decorated by extra information. Thus we obtain a family
of structures underlying lexicon-directed linguistic processes.

First we describe plain tries, which are adequate to represent lexicon indexes. Then
we describe decorated tries, or decos, which are appropriate to represent symbol tables,
and dictionaries associating with the lexicon grammatical or other informations. We
then describe how to represent maps and more generally invertible relations between
lexicons. We call these structures lexical maps or lexmaps. Lexmaps are appropriate
for instance to associate inflected forms to lexicon stems and roots, using morpholog-
ical operations. Such lexmaps are invertible in the sense that we may retrieve from
the lexmap entry of a inflected form the stems and operations from which it may be
obtained. Finally we show how lexicon directed transducers may be represented using
tries decorated with choice points. Such transducers are useful to describe segmentation
and taggings processes.

All data structures and algorithms are described in a computational metalanguage
called Pidgin ML. Pidgin ML is a publication language for the ML family of pro-
gramming languages. All the algorithms described here could be described as well in
Standard ML or in Objective CAML, to cite two popular ML implementations, or in
the lazy functional language Haskell. They could also be described in a programming
language such as LISP or Scheme, but the strong typing discipline of ML, supporting
polymorphism and modules, is an insurance that computations cannot corrupt data
structures and lead to run-type errors. An initial chapter of these notes gives a quick
overview of Pidgin ML.

The resulting design may be considered as the reference implementation of a Free
Computational Linguistics Toolkit. It may turn useful as an “off the shelf” toolkit for
simple operations on linguistics material. Due to its lightweight approach we shall talk
of the Zen CL Toolkit.

This toolkit was abstracted from the Sanskrit ML Library, which constitutes its
first large-scale application. Thus some of this material already appeared in the docu-
mentation of the Sanskrit Segmenter algorithm, which solves Sandhi Analysis [18].

This document was automatically generated from the code of the toolkit using the
Ocamlweb package of Jean-Christophe Filliâtre, with the Latex package, in the literate
programming style pioneered by Don Knuth.
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Part I

Dictionaries

1 Pidgin ML

We shall use as meta language for the description of our algorithms a pidgin version of the
functional language ML [13, 11, 28, 40]. Readers familiar with ML may skip this section,
which gives a crash overview of its syntax and semantics.

Module Pidgin

The core language has types, values, and exceptions. Thus, 1 is a value of predefined type
int , whereas "CL" is a string . Pairs of values inhabit the corresponding product type. Thus:
(1,"CL") : (int × string). Recursive type declarations create new types, whose values are
inductively built from the associated constructors. Thus the Boolean type could be declared
as a sum by:

type bool = [True | False];

Parametric types give rise to polymorphism. Thus if x is of type t and l is of type (list t),
we construct the list adding x to l as [x :: l ]. The empty list is [ ], of (polymorphic) type
(list α). Although the language is strongly typed, explicit type specification is rarely needed
from the designer, since principal types may be inferred mechanically.

The language is functional in the sense that functions are first class objects. Thus the
doubling integer function may be written as fun x → x + x , and it has type int → int . It
may be associated to the name double by declaring:

value double = fun x → x + x ;

Equivalently we could write:

value double x = x + x ;

Its application to value n is written as (double n) or even double n when there is no ambiguity.
Application associates to the left, and thus f x y stands for ((f x ) y). Recursive functional
values are declared with the keyword rec. Thus we may define factorial as:

value rec fact n = if n = 0 then 1 else n × (fact (n − 1));

Functions may be defined by pattern matching. Thus the first projection of pairs could be
defined by:

value fst = fun [ (x , y) → x ];
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or equivalently (since there is only one pattern in this case) by:

value fst (x , y) = x ;

Pattern-matching is also usable in match expressions which generalize case analysis, such
as: match l with [ [ ] → True | → False ], which tests whether list l is empty, using
underscore as catch-all pattern.

Evaluation is strict, which means that x is evaluated before f in the evaluation of (f x ).
The let expressions allow the sharing of sub-computations. Thus let x = fact 10 in x + x
will compute fact 10 first, and only once. An equivalent postfix where notation may be used
as well. Thus the conditional expression if b then e1 else e2 is equivalent to:
choose b where choose = fun [ True → e1 | False → e2 ];

Exceptions are declared with the type of their parameters, like in:

exception Failure of string ;

An exceptional value may be raised, like in: raise (Failure "div 0") and handled by a try
switch on exception patterns, such as:
try expression with [ Failure s → ... ];

Other imperative constructs may be used, such as references, mutable arrays, while loops
and I/O commands, but we shall seldom need them. Sequences of instructions are evaluated
in left to right regime in do expressions, such as: do {e1 ; ... en}.

ML is a modular language, in the sense that sequences of type, value and exception
declarations may be packed in a structural unit called a module, amenable to separate treat-
ment. Modules have types themselves, called signatures. Parametric modules are called
functors. The algorithms presented in this paper will use in essential ways this modularity
structure, but the syntax ought to be self-evident. Finally, comments are enclosed within
starred parens like:

value s = "This is a string"; (∗ This is a comment ∗)

Readers not acquainted with programming languages may think of ML definitions as recur-
sive equations over inductively defined algebras. Most of them are simple primitive recursive
functionals. The more complex recursions of our automata coroutines will be shown to be
well-founded by a combination of lexicographic and multiset orderings.

Pidgin ML definitions may actually be directly executed as Objective Caml programs
[26], under the so-called revised syntax [30]. The following development may thus be used
as the reference implementation of a core computational linguistics platform, dealing with
lexical, phonemic and morphological aspects.

2 Basic Utilities

We present in this section some basic utilities libraries.
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2.1 Miscellaneous primitives

Module Gen

This module contains various utilities of general use.

value dirac b = if b then 1 else 0
;
value optional f = fun [ None → () | Some d → f d ]
;
value active = fun [ None → False | Some → True ]
;

Dump value v on file.

value dump v file =
let cho = open out file in do { output value cho v ; close out cho }

;

Retrieve value dumped on file; its type should be given in a cast.

value gobble file =
let chi = open in file in
let v = input value chi in do { close in chi ; v }

;

UNIX touch.

value touch file = close out (open out file)
;

value notify error message =
do { output string stderr message; flush stderr }

;

2.2 List processing

We shall use lists intensively. We assume the standard library List .

Module List2

We complement List here with a few auxiliary list service functions.
unstack l r = (rev l) @ r
unstack = List .rev append
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value rec unstack l1 l2 =
match l1 with
[ [ ] → l2
| [ a :: l ] → unstack l [ a :: l2 ]
]

;
value non empty = fun [ [ ] → False | → True ]
;

Subtraction derivative.
subtract : list α → list α → option (list α)
subtract [ c1 ; ... cN ][ c1 ; ... cn ] = Some [ cn + 1; ... cN ]
otherwise returns None.

value rec subtract input = fun
[ [ ] → Some input
| [ c :: r ] → match input with

[ [ c ′ :: r ′ ] when c ′ = c → subtract r ′ r
| → None
]

]
;

Association lists.
The right way to program assoc, without exceptions.
ass : α → list (α × β) → option β

value ass x = ass rec
where rec ass rec = fun
[ [ (a, u) :: rest ] → if a = x then Some u else ass rec rest
| [ ] → None
]

;

Set operations with lists.

exception Twice the same value
;
value union1 e l =
if List .mem e l then l else [ e :: l ]

;

Used in ZEN/Lexmap.
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value union2 e l =
if List .mem e l then (raise Twice the same value) else [ e :: l ]

;

Terminal recursive union of finite sets represented as as lists - does not respect the order of
elements in l1 : union f [ 1; 2 ] [ ] = [ 2; 1 ]

value rec union f l1 l2 =
match l1 with

[ [ ] → l2
| [ e :: l ] → union f l (union1 e l2 )
]

;

Same, respecting the order:

value union l1 l2 = List .fold right union1 l1 l2
;
value set of l = let add acc x = if List .mem x acc then acc else [ x :: acc ] in

List .fold left add [ ] l
;

last : list α → α

value rec last = fun
[ [ ] → raise (Failure "last")
| [ x ] → x
| [ :: l ] → last l
]

;

truncate n l removes from l its initial sublist of length n.
truncate : int → list α → list α

value rec truncate n l =
if n = 0 then l else match l with
[ [ ] → failwith "truncate"

| [ :: r ] → truncate (n − 1) r
]

;
type ranked α = list (int × α)
;

zip n l assumes l sorted in increasing order of ranks; it returns a partition of l as (l1 , l2 )
with l1 maximum such that ranks in l1 are < n. l1 is reversed, i.e. we enforce the invariant:
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zip n l = (l1 , l2 ) such that l = unstack l1 l2 .
zip : int → (ranked α) → ((ranked α) × (ranked α))

value zip n = zip rec [ ]
where rec zip rec acc l = match l with
[ [ ] → (acc, [ ])
| [ ((m, ) as current) :: rest ] →

if m < n then zip rec [ current :: acc ] rest
else (acc, l)

]
;

Coercions between string and list char .
explode : string → list char

value explode s =
let rec expl i accu =
if i < 0 then accu else expl (i − 1) [ s .[i ] :: accu ] in

expl (String .length s − 1) [ ]
;

implode : list char → string

value implode l =
let result = Bytes .create (List .length l) in
let rec loop i = fun

[ [ ] → result
| [ c :: cs ] → do { Bytes .set result i c; loop (i + 1) cs }
] in

loop 0 l
;

Process a list with using pr for elements and sep for separator
process list sep : (α → unit) → (unit → unit) → list α → unit

value process list sep pr sep =
let rec prl = fun

[ [ ] → ()
| [ s ] → pr s
| [ s :: ls ] → do { pr s ; sep (); prl ls }
] in

prl
;

Insert in a list of buckets with increasing keys
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value in bucket key element buckets = in rec [ ] buckets
where rec in rec accu buckets = match buckets with

[ [ ] → unstack accu [ (key , [ element ]) ]
| [ ((k , l) as bucket) :: rest ] →
if k > key then unstack accu [ (key , [ element ]) :: buckets ]
else if k = key then unstack accu [ (k , [ element :: l ]) :: buckets ]
else in rec [ bucket :: accu ] rest

]
;

2.3 Words

We assume that the alphabet of string representations is some initial segment of positive
integers. Thus a string is coded as a list of integers which will from now on be called a word .

For instance, for our Sanskrit application, the Sanskrit alphabet comprises 50 letters,
representing 50 phonemes. Finite state transducers convert back and forth lists of such
integers into strings of transliterations in the roman alphabet, which encode themselves
either letters with diacritics, or Unicode representations of the devanāgar̄ı alphabet. Thus
1,2,3,4 etc encode respectively the phonemes /a/, /ā/, /i/, /̄ı/ etc.

In these notes, we shall assume rather a roman alphabet, and thus 1,2,3,4 etc encode
respectively letters a, b, c, d etc.

Module Word

type letter = int
and word = list letter (∗ word encoded as sequence of natural numbers ∗)
;

We remark that we are not using for our word representations the ML type of strings (which
in OCaml are arrays of characters/bytes). Strings are convenient for English texts (using the
7-bit low half of ASCII) or other European languages (using the ISO-LATIN subsets of full
ASCII), and they are more compact than lists of integers, but basic operations like pattern
matching are awkward, and they limit the size of the alphabet to 256, which is insufficient
for the treatment of many languages’ written representations. New format standards such as
Unicode have complex primitives for their manipulation, and are better reserved for interface
modules than for central morphological operations. We could have used an abstract type
of characters, leaving to module instantiation their precise definition, but here we chose
the simple solution of using machine integers for their representation, which is sufficient for
large alphabets (in Ocaml, this limits the alphabet size to 1073741823), and to use conversion
functions encode and decode between words and strings. In the Sanskrit application, we use
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the first 50 natural numbers as the character codes of the Sanskrit phonemes, whereas string
translations take care of roman diacritics notations, and encodings of devanāgar̄ı characters.
prefix : word → word → bool

value rec prefix u v =
match u with

[ [ ] → True
| [ a :: r ] → match v with

[ [ ] → False
| [ b :: s ] → a = b ∧ prefix r s
]

]
;

Lexicographic ordering on words.
lexico : word → word → bool

value rec lexico l1 l2 = match l1 with
[ [ ] → True
| [ c1 :: r1 ] → match l2 with

[ [ ] → False
| [ c2 :: r2 ] → if c2 < c1 then False

else if c2 = c1 then lexico r1 r2
else True

]
]

;
value length = List .length
and mirror = List .rev
;

Differential words.
A differential word is a notation permitting to retrieve a word w from another word w ′

sharing a common prefix. It denotes the minimal path connecting the words in a trie, as a
sequence of ups and downs: if d = (n, u) we go up n times and then down along word u.

type delta = (int × word) (∗ differential words ∗)
;

Natural ordering on differential words.

value less diff (n1 ,w1 ) (n2 ,w2 ) = n1 < n2 ∨ (n1 = n2 ) ∧ lexico w1 w2
;

We compute the difference between w and w ′ as a differential word diff w w ′ = (| w1 | ,w2 )
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where w = p.w1 and w ′ = p.w2 , with maximal common prefix p.
diff : word → word → delta

value rec diff w w ′ = match w with
[ [ ] → (0,w ′)
| [ c :: r ] → match w ′ with

[ [ ] → (length w , [ ])
| [ c ′ :: r ′ ] → if c = c ′ then diff r r ′

else (length w ,w ′)
]

]
;

Now w ′ may be retrieved from w and d = diff w w ′ as w ′ = patch d w .
patch : delta → word → word

value patch (n, dw) w =
let p = List2 .truncate n (mirror w) in
List2 .unstack p dw

;

3 Zippers

Zippers encode the context in which some substructure is embedded. They are used to
implement applicatively destructive operations in mutable data structures. They are also
used to navigate in complex data structures, such as state spaces of non-deterministic search
processes, while keeping operations local and preserving sharing.

3.1 Top-down structures vs bottom-up structures

We understand well top-down structures. They are the representations of initial algebra
values. For instance, the structure bool has two constant constructors, the booleans True
and False. The polymorphic structure list α admits two constructors, the empty list []
and the list constructor consing a value x : α to a homogeneous list l : list α to form
[a :: l] : list α.

Bottom-up structures are useful for creating, editing, traversing and changing top-down
structures in a local but applicative manner. They are sometimes called computation con-
texts, or recursion structures. We shall call them zippers, following [14].

Top-down structures are the finite elements inhabiting inductively defined types. Bottom-
up structures are also finite, but they permit the progressive definition of (potentially infinite)
values of co-inductive types. They permit incremental navigation and modification of very
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general data types values. We shall also see that they model linear structural functions, in
the sense of linear logic.

Finally, bottom-up computing is the right way to build shared structures in an applicative
fashion, opening the optimisation path from trees to dags. Binding algebras (λ-calculus
expressions for inductive values and Böhm trees for the co-inductive ones) may be defined
by either de Bruijn indices or higher-order abstract syntax, and general graph structures may
be represented by some spanning tree decorated with virtual adresses, so we see no reason
to keep explicit references and pointer objects, with all the catastrophies they are liable for,
and we shall stick to purely applicative programming.

3.2 Lists and stacks

Lists are first-in first-out sequences (top-down) whereas stacks are last-in first-out sequences
(bottom-up). They are not clearly distinguished in usual programming, because the under-
lying data structure is the same : the list [x1; x2; ... xn] may be reversed into the stack
[xn ...;x2;x1] which is of the same type list. So we cannot expect to capture their difference
with the type discipline of ML. At best by declaring:
type stack α = list α;
we may use type annotations to document whether a given list is used by a function in
the rôle of a list or of a stack. But such intentions are not enforced by ML’s type system,
which just uses freely the type declaration above as an equivalence. So we have to check
these intentions carefully, if we want our values to come in the right order. But we certainly
wish to distinguish lists and stacks, since stacks are built and analysed in unit time, whereas
adding a new element to a list is proportional to the length of the list.

A typical exemple of stack use is List2.unstack above. In (unstack l s), s is an accu-
mulator stack, where values are listed in the opposite order as they are in list l. Indeed, we
may define the reverse operation on lists as:
value rev l = unstack l [];

In the standard Ocaml’s library, unstack is called rev append. It is efficient, since it
is tail recursive: no intermediate values of computation need to be kept on the recursion
stack, and the recursion is executed as a mere jump. It is much more efficient, if some list
l1 is kept in its reversed stack form s1, to obtain the result of appending l1 to l2 by calling
rev append s1 l2 than to call append l1 l2, which amounts to first reversing l1 into s1, and
then doing the same computation. Similarly, the List library defines a function rev map
which is more efficient than map, if one keeps in mind that its result is the stack order. But
no real discipline of these library functions is really enforced.

Here we want to make this distinction precise, favor local operations, and delay as much
as possible any reversal. For instance, if some list l1 is kept in its reversed stack form s1, and
we wish to append list l2 to it, the best is to just wait and keep the pair (s1, l2) as the state
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of computation where we have l2 in the context s1. In this computation state, we may finish
the construction of the result l of appending l1 to l2 by “zipping up” l1 with unstack s1 l2, or
we may choose rather to “zip down” l2 with unstack l2 s1 to get the stack context value rev l.
But we may also consider that the computation state (s1, l2) represents l locally accessed
as its prefix l1 stacked in context value s1 followed by its suffix l2. And it is very easy to
insert as this point a new element x, either stacked upwards in state ([x :: s1], l2), or consed
downwards in state (s1, [x :: l2]).

Once this intentional programming methodology of keeping focused structures as pairs
(context, substructure) is clear, it is very easy to understand the generalisation to zippers,
which are to general tree structures what stacks are to lists, i.e. upside-down access repre-
sentations of (unary) contexts.

3.3 Contexts as zippers

Module Zipper

We start with ordered trees. We assume the mutual inductive types:

type tree = [ Tree of arcs ]
and arcs = list tree
;

The tree zippers are the contexts of a place holder in the arcs, that is linked to its left
siblings, right siblings, and parent context:

type tree zipper =
[ Top
| Zip of (arcs × tree zipper × arcs)
]

;

Let us model access paths in trees by sequences on natural numbers naming the successive
arcs 1, 2, etc.

type access = list int
and domain = list access
;

We usually define the domain of a tree as the set of accesses of its subterms:
dom : tree → domain



Module Zipper §1 15

value rec dom = fun
[ Tree arcs →
let doms = List .map dom arcs in
let f (n, d) dn = let ds = List .map (fun u → [ n :: u ]) dn

in (n + 1,List2 .unstack ds d) in
let ( , d) = List .fold left f (1, [ [ ] ]) doms in Word .mirror d

]
;

Thus, we get for instance:

value tree0 = Tree [Tree [Tree [ ]; Tree [ ]]; Tree [ ]]
;
dom(tree0 )
;

→ [[ ]; [1]; [1; 1]; [1; 2]; [2]] : domain
Now if rev(u) is in dom(t), we may zip-down t along u by changing focus, as follows:

type focused tree = (tree zipper × tree)
;
value nth context n = nthc n [ ]
where rec nthc n l = fun

[ [ ] → raise (Failure "out of domain")
| [ x :: r ] → if n = 1 then (l , x , r) else nthc (n − 1) [ x :: l ] r
]

;
value rec enter u t = match u with

[ [ ] → ((Top, t) : focused tree)
| [ n :: l ] → let (z , t1 ) = enter l t

in match t1 with
[ Tree arcs → let (l , t2 , r) = nth context n arcs

in (Zip(l , z , r), t2 )
]

]
;

and now we may for instance navigate in tree0 :

enter [2; 1] tree0
;

→ (Zip ([Tree [ ]], Zip ([ ], Top, [Tree [ ]]), [ ]), Tree [ ]) : focused tree
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3.4 Structured edition on focused trees

We shall not explicitly use these access stacks and the function enter ; these access stacks
are implicit from the zipper structure, and we shall navigate in focused trees one step at a
time, using the following structure editor primitives on focused trees.

value down (z , t) = match t with
[ Tree arcs → match arcs with

[ [ ] → raise (Failure "down")
| [ hd :: tl ] → (Zip ([ ], z , tl), hd)
]

]
;
value up (z , t) = match z with

[ Top → raise (Failure "up")
| Zip (l , u, r) → (u, Tree (List2 .unstack l [ t :: r ]))
]

;
value left (z , t) = match z with

[ Top → raise (Failure "left")
| Zip (l , u, r) → match l with

[ [ ] → raise (Failure "left")
| [ elder :: elders ] → (Zip (elders , u, [ t :: r ]), elder)
]

]
;
value right (z , t) = match z with

[ Top → raise (Failure "right")
| Zip (l , u, r) → match r with

[ [ ] → raise (Failure "right")
| [ younger :: youngers ] → (Zip ([ t :: l ], u, youngers), younger)
]

]
;
value del l (z , ) = match z with

[ Top → raise (Failure "del l")
| Zip (l , u, r) → match l with

[ [ ] → raise (Failure "del l")
| [ elder :: elders ] → (Zip (elders , u, r), elder)
]

]
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;
value del r (z , ) = match z with

[ Top → raise (Failure "del r")
| Zip (l , u, r) → match r with

[ [ ] → raise (Failure "del r")
| [ younger :: youngers ] → (Zip (l , u, youngers), younger)
]

]
;
value replace (z , ) t = (z , t)
;

Note how replace is a local operation, even though all our programming is applicative.

3.5 Zipper operations

The editing operations above are operations on a finite tree represented at a focus. But we
may also define operations on zippers alone, which may be thought of as operations on a
potentially infinite tree, actually on all trees, finite or infinite, having this initial context.
That is, focused trees as pairs (context,structure) refer to finite elements (inductive values),
whereas contexts may be seen as finite approximations to streams (co-inductive values), for
instance generated by a process. For example, here is an interpreter that takes a command
to build progressively a zipper context:

type context construction =
[ Down | Left of tree | Right of tree ]

;
value build z = fun

[ Down → Zip ([ ], z , [ ])
| Left t → match z with

[ Top → raise (Failure "build Left")
| Zip (l , u, r) → Zip ([ t :: l ], u, r)
]

| Right t → match z with
[ Top → raise (Failure "build Right")
| Zip (l , u, r) → Zip (l , u, [ t :: r ])
]

]
;

But we could also add to our commands some destructive operations, to delete the left or
right sibling, or to pop to the upper context.
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3.6 Zippers as linear maps

We developed the idea that zippers were dual to trees in the sense that they may be used
to represent the approximations to the coinductive structures corresponding to trees as
inductive structures. We shall now develop the idea that zippers may be seen as linear maps
over trees, in the sense of linear logic. In the same way that a stack st may be thought of as
a representation of the function which, given a list l , returns the list unstack st l , a zipper
z may be thought of as the function which, given a tree t , returns the tree zip up z t , with:

value rec zip up z t = match z with
[ Top → t
| Zip (l , up, r) → zip up up (Tree (List2 .unstack l [ t :: r ]))
]

;

Thus zip up may be seen as a coercion between a zipper and a map from trees to trees,
which is linear by construction.
Alternatively to computing zip up z t , we could of course just build the focused tree (z , t),
which is a “soft” representation which could be rolled in into zip up z t if an actual term is
needed later on.
Applying a zipper to a term is akin to substituting the term in the place holder represented
by the zipper. If we substitute another zipper, we obtain zipper composition, as follows.
First, we define the reverse of a zipper:

value rec zip unstack z1 z2 = match z1 with
[ Top → z2
| Zip (l , z , r) → zip unstack z (Zip (l , z2 , r))
]

;
value zip rev z = zip unstack z Top
;

And now composition is similar to concatenation of lists:

value compose z1 z2 =
zip unstack (zip rev z2 ) z1

;

It is easy to show that Top is an identity on the left and on the right for composition,
and that composition is associative. Thus we get a category, whose objects are trees and
morphisms are zippers, which we call the Zipper category of linear tree maps.
We end this section by pointing out that tree splicing, or adjunction in the terminology
of Tree Adjoint Grammars, is very naturally expressible in this framework. Indeed, what
is called a rooted tree in this tradition is here directly expressed as a zipper zroot, and
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adjunction at a tree occurrence is prepared by decomposing this tree at the given occurrence
as a focused tree (z , t). Now the adjunction of zroot at this occurrence is simply computed
as:

value splice down (z , t) zroot = (compose z zroot , t)
;

if the focus of attention stays at the subtree t , or

value splice up (z , t) zroot = (z , zip up zroot t)
;

if we want the focus of attention to stay at the adjunction occurrence. These two points of
view lead to equivalent structures, in the sense of tree identity modulo focusing:

value equiv (z , t) (z ′, t ′) = (zip up z t = zip up z ′ t ′)
;

3.7 Zippers for binary trees

We end this section by showing the special case of zippers for binary trees.

Module Bintree

type bintree =
[ Null
| Bin of (bintree × bintree)
]

;

Occurrences as boolean lists (binary words).

type binocc = list bool
and domain = list binocc
;

binlexico : binocc → binocc → bool

value rec binlexico l1 l2 = match l1 with
[ [ ] → True
| [ b1 :: r1 ] → match l2 with

[ [ ] → False
| [ b2 :: r2 ] → if b1 = b2 then binlexico r1 r2 else b2
]

]
;
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occurs : binocc → bintree → bool

value rec occurs occ bt = match occ with
[ [ ] → True
| [ b :: rest ] → match bt with

[ Null → False
| Bin (bl , br) → occurs rest (if b then br else bl)
]

]
;

paths : bintree → domain

value paths = pathrec [ ] [ ]
where rec pathrec acc occ = fun
[ Null → [ List .rev occ :: acc ]
| Bin (bl , br) → let right = pathrec acc [ True :: occ ] br

in [ List .rev occ :: pathrec right [ False :: occ ] bl ]
]

;

Note: occurs occ t = List .mem occ (paths t). We assume paths t to be in binlexico order.
bintree of1 : binocc → bintree

value rec bintree of1 = fun
[ [ ] → Null
| [ b :: occ ] → if b then Bin (Null , bintree of1 occ)

else Bin (bintree of1 occ,Null)
]

;

Zippers
binary contexts = linear bintree maps

type binzip =
[ Top
| Left of (binzip × bintree)
| Right of (bintree × binzip)
]

;

zip up : binzip → bintree → bintree
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value rec zip up z bt = match z with
[ Top → bt
| Left (up, br) → zip up up (Bin (bt , br))
| Right (bl , up) → zip up up (Bin (bl , bt))
]

;

extend : bintree → binocc → bintree

value extend tree = enter edit Top tree
where rec enter edit z t occ = match occ with

[ [ ] → zip up z t
| [ b :: rest ] → match t with

[ Bin (bl , br) → if b then enter edit (Right (bl , z )) br rest
else enter edit (Left (z , br)) bl rest

| Null → zip up z (bintree of1 occ)
]

]
;

We maintain extend t occ = if occurs occ t then t else bintree of [ occ :: paths t ].
bintree of : domain → bintree

value bintree of = binrec Null
where rec binrec acc = fun
[ [ ] → acc
| [ occ :: dom ] → binrec (extend acc occ) dom
]

;

Invariants:

• paths (bintree of dom) = {occ | binlexico occ o with o ∈ dom}

• bintree of (paths tree) = tree

• bintree of1 occ = bintree of [occ]

4 Trie Structures for Lexicon Indexing

Tries are tree structures that store finite sets of strings sharing initial prefixes.
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4.1 Tries as Lexical Trees

Tries (also called lexical trees) may be implemented in various ways. A node in a trie
represents a string, which may or may not belong to the set of strings encoded in the trie,
together with the set of tries of all suffixes of strings in the set having this string as a prefix.
The forest of sibling tries at a given level may be stored as an array, or as a list if we assume
a sparse representation. It could also use any of the more efficient representations of finite
sets, such as search trees [3]. Here we shall assume the simple sparse representation with
lists (which is actually the original presentation of tries by René de la Briantais (1959)),
yielding the following inductive type structure.

Module Trie

Tries store sparse sets of words sharing initial prefixes.

type trie = [ Trie of (bool × arcs) ]
and arcs = list (Word .letter × trie)
;

Trie (b, l) stores the empty word [ ] iff b, and all the words of arcs in l , while the arc (n, t)
stores all words [ n :: c ] for c a word stored in t .

Note that letters decorate the arcs of the trie, not its nodes. For instance, the trie storing
the set of words [[1]; [2]; [2; 2]; [2; 3]] is represented as
Trie (False, [ (1,Trie (True, [ ])); (2,Trie (True, [ (2,Trie (True, [ ])); (3,Trie (True, [ ])) ])) ]) .

This example exhibits one invariant of our representation, namely that the integers in
successive sibling nodes are in increasing order. Thus a top-down left-to-right traversal of
the trie lists its strings in lexicographic order. The algorithms below maintain this invariant.

Zippers as Trie contexts.
Let us show how to add words to a trie in a completely applicative way, using the notion

of a trie zipper.

type zipper =
[ Top
| Zip of (bool × arcs × Word .letter × arcs × zipper)
]

and edit state = (zipper × trie)
;

An edit state (z , t0 ) stores the editing context as a zipper z and the current subtrie t0 . We
replace this subtrie by a trie t by closing the zipper with zip up t z as follows.

exception Redundancy
;
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zip up : zipper → trie → trie

value rec zip up z t = match z with
[ Top → t
| Zip (b, left , n, right , up) →

zip up up (Trie (b,List2 .unstack left [ (n, t) :: right ]))
]

;

We need two auxiliary routines. The first one, zip, was given in module List2 . Its name
stems from the fact that it looks for an element in an a-list while building an editing context
in the spirit of a zipper, the role of zip up being played by unstack . The second routine,
given a word w , returns the singleton filiform trie containing w as trie of w .
trie of : word → trie

value rec trie of = fun
[ [ ] → Trie (True, [ ])
| [ n :: rest ] → Trie (False, [ (n, trie of rest) ])
]

;

Insertion and lookup.
We are now ready to define the insertion algorithm:

enter : trie → word → trie

value enter trie = enter edit (Top, trie)
where rec enter edit (z , t) = match t with

[ Trie (b, l) → fun
[ [ ] → if b then raise Redundancy

else zip up z (Trie (True, l))
| [ n :: rest ] →

let (left , right) = List2 .zip n l in
match right with

[ [ ] → zip up (Zip (b, left , n, [ ], z )) (trie of rest)
| [ (m, u) :: r ] →
if m = n then enter edit (Zip (b, left , n, r , z ), u) rest
else zip up (Zip (b, left , n, right , z )) (trie of rest)

]
]

]
;
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contents : trie → list word
Note that contents lists words in lexicographic order.
It should be used only on small lexicons.

value contents = contents prefix [ ]
where rec contents prefix pref = fun

[ Trie (b, l) →
let down = let f l (n, t) = l @ (contents prefix [ n :: pref ] t) in

List .fold left f [ ] l in
if b then [ (List .rev pref ) :: down ] else down

]
;

mem : word → trie → bool

value rec mem w = fun
[ Trie (b, l) → match w with

[ [ ] → b
| [ n :: r ] → try mem r (List .assoc n l)

with [ Not found → False ]
]

]
;

Tries may be considered as deterministic finite state automata graphs for accepting the (fi-
nite) language they represent. This remark is the basis for many lexicon processing libraries.
Actually, the mem algorithm may be seen as an interpreter for such an automaton, taking
its state graph as its trie argument, and its input tape as its word one. The boolean in-
formation in a trie node indicates whether or not this node represents an accepting state.
These automata are not minimal, since while they share initial equivalent states, there is no
sharing of accepting paths, for which a refinement of lexical trees into dags is necessary. We
shall look at this problem in the next section. First we give the rest of the Trie module.

value empty = Trie (False, [ ])
;

next trie returns the first element of its trie argument.

value next trie = next rec [ ]
where rec next rec acc = fun

[ Trie (b, l) →
if b then List .rev acc
else match l with

[ [ ] → failwith "next trie"

| [ (n, u) :: ] → next rec [ n :: acc ] u
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]
]

;

last trie returns the last element of its trie argument.

value last trie = last rec [ ]
where rec last rec acc = fun

[ Trie (b, l) → match l with
[ [ ] → if b then List .rev acc else failwith "last trie"

| → let (n, u) = List2 .last l in
last rec [ n :: acc ] u

]
]

;

size trie is the number of words stored in trie.

value rec size = fun
[ Trie (b, arcs) →

let s = List .fold left count 0 arcs
where count n ( , t) = n + size t in

s + Gen.dirac b
]

;

A trie iterator

iter : (word → unit) → trie → unit

value iter f t = iter prefix [ ] t
where rec iter prefix pref = fun

[ Trie (b, arcs) → do
{ if b then f (List .rev pref ) else ()
; let phi (n, u) = iter prefix [ n :: pref ] u in

List .iter phi arcs
}

]
;

4.2 Ascii encoding

The Ascii module defines coercions encode from strings to words and decode from words to
strings.
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Module Ascii

A very simple encoding scheme : ASCII
encode : string → word
decode : word → string

value encode string = List .map int of char (List2 .explode string)
and decode word = List2 .implode (List .map char of int word)
;

4.3 Implementing a lexicon as a trie

Now, using the coercion encode from strings to words from the Ascii module, we build a
lexicon trie from a list of strings by function make lex, using Ocaml’s fold left from the
List library (the terminal recursive list iterator).

Module Lexicon

make lex raises Redundancy if duplicate elements in its argument.
make lex : list string → trie

value make lex =
List .fold left (fun lex c → Trie.enter lex (Ascii .encode c)) Trie.empty

;

strings of : trie → list string

value strings of t = List .map Ascii .decode (Trie.contents t)
;

strings of (make lex l) gives l in lexicographic order.

assert (strings of (make lex [ "a"; "b"; "ab" ]) = [ "a"; "ab"; "b" ])
;

4.4 Building a trie lexicon from a byte stream

The function trie of strings reads on its standard input a stream of strings separated by
newline characters, builds the corresponding trie lexicon, and writes its representation on its
standard output.

It depends on a module Encoding, which defines the string encoding used through con-
version functions encode and decode.
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Module Make lex

Trie lexicon building from text file containing lists of words

module Make lex (Encoding : sig
value encode : string → Word .word ;
value decode : Word .word → string ; end) = struct

value lexicon = ref Trie.empty
;
value trie of strings =
let lexicon = ref Trie.empty in process strings

where rec process strings () =
try while True do
{ let str = read line () in

lexicon.val := Trie.enter lexicon.val (Encoding .encode str)
}

with [ End of file → output value stdout lexicon.val
| Trie.Redundancy → output string stderr "Fatal error: duplicated word\n"

]
;
end
;

For instance, with english.lst storing a list of 173528 English words, as a text file of
size 2Mb, the command make_lex < english.lst > english.rem produces a trie repre-
sentation as a file of 4.5Mb. Obviously we are wasting storage because we create a huge
structure which shares the words along with their common initial prefixes, but which ignores
the potential space saving of sharing common suffixes. We shall develop such sharing in a
completely generic manner, as follows.

5 Sharing

Sharing data representation is a very general problem. Sharing identical representations is
ultimately the responsibility of the runtime system, which allocates and desallocates data
with dynamic memory management processes such as garbage collectors.

But sharing of representations of the same type may also be programmed by bottom-up
computation. All that is needed is a memo function building the corresponding map without
duplications. Let us show the generic algorithm, as an ML functor.
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5.1 The Share functor

This functor (that is, parametric module) takes as parameter an algebra with its domain
seen here as an abstract type. Here is its public interface declaration:

Interface for module Share

module Share : functor (Algebra :sig type domain; value size : int ; end)
→ sig value share : Algebra.domain → int → Algebra.domain;

value reset : unit → unit ;
value memo : array (list Algebra.domain); (∗ for debugging ∗)

end;

Module Share

module Share (Algebra : sig type domain; value size : int ; end) = struct

Share takes as argument a module Algebra providing a type domain and an integer value
size, and it defines a value share of the stated type. We assume that the elements from the
domain are presented with an integer key bounded by Algebra.size. That is, share x k will
assume as precondition that 0 ≤ k < Max with Max =Algebra.size.
We shall construct the sharing map with the help of a hash table, made up of buckets
(k, [e1; e2; ...en]) where each element ei has key k.

type bucket = list Algebra.domain
;

A bucket stores a set e of elements of domain of a given key these sets are here implemented
as lists invariant : e = [e 1 ; ... e n] with e i = e j only if i = j . That is, a bucket
consists of distinct elements.
The memory is a hash-table of a given size and of the right bucket type.

value memo = Array .make Algebra.size ([ ] : bucket)
;

Resetting the hash-table

value reset () = for i = 0 to Algebra.size − 1 do { memo.(i) := [ ] }
;

We shall use a service function search, such that search e l returns the first y in l such that
y = e or or else raises the exception Not found .
Note search e = List .find (fun x → x = e).
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value search e = searchrec
where rec searchrec = fun
[ [ ] → raise Not found
| [ x :: l ] → if x = e then x else searchrec l
]

;

Now share x k , where k is the key of x , looks in k-th bucket l (this is meaningful since we
assume that the key fits in the size: 0≤ k < Algebra.size) and returns y in l such that
y = x if it exists, and otherwise returns x memorized in the new k -th bucket [ x :: e ].
Since share is the only operation on buckets, we maintain that such y is unique in its bucket
when it exists.

value share element key = (∗ assert 0 ≤ key < Algebra.size ∗)
let bucket = memo.(key) in
try search element bucket with

[ Not found → do { memo.(key) := [ element :: bucket ]; element } ]
;

Instead of share we could have used the name recall, or memory, since either we recall a
previously archived equal element, or else this element is archived for future recall. It is an
associative memory implemented with a hash-code. But the hash function is external to the
memory, it is given as a key with each item .

It is an interesting property of this modular design that sharing and archiving are ab-
stracted as a common notion.
Algorithm. A recursive structure of type domain is fully shared if any two distinct subele-
ments have different values. If such a structure is traversed in a bottom-up way with sys-
tematic memoisation by share, replacing systematically an element by its memoised equal
if possible, then it is reconstructed with full sharing. This only assumes that two equal
elements have the same key.

end
;

5.2 Compressing tries

We may for instance instantiate Share on the algebra of tries, with a size hash max depending
on the application.

Module Mini

value hash max = 9689 (∗ Mersenne 21 ∗)
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;
module Dag = Share.Share (struct type domain = Trie.trie;

value size = hash max ; end)
;

And now we compress a trie into a minimal dag using share by a simple bottom-up traversal,
where the key is computed along by hashing. For this we define a general bottom-up traversal
function, which applies a parametric lookup function to every node and its associated key.

value hash0 = 1 (∗ linear hash-code parameters ∗)
and hash1 letter key sum = sum + letter × key
and hash b arcs = (abs (arcs + Gen.dirac b)) mod hash max

Caution - abs is needed because possible integer overflow, since otherwise mod may return a
negative result, leading to error out-of-bound array at execution.

;
value traverse lookup = travel
where rec travel = fun
[ Trie.Trie (b, arcs) →
let f (tries , span) (n, t) =

let (t0 , k) = travel t in
([ (n, t0 ) :: tries ], hash1 n k span) in

let (arcs0 , span) = List .fold left f ([ ], hash0 ) arcs in
let key = hash b span in
(lookup (Trie.Trie (b,List .rev arcs0 )) key , key)

]
;

Now we make a dag from a trie by recognizing common subtries.

value compress = traverse Dag .share
;
value minimize trie = let (dag , ) = compress trie in dag
;
value reset = Dag .reset
;

5.3 Dagified lexicons

We now return to our problem of building a lexicon which shares common suffixes of words
as well as common prefixes.
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Module Dagify

For instance, we may dagify a trie value read on the standard input stream with minimize,
and write the resulting dag on standard output by calling dagify(), with:

value rec dagify () =
let lexicon = (input value stdin : Trie.trie) in
let dag = Mini .minimize lexicon in
output value stdout dag

;

Module Make english lexicon

English words, using ASCII encoding

open Make lex
;
module Make lexicon = Make lex Ascii
;
Make lexicon.trie of strings ()
;

5.4 Some statistics

If we apply this technique to our English lexicon, with command:
dagify <english.rem >small.rem, we now get an optimal representation which only needs
1Mb of storage, half of the original ASCII string representation.

The recursive algorithms given so far are fairly straightforward. They are easy to debug,
maintain and modify, due to the strong typing safeguard of ML, and even easy to formally
certify. They are nonetheless efficient enough for production use, thanks to the optimizing
native-code compiler of Objective Caml.

In our Sanskrit application, the trie of 11500 entries is shrunk from 219Kb to 103Kb in
0.1s, whereas the trie of 120000 flexed forms is shrunk from 1.63Mb to 140Kb in 0.5s on a
864MHz PC.

Our list of 173528 English words, represented as an ASCII file of 1.92 Mbytes, is repre-
sented as a trie of 4.5 Mbytes, which shrinks to 1.1 Mbytes by sharing (in 2.7s).

Measurements showed that the time complexity is linear with the size of the lexicon
(within comparable sets of words). This is consistent with algorithmic analysis, since it is
known that tries compress dictionaries up to a linear entropy factor, and that perfect hashing
compresses trees in dags in linear time [12].
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Tuning of the hash function parameters leads to many variations. For instance if we
assume an infinite memory we may turn the hash calculation into a one-to-one Gödel num-
bering, and at the opposite end taking hash max to 1 we would do list lookup in the unique
bucket, with worse than quadratic performance.

Using hash tables for sharing with bottom-up traversal is a standard dynamic program-
ming technique, but the usual way is to delegate computation of the hash function to some
hash library, using a generic low-level package. This is what happens for instance if one uses
the module hashtbl from the Ocaml library. Here the Share module does not compute the
keys, which are computed on the client side, avoiding re-exploration of the structures. That
is, Share is just an associative memory. Furthermore, key computation may take advantage
of specific statistical distribution of the application domain.

We shall see later another application of the Share functor to the minimization of the
state space of (acyclic) finite automata. Actually, what we just did is minimization of acyclic
deterministic automata represented as lexical dags.

More sophisticated compression techniques are known, which may combine with array
implementations insuring fast access, and which may extend to possibly cyclic automata
state spaces. Such techniques are used in lexical analysers for programming languages, for
which speed is essential. See for instance the table-compression method described in section
3.9 of [1].

5.5 ISO-LATIN and French

The next modules explain how to define the ISO-LATIN encoding, and how to use it to
represent French words.

First we give a simple lexer, which is used to parse raw text with Camlp4 grammars. Next
we give such a grammar, used to define a transducer from notations such as e’ to ISO-LATIN
character é. Finally, we give a module Latin which defines ISO-LATIN encoding.

Module Zen lexer

A very simple lexer recognizing 1 character idents and integers and skipping spaces and
comments between % and eol; used for various transduction tasks with Camlp4 Grammars.

open Camlp4 .PreCast ;
open Format ;

module Loc = Loc; (∗ Using the PreCast Loc ∗)
module Error = Camlp4 .Struct .EmptyError ; (∗ Dummy Error module ∗)
module Token = struct
module Loc = Loc
;



Module Zen lexer §1 33

type t =
[ KEYWORD of string
| LETTER of string
| INT of int
| EOI
]

;
module Error = Error
;
module Filter = struct
type token filter = Camlp4 .Sig .stream filter t Loc.t
;
type t = string → bool
;
value mk is kwd = is kwd
;
value rec filter is kwd = parser

[ [: ‘((KEYWORD s , loc) as p); strm :] →
if is kwd s then [: ‘p; filter is kwd strm :]
else failwith ("Undefined token: " ˆ s)

| [: ‘x ; s :] → [: ‘x ; filter is kwd s :]
| [: :] → [: :]
]

;
value define filter = ()
;
value keyword added = ()
;
value keyword removed = ()
;

end
;
value to string = fun

[ KEYWORD s → sprintf "KEYWORD %S" s
| LETTER s → sprintf "LETTER %S" s
| INT i → sprintf "INT %d" i
| EOI → "EOI"

]
;
value print ppf x = pp print string ppf (to string x )
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;
value match keyword kwd = fun

[ KEYWORD kwd ′ when kwd ′ = kwd → True
| → False
]

;
value extract string = fun

[ INT i → string of int i
| LETTER s | KEYWORD s → s
| EOI → ""

]
;

end
;

open Token
;

The string buffering machinery.

value store buf c = do { Buffer .add char buf c; buf }
;
value rec number buf =
parser
[ [: ‘(’0’..’9’ as c); s :] → number (store buf c) s
| [: :] → Buffer .contents buf
]

;
value rec skip to eol =
parser
[ [: ‘’\n’ | ’\026’ | ’\012’; s :] → ()
| [: ‘c ; s :] → skip to eol s
]

;
value next token fun =
let rec next token =
parser bp
[ [: ‘’%’ ; = skip to eol ; s :] → next token s
| [: ‘(’a’..’z’ | ’A’..’Z’ | ’\192’..’\246’ | ’\248’..’\255’ (∗ | ’_’ ∗)

as c) :] → LETTER (String .make 1 c)
| [: ‘(’0’..’9’ as c); s = number (store (Buffer .create 80) c) :] →

INT (int of string s)
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| [: ‘c :] ep → KEYWORD (String .make 1 c)
] in

let rec next token loc =
parser bp
[ [: ‘’ ’ | ’\n’ | ’\r’ | ’\t’ | ’\026’ | ’\012’; s :] → next token loc s
| [: tok = next token :] ep → (tok , (bp, ep))
| [: = Stream.empty :] → (EOI , (bp, succ bp))
] in

next token loc
;
value mk () =
fun init loc cstrm → Stream.from

(fun →
let (tok , (bp, ep)) = next token fun cstrm in
let loc = Loc.move ‘start bp (Loc.move ‘stop ep init loc) in
Some (tok , loc))

;

Module Transducer

module Gram = MakeGram Zen lexer ;

open Zen lexer .Token;

value transducer trad t =
try Gram.parse string trad Loc.ghost t
with
[ Loc.Exc located loc e → do
{ print string "\n\n%!"

; Format .eprintf "In string \"%s\", at location %a:@."

t Loc.print loc
; raise e
}

]
;

French with accents.

value french = Gram.Entry .mk "french encoding"

;
value french word = Gram.Entry .mk "french word encoding"

;
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EXTEND Gram (∗ french to code ∗)
french :

[ [ LETTER "a"; "^" → "â"

| LETTER "a"; "‘" → "à"

| LETTER "a" → "a"

| LETTER "e"; "’" → "é"

| LETTER "e"; "‘" → "è"

| LETTER "e"; "^" → "ê"

| LETTER "e"; "\"" → "ë"

| LETTER "e" → "e"

| LETTER "i"; "^" → "ı̂"

| LETTER "i"; "\"" → "ı̈"

| LETTER "i" → "i"

| LETTER "o"; "^" → "ô"

| LETTER "o" → "o"

| LETTER "u"; "‘" → "ù"

| LETTER "u"; "^" → "û"

| LETTER "u"; "\"" → "ü"

| LETTER "y"; "\"" → "y\"" (∗ oulipo ∗)
| LETTER "u" → "u"

| LETTER "c"; "/" → "ç"

| LETTER "c" → "c"

| "-" → "-"

| "." → "."

| "’" → "’" (∗ aujourd’hui ∗)
| l = LETTER → l
] ];

french word :
[ [ w = LIST0 french; ‘EOI → String .concat "" w ] ];

END
;
value latin of string = transducer french word
;

Module Latin

The ISO-latin encoding scheme
encode : string → word
decode : word → string
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value encode string =
let iso = Transducer .latin of string string in
List .map int of char (List2 .explode iso)

and decode word = List2 .implode (List .map char of int word);

5.6 Statistics for French

We may now instanciate the functor make lex with the Latin module.

Module Make french lexicon

French words, using Latin encoding.

module Make lexicon = Make lex Latin
;
Make lexicon.trie of strings ()
;

A list of 138257 French words, represented as an 8-bit ASCII file of 1.52 Mbytes, is
represented as a trie of 2.4 Mbytes, which shrinks to 450 Kbytes by sharing.

5.7 Lexicon repositories using tries and decos

In a typical computational linguistics application, grammatical information (part of speech
role, gender/number for substantives, valency and other subcategorization information for
verbs, etc) may be stored as decoration of the lexicon of roots/stems. From such a decorated
trie a morphological processor may compute the lexmap of all inflected forms, decorated
with their derivation information encoded as an inverse map. This structure may itself be
used by a tagging processor to construct the linear representation of a sentence decorated by
feature structures. Such a representation will support further processing, such as computing
syntactic and functional structures, typically as solutions of constraint satisfaction problems.

Let us for example give some information on the indexing structures trie, deco and
lexmap used in our computational linguistics tools for Sanskrit.

The main component in our tools is a structured lexical database, described in [15, 16].
From this database, various documents may be produced mechanically, such as a printable
dictionary through a TEX/Pdf compiling chain, and a Web site (http://pauillac.inria.
fr/~huet/SKT) with indexing tools. The index CGI engine searches the words by navigating
in a persistent trie index of stem entries. In the current version, the database comprises 12000
items. The corresponding trie (shared as a dag) has a size of 103KB.

When computing this index, another persistent structure is created. It records in a deco
all the genders associated with a noun entry (nouns comprise substantives and adjectives, a
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blurred distinction in Sanskrit). At present, this deco records genders for 5700 nouns, and
it has a size of 268KB.

A separate process may then iterate on this genders structure a grammatical engine, which
for each stem and associated gender generates all the corresponding declined forms. Sanskrit
has a specially prolific morphology, with 3 genders, 3 numbers and 7 cases. The grammar
rules are encoded into 84 declension tables, and for each declension suffix an internal sandhi
computation is effected to compute the final inflected form. All such words are recorded in a
inflected forms lexmap, which stores for every word the list of pairs (stem,declension) which
may produce it. This lexmap records about 120000 such inflected forms with associated
grammatical information, and it has a size of 341KB (after minimization by sharing, which
contracts approximately by a factor of 10). A companion trie, without the information,
keeps the index of inflected words as a minimized structure of 140KB.

A similar process produces the conjugated forms of root verbs.

6 Variation: Ternary trees

Let us now try a variation on lexicon structure, using the notion of a ternary tree.
This notion is fairly natural if one wants to restore for ordered trees the locality of zipper

navigation in binary trees. Remark that when we go up to the current father, we have to
close the list of elder siblings in order to restore the full list of children of the upper node.
With ternary trees each tree node has two lists of children, elders and youngers. When
we go up in the zipper structure, it is now a constant cost operation. Remark that this
partition into elders and youngers is not intrinsic and carries no information, except the
memory of the previous navigation. This is again an idea of optimizing computation by
creating redundancy in the data structure representations. We may for instance exploit this
redundancy in balancing our trees for faster access.

Ternary trees are inspired from Bentley and Sedgewick[3].

Module Tertree

Trees are ternary trees for use as two-ways tries with zippers. Tree (b, l , i , t , r) at occurrence
u stores u as a word iff b = True, and gives access to t at occurrence [ u :: i ] as a son, having
l and r as respectively left stack of elder and right list of younger brothers; Leaf True at
occurrence u stores u as a word with no descendants; Leaf False is only needed to translate
Trie.empty = Trie (False, [ ]).

type tree =
[ Tree of (bool × forest × int × tree × forest)
| Leaf of bool
]
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and forest = list (int × tree)
;

Invariant : integers are in increasing order in siblings, no repetition.
Simple translation of a trie as a tree.

value rec trie to tree = fun
[ Trie.Trie (b, arcs) → match arcs with

[ [ ] → Leaf b
| [ (n, t) :: arcs ] → Tree (b, [ ], n, trie to tree t ,List .map f arcs)

where f (n, t) = (n, trie to tree t)
]

]
;
exception Anomaly
;

More sophisticated translation as a balanced tree.

value rec balanced = fun
[ Trie.Trie (b, arcs) → match arcs with

[ [ ] → Leaf b
| → (∗ bal balances k first arcs of l and stacks them in acc ∗)
let rec bal acc l k = (∗ assert | l | ≥ k ∗)

if k = 0 then (acc, l)
else match l with

[ [ ] → raise Anomaly (∗ impossible by assertion ∗)
| [ (n, t) :: r ] → bal [ (n, balanced t) :: acc ] r (k − 1)
] in

let (stack , rest) = let half = (List .length arcs)/2 in
bal [ ] arcs half in

match rest with
[ [ ] → raise Anomaly (∗ | rest | = | arcs | − half > 0 ∗)
| [ (n, t) :: right ] →

Tree (b, stack , n, balanced t ,List .map f right)
where f (n, t) = (n, balanced t)

]
]

]
;
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type zipper =
[ Top
| Zip of (bool × forest × int × forest × zipper)
]

;

zip up : tree → zipper → tree

value rec zip up t = fun
[ Top → t
| Zip (b, left , n, right , up) → zip up (Tree (b, left , n, t , right)) up
]

;

tree of c builds the filiform tree containing c.
tree of : word → trie

value rec tree of = fun
[ [ ] → Leaf False
| [ n ] → Tree (False, [ ], n,Leaf True, [ ])
| [ n :: rest ] → Tree (False, [ ], n, tree of rest , [ ])
]

;

mem tree : word → tree → bool

value rec mem tree c = fun
[ Tree (b, l , n, t , r) → match c with

[ [ ] → b
| [ i :: s ] →
let rec memrec l n t r =

if i = n then mem tree s t
else if i < n then match l with

[ [ ] → False
| [ (m, u) :: l ′] → memrec l ′ m u [ (n, t) :: r ]
]

else match r with
[ [ ] → False
| [ (m, u) :: r ′ ] → memrec [ (n, t) :: l ] m u r ′

] in
memrec l n t r

]
| Leaf b → b ∧ c = [ ]
]
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;

We assume that enter used over tries, and that trees are not updated.
Translates trie in entries file into corresponding tree.

value translate entries entries file result file =
let entries trie = (Gen.gobble entries file : Trie.trie) in
Gen.dump (balanced entries trie) result file

;

Module Minitertree

Similarly to Mini for tries, we may dagify ternary trees.

value hash max = 9689 (∗ Mersenne 21 ∗)
;
module Dag = Share.Share (struct type domain = Tertree.tree;

value size = hash max ; end)
;
value hash0 = 1 (∗ linear hash-code parameters ∗)
and hash1 letter key sum = sum + letter × key
and hash b arcsl k n arcsr = (arcsl + arcsr + n × k + Gen.dirac b) mod hash max ;

value leaff = Tertree.Leaf False
and leaft = Tertree.Leaf True
;
value traverse lookup = travel
where rec travel = fun
[ Tertree.Tree(b,fl , n, t , fr) →
let f (trees , span) (n, t) =

let (t0 , k) = travel t in
([ (n, t0 ) :: trees ], hash1 n k span) in

let (arcsl , spanl) = List .fold left f ([ ], hash0 ) fl
and (t1 , k1 ) = travel t
and (arcsr , spanr) = List .fold left f ([ ], hash0 ) fr in
let key = hash b spanl k1 n spanr in
(lookup (Tertree.Tree(b,List .rev arcsl , n, t1 ,List .rev arcsr)) key , key)
| Tertree.Leaf b → if b then (leaft , 1) else (leaff , 0)
]

;

Now we make a dag from a trie by recognizing common subtries.
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value compress = traverse Dag .share
;
value minimize tree = let (dag , ) = compress tree in dag
;
value rec dagify tree () =
let lexicon = (input value stdin : Tertree.tree) in
let dag = minimize lexicon in
output value stdout dag

;
value reset = Dag .reset
;

Ternary trees are more complex than tries, but use slightly less storage. Access is poten-
tially faster in balanced trees than tries. A good methodology seems to use tries for edition,
and to translate them to balanced ternary trees for production use with a fixed lexicon.

The ternary version of our English lexicon takes 3.6Mb, a savings of 20% over its trie
version using 4.5Mb. After dag minimization, it takes 1Mb, a savings of 10% over the trie
dag version using 1.1Mb. In the case of our Sanskrit lexicon index, the trie takes 221Kb and
the tertree 180Kb, whereas shared as dags the trie takes 103Kb and the tertree 96Kb.

7 Decorated Tries for Inflected Forms Storage

7.1 Decorated Tries

A set of elements of some type τ may be identified as its characteristic predicate in τ → bool.
A trie with boolean information may similarly be generalized to a structure representing a
map, or function from words to some target type, by storing elements of that type in the
information slot.

In order to distinguish absence of information, we could use a type (option info) with
constructor None, presence of value v being indicated by Some(v). We rather choose here
a variant with lists, which are versatile to represent sets, feature structures, etc. Now we
may associate to a word a non-empty list of information of polymorphic type α, absence of
information being encoded by the empty list. We shall call such associations a decorated
trie, or deco in short.

Module Deco

Same as Trie, except that info carries a list. A deco associates to a word a non-empty list
of attributes.
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Tries storing decorated words.

type deco α = [ Deco of (list α × darcs α) ]
and darcs α = list (Word .letter × deco α)
;

Invariant: integers are in increasing order in darcs, no repetition.
The zipper type is adapted in the obvious way, and algorithm zip up is unchanged.

type zipd α =
[ Top
| Zip of ((list α) × (darcs α) × Word .letter × (darcs α) × (zipd α))
]

;

zip up : (zipd α) → (deco α) → (deco α)

value rec zip up z t = match z with
[ Top → t
| Zip (i , left , n, right , up) →

zip up up (Deco (i ,List2 .unstack left [ (n, t) :: right ]))
]

;

Function trie of becomes deco of , taking as extra argument the information associated with
the singleton trie it constructs.
deco of i w builds the filiform deco containing w with info i .
deco of : (list α) → word → (deco α)

value deco of i = decrec
where rec decrec = fun

[ [ ] → Deco (i , [ ])
| [ n :: rest ] → Deco ([ ], [ (n, decrec rest) ])
]

;

Note how the empty list [ ] codes absence of information. We generalize algorithm enter into
add , which unions new information to previous one:
add : (deco α) → word → (list α) → (deco α)

value add deco word i = enter edit Top deco word
where rec enter edit z d = fun

[ [ ] → match d with [ Deco (j , l) → zip up z (Deco (List2 .union i j , l)) ]
| [ n :: rest ] → match d with

[ Deco (j , l) → let (left , right) = List2 .zip n l in
match right with
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[ [ ] → zip up (Zip (j , left , n, [ ], z )) (deco of i rest)
| [ (m, u) :: r ] →
if m = n then enter edit (Zip (j , left , n, r , z )) u rest
else zip up (Zip (j , left , n, right , z )) (deco of i rest)

]
]

]
;
(∗ add1 : (deco α) → word → α → (deco α) ∗)
(∗ fast version, takes info as list with possible repetitions ∗)
value add1 deco word i = enter edit Top deco word

where rec enter edit z d = fun
[ [ ] → match d with [ Deco (j , l) → zip up z (Deco ([ i :: j ], l)) ]
| [ n :: rest ] → match d with

[ Deco (j , l) → let (left , right) = List2 .zip n l in
match right with

[ [ ] → zip up (Zip (j , left , n, [ ], z )) (deco of [ i ] rest)
| [ (m, u) :: r ] →
if m = n then enter edit (Zip (j , left , n, r , z )) u rest
else zip up (Zip (j , left , n, right , z )) (deco of [ i ] rest)

]
]

]
;
value empty = Deco ([ ], [ ])
;

Invariant: contents returns words in lexicographic order.
contents : deco α → list (word × list α)

value contents t = contents prefix [ ] t
where rec contents prefix pref = fun

[ Deco (i , l) →
let down = let f l (n, t) = l @ (contents prefix [ n :: pref ] t) in

List .fold left f [ ] l in
if i = [ ] then down else [ (Word .mirror pref , i) :: down ]

]
;

iter : (word → α → unit) → (deco α) → unit

value iter f t = iter prefix [ ] t
where rec iter prefix pref = fun
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[ Deco (i , l) → do
{ List .iter (f (Word .mirror pref )) i (∗ no action if i = [ ] ∗)
; let phi (n, u) = iter prefix [ n :: pref ] u in

List .iter phi l
}

]
;

iter : (word → (list α) → unit) → (deco α) → unit

value iter list f t = iter prefix [ ] t
where rec iter prefix pref = fun

[ Deco (i , l) → do
{ f (Word .mirror pref ) i
; let phi (n, u) = iter prefix [ n :: pref ] u in

List .iter phi l
}

]
;

fold : (α → word → (list β) → α) → α → (deco β) → α

value fold f x t = iter prefix [ ] x t
where rec iter prefix pref x = fun

[ Deco (i , l) →
let accu = if i = [ ] then x else (f x (Word .mirror pref ) i)
and g x (n, t) = iter prefix [ n :: pref ] x t in
List .fold left g accu l

]
;

assoc : word → (deco α) → (list α)

value rec assoc c = fun
[ Deco (i , arcs) → match c with

[ [ ] → i
| [ n :: r ] → try assoc r (List .assoc n arcs)

with [ Not found → [ ] ]
]

]
;

next t returns the first element of deco t with non-empty info.
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value next t = next rec [ ] t
where rec next rec pref = fun

[ Deco (i , arcs) →
if i = [ ] then match arcs with

[ [ ] → raise (Failure "next deco")
| [ (n, u) :: ] → next rec [ n :: pref ] u
]

else Word .mirror pref
]

;

last t returns the last element of deco t .

value last t = last rec [ ] t
where rec last rec acc = fun

[ Deco (i , l) → match l with
[ [ ] → Word .mirror acc
| → let (m, u) = List2 .last l in

last rec [ m :: acc ] u
]

]
;

Now the forgetful functor: forget deco : (deco α) → trie

value rec forget deco = fun
[ Deco (i , l) →

Trie.Trie (List2 .non empty i , List .map (fun (n, t) → (n, forget deco t)) l)
]

;
value trie of = forget deco
;

7.2 Lexical maps

We can easily generalize sharing to decorated tries. However, substantial savings will result
only if the information at a given node is a function of the subtrie at that node, i.e. if
such information is defined as a trie morphism. This will not be generally the case, since
this information is in general a function of the word stored at that point, and thus of all
the accessing path to that node. The way in which the information is encoded is of course
crucial. For instance, encoding morphological derivation as an operation on the suffix of
a inflected form is likely to be amenable to sharing common suffixes in the inflected trie,
whereas encoding it as an operation on the whole stem will prevent any such sharing.
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In order to facilitate the sharing of mappings which preserve an initial prefix of a word,
we shall use the notion of differential word above.

We may now store inverse maps of lexical relations (such as morphology derivations)
using the following structures (where the type parameter α: codes the relation).

Module Lexmap

A specialisation of Deco, with info localised to the current word.

type inverse α = (Word .delta × α)
and inv map α = list (inverse α)
;

Such inverse relations may be used as decorations of special lexical trees called lexical maps.

open Deco;

type lexmap α = deco (inverse α)
;

Typically, if word w is stored in a lexmap at a node whose decoration carries (d , r), this
represents the fact that w is the image by relation r of w ′ = patch d w . Such a lexmap is
thus a representation of the image by r of a source lexicon. This representation is invertible,
while preserving maximally the sharing of prefixes, and thus being amenable to sharing.
Here α is list morphs . When word w has info [... (delta, l) ...] with delta = diff w w ′ it tells
that R w ′ w for every morph relation R in l where w ′ = patch delta w .

value single (d , i) = (d , [ i ])
;

add inv : (inverse α) → (inv map (list α)) → (inv map (list α))

value rec add inv ((delta,flex ) as i) = fun
[ [ ] → [ single i ]
| [ (d , lflex ) :: l ] as infos →

if d = delta then [ (d ,List2 .union1 flex lflex ) :: l ]
else if Word .less diff d delta then [ (d , lflex ) :: add inv i l ]

else [ single i :: infos ]
]

;

add inv2 : (inverse α) → (inv map (list α)) → (inv map (list α))
Similar to add inv but raises the exception List2 .Twice the same value when trying to
add twice the same decoration for a same word with the same delta.
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value rec add inv2 ((delta,flex ) as i) = fun
[ [ ] → [ single i ]
| [ (d , lflex ) :: l ] as infos →

if d = delta then [ (d ,List2 .union2 flex lflex ) :: l ]
else if Word .less diff d delta then [ (d , lflex ) :: add inv i l ]
else [ single i :: infos ]

]
;

addl : (lexmap (list α)) → word → (inverse α) → (lexmap (list α))

value addl lexmap word i = enter edit Top lexmap word
where rec enter edit z d = fun
[ [ ] → match d with [ Deco (j , l) → zip up z (Deco (add inv i j , l)) ]
| [ n :: rest ] →

match d with
[ Deco (j , l) →
let (left , right) = List2 .zip n l in
match right with
[ [ ] → zip up (Zip (j , left , n, [ ], z )) (deco of [ single i ] rest)
| [ (m, u) :: r ] →
if m = n then enter edit (Zip (j , left , n, r , z )) u rest
else zip up (Zip (j , left , n, right , z )) (deco of [ single i ] rest)

]
]

]
;
exception Duplication
;

addl2 : (lexmap (list α)) → word → (inverse α) → (lexmap (list α))

value addl2 lexmap word i =
try enter edit Top lexmap word

where rec enter edit z d = fun
[ [ ] → match d with [ Deco (j , l) → zip up z (Deco (add inv2 i j , l)) ]
| [ n :: rest ] →

match d with
[ Deco (j , l) →
let (left , right) = List2 .zip n l in
match right with
[ [ ] → zip up (Zip (j , left , n, [ ], z )) (deco of [ single i ] rest)
| [ (m, u) :: r ] →
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if m = n then enter edit (Zip (j , left , n, r , z )) u rest
else zip up (Zip (j , left , n, right , z )) (deco of [ single i ] rest)

]
]

]
with [ List2 .Twice the same value → raise Duplication ]

;

7.3 Minimizing lexical maps

We may now profit of the local structure of lexical maps to share them optimally as dags.

Interface for module Minimap

Minimization of Lexical Maps.

module Minimap : functor (Map :sig type inflected ; end)
→ sig type inflected map = Lexmap.lexmap (list Map.inflected);

value minimize : inflected map → inflected map;
value reset : unit → unit ; end;

Module Minimap

module Minimap (Map :sig type inflected ; end) = struct

Minimization of lexmaps of inflected forms as dags by bottom-up hashing.

type inflected map = Lexmap.lexmap (list Map.inflected);

Use Mersenne 21 = 9689 for small dictionaries.

value hash max = 216091 (∗ Mersenne 31 ∗)
;
module Inflected = struct type domain = inflected map; value size = hash max ; end
;
module Memo = Share.Share Inflected
;

Bottom-up traversal with lookup computing a key < hash max .
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value hash0 = 0
and hash1 letter key sum = sum + letter × key
and hash i arcs = (abs (arcs + List .length i)) mod hash max
;
value traverse map lookup = travel
where rec travel = fun
[ Deco.Deco (i , arcs) →
let f (tries , span) (n, t) =

let (t0 , k) = travel t in
([ (n, t0 ) :: tries ], hash1 n k span) in

let (arcs0 , span) = List .fold left f ([ ], hash0 ) arcs in
let key = hash i span in
(lookup (Deco.Deco (i ,List .rev arcs0 )) key , key)

]
;

Make a dag of inflected map by recognizing common substructures.

value compress map = traverse map Memo.share
;
value minimize map = let (dag , ) = compress map map in dag
;
value reset = Memo.reset
;
end;

8 Finite State Machines as Lexicon Morphisms

8.1 Finite-state lore

Computational phonetics and morphology is one of the main applications of finite state
methods: regular expressions, rational languages, finite-state automata and transducers,
rational relations have been the topic of systematic investigations [27, 37], and have been used
widely in speech recognition and natural language processing applications. These methods
usually combine logical structures such as rewrite rules with statistical ones such as weighted
automata derived from hidden Markov chains analysis in corpuses. In morphology, the
pioneering work of Koskenniemi [24] was put in a systematic framework of rational relations
and transducers by the work of Kaplan and Kay [21] which is the basis for the Xerox
morphology toolset [22, 23, 2]. In such approaches, lexical data bases and phonetic and
morphological transformations are systematically compiled in a low-level algebra of finite-
state machines operators. Similar toolsets have been developed at University Paris VII, Bell
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Labs, Mitsubishi Labs, etc.
Compiling complex rewrite rules in rational transducers is however rather subtle. Some

high-level operations are more easily expressed over deterministic automata, certain others
are easier to state with ε-transitions, still others demand non-deterministic descriptions.
Inter-traductions are well known, but tend to make the compiled systems bulky, since for
instance removing non-determinism is an exponential operation in the worst case. Knowing
when to compact and minimize the descriptions is a craft which is not widely disseminated,
and thus there is a gap between theoretical descriptions, widely available, and operational
technology, kept confidential.

Here we shall depart from this fine-grained methodology and propose more direct trans-
lations which preserve the structure of large modules such as the lexicon. The resulting
algorithms will not have the full generality of the standard approach, and the ensuing
methodology may be thought by some as a backward development. Its justification lies
in the greater efficiency of such direct translations, together with a simpler understand-
ing of high-level operations which may be refined easily e.g. with statistical refinements,
whereas the automata compiled by complex sequences of fine-grained operations are opaque
blackboxes which are not easily amenable to heuristic refinements by human programming.
Furthermore, the techniques are complementary, and it is envisioned that a future version
of our toolset will offer both fine-grained and lexicon-based technologies.

The point of departure of our approach is the above remark that a lexicon represented
as a lexical tree or trie is directly the state space representation of the (deterministic) finite
state machine that recognizes its words, and that its minimization consists exactly in sharing
the lexical tree as a dag. Thus we are in a case where the state graph of such finite languages
recognizers is an acyclic structure. Such a pure data structure may be easily built without
mutable references, and thus allocatable in the static part of the heap, which the garbage
collector need not visit, an essential practical consideration. Furthermore, avoiding a costly
reconstruction of the automaton from the lexicon data base is a computational advantage.

In the same spirit, we shall define automata which implement non-trivial rational relations
(and their inversion) and whose state structure is nonetheless a more or less direct decoration
of the lexicon trie. The crucial notion is that the state structure is a lexicon morphism.

8.2 Unglueing

We shall start with a toy problem which is the simplest case of juncture analysis, namely
when there are no non-trivial juncture rules, and segmentation consists just in retrieving the
words of a sentence glued together in one long string of characters (or phonemes). Let us
consider an instance of the problem say in written English. You have a text file consisting
of a sequence of words separated with blanks, and you have a lexicon complete for this text
(for instance, ‘spell’ has been successfully applied). Now, suppose you make some editing
mistake, which removes all spaces, and the task is to undo this operation to restore the
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original.
We shall show that the corresponding transducer may be defined as a simple navigation

in the lexical tree state space, but now with a measure of non-determinism. Let us give the
detailed construction of this unglueing automaton.

The transducer is defined as a functor, taking the lexicon trie structure as parameter.

Module Unglue

The unglueing problem is the simplest case of juncture analysis, namely when there are
no non-trivial juncture rules, and segmentation consists just in retrieving the words of a
sentence glued together in one long string of characters (or phonemes).

We shall show that the corresponding transducer may be defined as a simple navigation
in the lexical tree state space, but now with a measure of non-determinism. The unglueing
transducer is a lexicon morphism.

module Unglue (Lexicon : sig value lexicon : Trie.trie; end) = struct

type input = Word .word (∗ input sentence as a word ∗)
and output = list Word .word (∗ output is sequence of words ∗)
;
type backtrack = (input × output)
and resumption = list backtrack (∗ coroutine resumptions ∗)
;

Now we define our unglueing reactive engine as a recursive process which navigates directly
on the (flexed) lexicon trie (typically the compressed trie resulting from the Dag module
considered above). The reactive engine takes as arguments the (remaining) input, the (par-
tially constructed) list of words returned as output, a backtrack stack whose items are
(input , output) pairs, the path occ in the state graph stacking (the reverse of) the current
common prefix of the candidate words, and finally the current trie node as its current state.
When the state is accepting, we push it on the backtrack stack, because we want to favor
possible longer words, and so we continue reading the input until either we exhaust the
input, or the next input character is inconsistent with the lexicon data.

value rec react input output back occ = fun
[ Trie.Trie (b, arcs) →

let continue cont = match input with
[ [ ] → backtrack cont
| [ letter :: rest ] →
let opt state = try Some (List .assoc letter arcs) with

[ Not found → None ] in
match opt state with
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[ Some s → react rest output cont [ letter :: occ ] s
| None → backtrack cont
]

] in
if b then

let pushout = [ occ :: output ] in
if input = [ ] then Some (pushout , back) (∗ solution found ∗)
else let pushback = [ (input , pushout) :: back ] in

(∗ we first try the longest possible matching word ∗)
continue pushback

else continue back
]

and backtrack = fun
[ [ ] → None
| [ (input , output) :: back ] → react input output back [ ] Lexicon.lexicon
]

;

Now, unglueing a sentence is just calling the reactive engine from the appropriate initial
backtrack situation:

value unglue sentence = backtrack [ (sentence, [ ]) ]
;

value print out solution = List .iter pr (Word .mirror solution)
where pr word = print string (Ascii .decode (Word .mirror word) ˆ " ")

;

resume : resumption → int → resumption

value resume cont n = match backtrack cont with
[ Some (output , resumption) → do
{ print string "\n Solution "

; print int n
; print string " : "

; print out output
; Some resumption
}

| → None
]
;
value unglue first sentence = (∗ similar to unglue ∗)

resume [ (sentence, [ ]) ] 1
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;
value unglue all sentence = restore [ (sentence, [ ]) ] 1

where rec restore cont n = match resume cont n with
[ Some resumption → restore resumption (n + 1)
| None → print string (if n = 1 then " No solution found\n" else "\n")
]

;

end;

Module Unglue test

The unglueing process is complete, relatively to the lexicon: if the input sentence may be
obtained by glueing words from the lexicon, unglue sentence will return one possible solution.
For instance, assuming the sentence is in French Childish Scatology:

module Childtalk = struct
value lexicon = Lexicon.make lex ["boudin";"caca";"pipi"];
end
;
module Childish = Unglue Childtalk
;

Now, calling Childish.unglue on the encoding of the string "pipicacaboudin" produces a
pair (sol , cont) where the reverse of sol is a list of words which, if they are themselves reversed
and decoded, yields the expected sequence ["pipi"; "caca"; "boudin"].

match Childish.unglue (Ascii .encode "pipicacaboudin") with
[ Some (sol , ) → Childish.print out sol
| None → failwith "Error"

]
;

We recover as expected: pipi caca boudin.
Another example, this time American street talk:

module Streettalk = struct
value lexicon = Lexicon.make lex ["a"; "brick"; "fuck"; "shit"; "truck"];
end
;
module Slang = Unglue Streettalk
;
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match Slang .unglue (Ascii .encode "fuckatruckshitabrick") with
[ Some (sol , cont) → Slang .print out sol
| None → failwith "Error"

]
;

We get as expected: fuck a truck shit a brick.
Of course there may be several solutions to the unglueing problem, and this is the rationale
of the cont component, which is a resumption. For instance, in the previous example, cont
is empty, indicating that the solution sol is unique.
We saw above that we could use the process backtrack in coroutine with the printer print out
within the unglue all enumerator.
Let us test this segmenter to solve an English charade (borrowed from “Palindroms and
Anagrams”, Howard W. Bergerson, Dover 1973).

module Short = struct
value lexicon = Lexicon.make lex

["able"; "am"; "amiable"; "get"; "her"; "i"; "to"; "together"]
;
end

;
module Charade = Unglue Short
;
Charade.unglue all (Ascii .encode "amiabletogether")
;

We get 4 solutions to the charade, printed as a quatrain polisson:

Solution 1 : amiable together

Solution 2 : amiable to get her

Solution 3 : am i able together

Solution 4 : am i able to get her

Unglueing is what is needed to segment a language like Chinese. Realistic segmenters for
Chinese have actually been built using such finite-state lexicon driven methods, refined by
stochastic weightings [38].

Several combinatorial problems map to variants of unglueing. For instance, over a one-
letter alphabet, we get the Fröbenius problem of finding partitions of integers into given
denominations (except that we get permutations since here the order of coins matters).
Here is how to give the change in pennies, nickels and dimes:

value rec unary = fun [ 0 → "" | n → "|" ˆ (unary (n − 1)) ]
;
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The coins are the words of this arithmetic language:

value penny = unary 1 and nickel = unary 5 and dime = unary 10
;
module Coins = struct

value lexicon = Lexicon.make lex [penny ; nickel ; dime];
end

;
module Frobenius = Unglue Coins
;
value change n = Frobenius .unglue all (Ascii .encode (unary n))
;
change 17
;

This returns the 80 ways of changing 17 with our coins:

Solution 1 : |||||||||| ||||| | |

...

Solution 80 : | | | | | | | | | | | | | | | | |

Now we try phonemic segmentation in phonetic French.

module Phonetic = struct
value lexicon = Lexicon.make lex ["gal";"aman";"de";"la";"rene";"ala";
"tour";"magn";"a";"nime";"galaman";"l";"arene";"magnanime"];
end
;
module Puzzle = Unglue Phonetic
;
Puzzle.unglue all (Ascii .encode "galamandelarenealatourmagnanime")
;

Here we get 36 solutions, among which we find the two classic verses:

Solution 25 : gal aman de la rene ala tour magnanime

Solution 10 : galaman de l arene a la tour magn a nime

One last exemple, in Latin.
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module Latin = struct
value lexicon = Lexicon.make lex ["collectam";"ex";"ilio";"pubem";"exilio"];
end
;
module Virgil = Unglue Latin
;
Virgil .unglue all (Ascii .encode "collectamexiliopubem")
;

Here the good solution is

Solution 1 : collectam exilio pubem

(a people gathered for exile) and not

Solution 2 : collectam ex ilio pubem

(a people gathered from Troy) as Donat interpreted Virgil’s Aeneid, incurring the criticism
of his fellow grammarian Servius (Borrowed from Alberto Manguel , A History of Reading .)

We remark that nondeterministic programming is basically trivial in a functional pro-
gramming language, provided one identifies well the search space, states of computation are
stored as pure data structures (which cannot get corrupted by pointer mutation), and fair-
ness is taken care of by a termination argument (here this amounts to proving that react

always terminate).
Nondeterminism is best handled by a generating process which delivers one solution at

a time, and which thus may be used in coroutine fashion with a solution handler.
The reader will note that the very same state graph which was originally the state space

of the deterministic lexicon lookup is used here for a possibly non-deterministic transduction.
What changes is not the state space, but the way it is traversed. That is we clearly separate
the notion of finite-state graph, a data structure, from the notion of a reactive process, which
uses this graph as a component of its computation space, other components being the input
and output tapes, possibly a backtrack stack, etc.

We shall continue to investigate transducers which are lexicon mappings, but now with
an explicit non-determinism state component. Such components, whose structure may vary
according to the particular construction, are decorations on the lexicon structure, which is
seen as the basic deterministic state skeleton of all processes which are lexicon-driven; we
shall say that such processes are lexicon morphisms whenever the decoration of a lexicon trie
node is a function of the sub-trie at that node. This property entails an important efficiency
consideration, since the sharing of the trie as a dag may be preserved when constructing the
automaton structure:
Fact. Every lexicon morphism may minimize its state space isomorphically with the dag
maximal sharing of the lexical tree. That is, we may directly decorate the lexicon dag, since
in this case decorations are invariant by sub-tree sharing.
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There are numerous practical applications of this general methodology. For instance, it is
shown in [18] how to construct a Sanskrit segmenter as a decorated inflected forms lexicon,
where the decorations express application of the euphony (sandhi) rules at the juncture
between words. This construction is a direct extension of the unglueing construction, which
is the special case when there are no euphony rules, or when they are optional.

Part II

Reactive Transducers

9 Introduction

This second part gives additional tools for manipulating variants of finite-state machines.
They are a natural extension of the unglueing process presented at the end of Part I.

The general idea is to represent applicatively the state graph of finite-state machines
as a decorated dictionary. The dictionary, used as spanning tree of the state transition
graph, is a deterministic subset of this graph. The rest of the structure of the finite-state
machine, permitting the representation of non-determinism, of loops, and of transducer
operations, is encoded as attributes decorating the dictionary nodes. This general framework
of mixed automata or aums, is described in reference [17]. Its application to the problem of
segmentation and tagging of Sanskrit is described in [18].

We provide here various specific examples of this general methodology, and a mechanism
for composing such finite-state descriptions in a modular fashion [19].

This methodology has been lifted more recently to a very general paradigm of relational
programming within the framework of Eilenberg machines by Benôıt Razet [20, 32, 33, 34].

10 A simplistic modular Automaton recognizer

The simplest aum structure is the one reduced to deterministic acyclic finite-state automata,
where the aum structure is reduced to the underlying dictionary (Trie). Provided all states
are accessible from the initial one, the reduced structure obtained by applying the Sharing
functor yields the minimal deterministic automaton. This framework applies to the simple
but important subcase of finite languages.

We assume known the modules of the first part of the toolkit documentation.
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10.1 Simplistic aums

Interface for module Aum0

The auto structure for simplistic aums. This is a very simplified model with deterministic
dictionaries; phase transition occurs at accepting states.

module Auto : sig

type auto = [ State of (bool × deter) ]
(∗ bool is True for accepting states ∗)

and deter = list (Word .letter × auto)
(∗ deter is the deterministic structure ∗)

;
end;

10.2 From automata to reactive processes

We consider finite state automata and transducers as data structures representing the states
and their transitions. Such automata are interpreted by a computational process, which will
manage the input tape, possibly an output tape in the case of transducers, and a backtrack
stack used to manage non-deterministic search through fair backtracking. This is the point
of view of finite-state control as presented in the reactive programming methodology, and
thus we shall speak of this interpretative process as a reactive engine. In our first level
of automata, this engine will be a simple recognizer for its input string: il will successfully
terminate when this input string is a word belonging to the language, and raise the exception
Finished otherwise.

Our methodology is modular, in the sense that it allows the composition of automata
by layers - at the upper level, we consider a regular expression over a finite alphabet of
phases, while at the lower level each phase corresponds to a finite automaton over letters
of the global language. The global language corresponds to the substitution of each phase
language in the given regular expression. The handling of control from the automaton of
some phase into the automaton of the next phase is effected by the reactive engine through
a scheduling switch implemented as a Dispatch module.

10.3 Dispatching

We compile our regular expressions using the Berry-Sethi method, which linearizes the ex-
pression, and computes the local automaton associated to this linearization [4, 5]. We call
phases the morphology categories, defining the alphabet of the regular expression. The local
automaton is described by an initial phase, a set of terminal phases, here represented as a
boolean function over phases, and a dispatch transition function, mapping each phase to a
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set of following phases, sequentialized here as a list. In terms of Berry-Sethi [4], initial is
called 1, dispatch is called follow, and terminal is implicit from use of an endmarker symbol.
In the terminology of Eilenberg [10], the phase language presented by Dispatch is a local set
over phases.

The Dispatch module is generated by meta-programming from the regular expression, as
we shall explain in section 12.

10.4 Scheduling and React

We are now ready to start the description of the reactive engine, as a functor React taking a
module Dispatch as parameter, and using the Dispatch.dispatch function as a local scheduler.
We assume the utility programming functions fold right, assoc, length, mem, etc. from the
List standard library.

Corresponding to simplistic aums Aum0, we have a simplified React0 implementation.

Module React0

The reactive engine - an aum interpreter. Simplistic model with just deterministic transitions
and no loops. Phase transition occurs at accepting states and jump to initial states of next
phases.

open Aum0 .Auto; (∗ auto State deter ∗)

module React
(Disp : sig

type phase;
value transducer : phase → auto;
value initial : phase;
value terminal : phase → bool ;
value dispatch : phase → list phase;
end) = struct

open Disp
;
type input = Word .word
;

Access stack in the deterministic part of the automaton:
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type stack = list (Word .letter × auto)
;
type backtrack =

[ Advance of phase and input ]
and resumption = list backtrack (∗ coroutine resumptions ∗)
;

The scheduler gets its phase transitions from dispatch.

value schedule phase input cont =
let add phase cont = [ Advance phase input :: cont ] in
List .fold right add (dispatch phase) cont (∗ respects dispatch order ∗)

;

The reactive engine: phase is the parsing phase, input is the input tape represented as a
word , back is the backtrack stack of type resumption.

value rec react phase input back = fun
[ State (b, det) →
let deter cont = match input with

[ [ ] → continue cont
| [ letter :: rest ] →
let opt state = try Some (List .assoc letter det) with

[ Not found → None ] in
match opt state with
[ Some s → react phase rest cont s
| None → continue cont
]

] in
if b then
if input = [ ] then
if terminal phase then Some back (∗ solution found ∗)
else continue back

else let cont = schedule phase input back in
deter cont

else deter back
]

and continue = fun
[ [ ] → None
| [ resume :: back ] → match resume with

[ Advance phase input →
react phase input back (transducer phase)

]
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]
;
value init react sentence = [ Advance initial sentence ]
;
value react1 sentence = continue (init react sentence)
;

Computing multiplicities

value multiplicity sentence =
count 0 (init react sentence)
where rec count n c =
match continue c with
[ Some next → count (n + 1) next
| None → n
]

;
end;

The function react1 is a recognizer for the rational language which is the image by the
transducer morphism of the regular expression over phases. It stops at the first solution -
when the input string is a word in this language - otherwise it raises the exception Finished.
However, note that the general mechanism for managing non-determinism through coroutine
resumptions allows restarting the computation to find other solutions. This mechanism will
be specially important later when our engine is used for transductions, where we may be
interested in the various solutions.

We give above an example of using continue as a coroutine by computing the multiplicity
function, which counts the number of ways in which the input string may be solution to the
regular expression. We remark that standard formal language theory deals with languages
as sets of words, whereas here we formalize the finer notion of a stream (i.e. a potentially
infinite list) of words recursively enumerating a multiset of words.

11 Modular aum transducers

So far our automata were mere deterministic recognizers for finite sets of words (although
a dose of non-determinism arises from the choice, at any accepting node, between external
transition to the next phase and continuing the local search, since the local language may
contain a word and one of its proper prefixes). We now consider a more general framework
where we handle loops in the transition relation, non-deterministic transitions, and output.
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Interface for module Aumt

The auto structure: model with both External and Internal transitions.

module Auto : sig

type continuation = (Word .word × Word .word)
and transition =

[ External of (Word .word × continuation)
| Internal of (Word .word × Word .delta)
]

;

An internal transition Internal(w , d) recognizes w on the input tape and jumps to the
state relatively addressed by d . An external transition External(w , c) recognizes w on the
input tape and executes the continuation c. A continuation (u, v) stores words u as output
parameter and v as access parameter in the next phase transducer.

The role of the continuation (u, v) depends on the application at hand. Typically, in a
segmentation application, u will indicate some suffix of a word of the current phase language
(the maximal suffix of a word which may be affected by a phonetic change), while v will
indicate the minimal prefix of a word in the next phase language which provokes the phonetic
change. Thus, in the Sanskrit application, where segmentation does the analysis of euphony
transformation, the transition External(w , (u, v)) will correspond to the sandhi rule (rev u) |
v → w .

type auto = [ State of (deter × choices) ]
and deter = list (Word .letter × auto)

(∗ deter is the deterministic structure ∗)
and choices = list transition;

NB. In realistic applications, State should carry a boolean for acceptance

end
;

Note that in this model there is no acceptance boolean. Their role is played by the
existence in the current choices of an External transition.

The acceptance condition for the full language is that, when the input string has been
completely read, we are in a terminal phase, and the final External transition has a v
component which is recognized as final - here we shall adopt the convention that v must be
empty. Otherwise, when the input string is not empty, it must contain v as a prefix.

The next module will present the corresponding reactive engine, which will be used to
realize possibly non-deterministic transductions.
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Module Reactt

The reactive engine - an aum simulator used by transducers.
This model uses both External and Internal transitions.

open Aumt .Auto; (∗ auto State transition External Internal deter choices ∗)
module React

(Disp : sig
type phase;
value transducer : phase → auto;
value initial : phase;
value terminal : phase → bool ;
value dispatch : phase → list phase;
end) = struct

open Disp
;
type input = Word .word
and output = list (phase × Word .word)
;

Access stack in the deterministic part of the automaton.

type stack = list (Word .letter × auto)
;
type backtrack =

[ Choose of phase and input and output and auto and stack and choices
| Advance of phase and input and output and Word .word
]

and resumption = list backtrack (∗ coroutine resumptions ∗)
;

A few service routines.
advance : int → word → word
advance n [ a1 ; ... aN ] = [ ap; ... aN ] where p = N − n
precondition: n ≤ N = | w | exception: Guard .

exception Guard
;
value rec advance n w = if n = 0 then w else match w with

[ [ ] → raise Guard
| [ :: tl ] → advance (n − 1) tl
]

;



Module Reactt §1 65

access : phase → word → ( auto × stack )

value access phase = acc (transducer phase) [ ]
where rec acc state stack = fun

[ [ ] → Some (state, stack)
| [ c :: rest ] → match state with

[ State (deter , ) → match List2 .ass c deter with
[ Some next state → acc next state [ (c, state) :: stack ] rest
| None → None
]

]
]

;

The scheduler gets its phase transitions from dispatch.

value schedule phase input output w cont =
let add phase cont = [ Advance phase input output w :: cont ] in
List .fold right add (dispatch phase) cont (∗ respects dispatch order ∗)

;
value rec pop n state stack =
if n = 0 then (state, stack)
else match stack with

[ [ ] → raise (Failure "Wrong Internal jump")
| [ ( , st) :: rest ] → pop (n − 1) st rest
]

and push w state stack = match w with
[ [ ] → (state, stack)
| [ c :: rest ] → match state with

[ State (deter , ) →
push rest (List .assoc c deter) [ (c, state) :: stack ]

]
]

;
value jump (n,w) state stack =
let (state0 , stack0 ) = pop n state stack in
push w state0 stack0

;
value extract stack ( , (u, )) =

List .fold left unstack u stack
where unstack acc (c, ) = [ c :: acc ]

;
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value final v =
v = [ ] (∗ or some end of input marker ∗)

;

The non deterministic reactive engine:
phase is the parsing phase,
input is the input tape represented as a word ,
output is the current result of type output ,
back is the backtrack stack of type resumption,
stack is the current reverse access path in the deterministic part and
state is the current state of type auto.

value rec react phase input output back stack state = match state with
[ State (det , choices) →

(∗ we try the deterministic space before the non deterministic one ∗)
let cont = if choices = [ ] then back

else [ Choose phase input output state stack choices :: back ] in
match input with

[ [ ] → continue cont
| [ letter :: rest ] → match List2 .ass letter det with

[ Some next state →
let next stack = [ (letter , state) :: stack ] in
react phase rest output cont next stack next state

| None → continue cont
]

]
]

and choose phase input output back state stack = fun
[ [ ] → continue back
| [ External((w , (u, v)) as rule) :: others ] →

let cont = if others = [ ] then back
else [ Choose phase input output state stack others :: back ] in

match List2 .subtract input w with (∗ try to read w on input ∗)
[ Some tape →

let out = [ (phase, extract stack rule) :: output ] in
if tape = [ ] (∗ input finished ∗) then

if terminal phase ∧ final v then Some (out , cont)
else continue cont

else continue (schedule phase tape out (Word .mirror v) cont)
| None → continue cont
]
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| [ Internal(w , delta) :: others ] →
let cont = if others = [ ] then back

else [ Choose phase input output state stack others :: back ] in
match List2 .subtract input w with (∗ try to read w on input ∗)

[ Some tape →
let (next state, next stack) = jump delta state stack in
react phase tape output cont next stack next state

| None → continue cont
]

]
and continue = fun

[ [ ] → None
| [ resume :: back ] → match resume with

[ Choose phase input output state stack choices →
choose phase input output back state stack choices

| Advance phase input output word → match access phase word with
[ Some (next state, next stack) →

react phase input output back next stack next state
| None → continue back
]

]
]

;
value init react sentence = [ Advance initial sentence [ ] [ ] ]
;
value react1 sentence = continue (init react sentence)
;
end;

Similarly to above, we could use continue to compute the stream of solutions in coroutine
fashion. Such examples have already been given in Part I, for the unglueing process.

Remark that we may now understand unglueing as a special case of a reactive transducer.
There is only one phase L, and the global regular expression is L*. The dictionary nodes
Trie(b,arcs) play the role of State(arcs,c) where c=[] if b=False and c=[External([],([],[])] if
b=True.

Remark that when we have only External transitions, the engine simplifies, since the
stack access path is not needed any more to interpret the internal jumps. However, its first
component, i.e. the access word, may be necessary as an argument to the transducer output.
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12 Macro-Generation of the Dispatch module

12.1 Introduction

The meta-programming of the Dispatch module is effected by the Regular module, which
uses the Berry-Sethi algorithm to linearize the given regular expression, compute the follow
relation, and macro-generate the source of a specific dispatching module, seen as a user-
specified plug-in to the generic toolkit.

This facility uses the excellent Camlp4 Caml preprocessor, both for input (yielding a
parser for the regular expression minilanguage), and for output (macro-generating the ab-
stract syntax of the resulting module, piped into the Pidgin ML pretty-printer).

Module Regular

12.2 Module Berry Sethi

First we define a module Berry Sethi implementing the Berry-Sethi algorithm for compiling
regular expressions. We provide a data type for representing regular expressions, a type
for standard local automata and a function compile that takes an initial state, a regular
expression, and returns a local automaton representation.

module Berry Sethi : sig

type regexp α =
[ One
| Symb of α (∗ α is the type parameter of symbols ∗)
| Union of regexp α and regexp α
| Conc of regexp α and regexp α
| Star of regexp α
| Epsilon of regexp α
| Plus of regexp α
]

;
type marked α = (α × int)
and local auto α =

( marked α
× list (marked α)
× list (marked α × list (marked α))
× list (marked α)
)

;
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value compile : marked α → regexp α → local auto α
;
end = struct

We describe regular expressions using a type abstracted from a basis alphabet α. This type
provides extra constructors such as Plus , useful for practical applications

type regexp α =
[ One
| Symb of α
| Union of regexp α and regexp α
| Conc of regexp α and regexp α
| Star of regexp α
| Epsilon of regexp α
| Plus of regexp α
]

;

One, Symb, Union, Conc, and Star are the classical operators. Epsilon e has the meaning
of Union One e and Plus e the meaning of Union e (Star e), but treated as an atomic
expression. In the following we shall abbreviate “regular expression” into regexp.
Berry-Sethi compilation applies to linear regexps to produce a local automaton. Let us
recall that a linear regexp has the property that any symbol appears only once in it. This
can be made by adding an integer to the symbol making the whole unique in the regexp,
thus it changes a bit the structure of symbols for linear regexps. A local automaton is an
automaton in which the guarded symbol of the transition corresponds to the target state of
the transition. The types for marked symbols and local automata are:

type marked α = (α × int)
and local auto α =

( marked α (∗ initial state ∗)
× list (marked α) (∗ other states ∗)
× list (marked α × list (marked α)) (∗ transitions ∗)
× list (marked α) (∗ terminal states ∗)
)

;

A local automata is structurally represented with four components. The first is the initial
state, this shows that we have decided to produce standard local automata. The second
is for the set of states of the automaton, excluding the initial one. The third is the set of
transitions: a transition is a state and the list of states associated with the transition. The
forth component is for the set of terminal states.
Now that we have given the data-structures for representing regexps let us give our algorithm
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to mark a regexp linear. To get the list of symbols from any regexp, reading left to right,
we use the function:
symb lr : regexp α → list α

value symb lr e = symb [ ] e
where rec symb accu = fun
[ One → accu
| Symb s → [s :: accu]
| Union e1 e2 | Conc e1 e2 →

symb (symb accu e2 ) e1
| Star e | Epsilon e | Plus e → symb accu e
]

;

Having computed the resulting list from symb lr , we want to append to each symbol a
unique number, meaning the number of times we have encountered a symbol reading left to
right the list, beginning to count from 1 except when a symbol is present only once in the
list, in which case we count 0.
mark list : list α → list (marked α)

value mark list l = markr [ ] l
where rec markr laccu = fun
[ [ ] → [ ]
| [ x :: l ] →
let count x = count 1

where rec count sum = fun
[ [ ] → sum
| [y :: l ] → count (if y = x then sum + 1 else sum) l
] in

if List .mem x laccu ∨ List .mem x l (∗ multiples ∗)
then [ (x , count x laccu) :: markr [x :: laccu] l ]
else [ (x , 0) :: markr laccu l ]

]
;

The mark list function has a laccu list that records symbols present at least twice.
Now we can define the mark function using a function map lr that replaces in a regexp,
from left to right, its symbols with a list of marked symbols (resulting from mark list).
mark : regexp α → (regexp (marked α) × list (marked α))

value mark e =
let rec map lr li = fun

[ One → (One, li)
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| Symb s →
(Symb (List .hd li), List .tl li)

| Union e1 e2 →
let (e1 m, lj ) = map lr li e1 in
let (e2 m, lk) = map lr lj e2 in
(Union e1 m e2 m, lk)

| Conc e1 e2 →
let (e1 m, lj ) = map lr li e1 in
let (e2 m, lk) = map lr lj e2 in
(Conc e1 m e2 m, lk)

| Star e1 →
let (e1 m, lj ) = map lr li e1 in
(Star e1 m, lj )

| Epsilon e1 →
let (e1 m, lj ) = map lr li e1 in
(Epsilon e1 m, lj )

| Plus e1 →
let (e1 m, lj ) = map lr li e1 in
(Plus e1 m, lj )

] in
let symbols = symb lr e in
let symbols m = mark list symbols in
let (e m, li) = map lr symbols m e in

(∗ note li must be [ ] ∗)
(e m, symbols m)

;

The list of symbols mapped into the expression is symbols m . Note that the first component
of a marked symbol is the original one, so one can easily recover the original symbol from a
marked one.
By now, we assume our regexps linear and we define the functions of Berry-Sethi compiling.
It is very useful to get the information whether the empty string belongs to the regexp to
compute the automaton efficiently. We thus present a new type d regexp for discriminating
regexps that generate or not the empty string. It is almost the same as type regexp but
with an information encoding the discrimination, and this for all sub-constructions of the
expression. It is represented with a boolean: True if the empty string is generated by the
regexp, False otherwise.

type d regexp α =
[ DOne
| DSymb of α
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| DUnion of bool and d regexp α and d regexp α
| DConc of bool and d regexp α and d regexp α
| DStar of d regexp α
| DEpsilon of d regexp α
| DPlus of bool and d regexp α
]

;

DOne, DSymb, DStar and DEpsilon don’t need this boolean because they have the infor-
mation implicitly.
We simply extract this information from a regexp in a constant time analyzing the top node
of a regexp:
delta : d regexp α → bool

value delta = fun
[ DOne → True
| DSymb → False
| DUnion b | DConc b → b
| DStar | DEpsilon → True
| DPlus b → b
]

;

The following algorithm transforms a regexp of type regexp into the discriminating one of
type d regexp.
discr : regexp α → d regexp α

value rec discr = fun
[ One → DOne
| Symb s → DSymb s
| Union e1 e2 →

let de1 = discr e1
and de2 = discr e2 in
DUnion (delta de1 ∨ delta de2 ) de1 de2

| Conc e1 e2 →
let de1 = discr e1
and de2 = discr e2 in
DConc (delta de1 ∧ delta de2 ) de1 de2

| Star e → DStar (discr e)
| Epsilon e → DEpsilon (discr e)
| Plus e →

let de = discr e in
DPlus (delta de) de
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]
;

The cost of this computation is linear in the size of the regexp. Then we give an imple-
mentation of the first function, that gives the first symbols from a regexp, in linear time
:
first : list α → d regexp α → list α

value rec first l = fun
[ DOne → l
| DSymb d → [ d :: l ]
| DUnion e1 e2 → first (first l e2 ) e1
| DConc e1 e2 →

let b1 = delta e1 in
if b1 then first (first l e2 ) e1
else first l e1

| DStar e | DEpsilon e | DPlus e → first l e
]

;

The parameter l is for already computed first elements, a partial result.
A follow set is the list of directly accessible symbols from a given one in a regexp, it corre-
sponds to the notion of continuation in the Berry-Sethi article. Now we have all the routines
to present an implementation of the ‘F’ function from the Berry-Sethi article for computing
the set of all follow sets.
follow : α → regexp α → list (α × list α)

value follow initial exp =
let rec f1 exp l fol =
match exp with
[ DOne → fol
| DSymb d → [ (d , l) :: fol ]
| DUnion e1 e2 →

let fol2 = f1 e2 l fol in
f1 e1 l fol2

| DConc e1 e2 →
let fol2 = f1 e2 l fol in
let l1 = if delta e2 then first l e2 else first [ ] e2 in
f1 e1 l1 fol2

| DStar e | DPlus e →
let l res = first l e in
f2 e l res fol

| DEpsilon e → f1 e l fol ]
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and f2 exp l fol = (∗ (first [ ] exp) already in l ∗)
match exp with
[ DOne → fol
| DSymb d → [ (d , l) :: fol ]
| DUnion e1 e2 →

let fol2 = f2 e2 l fol in
f2 e1 l fol2

| DConc e1 e2 →
let b1 = delta e1
and b2 = delta e2 in
if b1 (∗ l1 and l2 in l ∗)
then if b2

then f2 e1 l (f2 e2 l fol)
else f1 e1 (first [ ] e2 ) (f2 e2 l fol)

else if b2
then f2 e1 (first l e2 ) (f1 e2 l fol)
else f1 e1 (first [ ] e2 ) (f1 e2 l fol)

| DStar e | DEpsilon e | DPlus e → f2 e l fol
] in

let fol sets = f1 exp [ ] [ ]
and initials = first [ ] exp in
[ (initial , initials) :: fol sets ]

;

The initial state is a parameter of the function because it is not a state derived from symbols
of the regexp. Its name must be chosen as a fresh symbol, not already occurring in the
regexp. Because of our implementation of sets with lists we must guarantee not returning
a list with duplicated elements. This can be done having the property that (first exp) is
already in l or not. The computation is different in both cases, this is why we have f1 and
f2 . We add a link between the initial state and the first states of the regexp.
The function last returns the last symbols from a regexp.
last : α → d regexp α → list α

value last initial e =
let rec last rec exp l = match exp with

[ DOne → l
| DSymb d → [ d :: l ]
| DUnion e1 e2 →

let l2 = last rec e2 l in
last rec e1 l2

| DConc e1 e2 →
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let b2 = delta e2 in
if b2 then last rec e1 (last rec e2 l)
else last rec e2 l

| DStar e | DEpsilon e | DPlus e → last rec e l
] in

let l = last rec e [ ] in
if delta e then [ initial :: l ] else l

;

We add the initial state to the set of last states if the empty word belongs to the language.
In terms of the note on “Local languages and the Berry-Sethi algorithm” by Jean Berstel
and Jean-Eric Pin, we have presented algorithms to compute a linear regular expression into
a local standard automaton. Adding Plus e directly as an operator in the abstract syntax
is an optimisation because the equivalent Conc e (Star e) duplicates marked symbols and
thus the number of states of the automaton.
We now present the compile function that computes the automaton from a regexp.
compile : marked α → regexp α → local auto α

value compile initial exp =
let (exp m, states) = mark exp in
let d exp = discr exp m in
let fol = follow initial d exp
and lasts = last initial d exp in
(initial , states , fol , lasts)

;

end;

This is the end of our Berry-Sethi compilation algorithm. We ensure that we have presented
an implementation that takes care of respecting the theoretical complexity, that is quadratic
in the number of symbols in the regexp. The proof of the complexity is by induction on the
regexp structure.

12.3 Module Regexp system

We extend the way to define regexps with a regexp system that allows some degree of sharing,
but no recursion.

module Regexp system = struct

We use the structure of regular expressions defined in module Berry Sethi .

open Berry Sethi ;
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We mean by modularity the possibility of naming a regexp which may postmaster@inria.fr
be used in another regexp as if it were a basic symbol. Now a Symb in a regexp can be a
name or a symbol from an alphabet and we define a type mix symb for describing this mix.

type name = string
and mix symb α =

[ Name of name
| Alph of α
]

;

Then we define a system as a list of names and associated regexp:

type system α = list (name × regexp (mix symb α))
;

We give an algorithm to transform a system into a simple regular expression.
flatten : system α → regexp α

value flatten sys =
let rec flatten regexp system l = fun

[ One → (One, l)
| Symb (Name s) →
try (∗ we try to find s in already flattened regexp ∗)
let e flattened = List .assoc s l in
(e flattened , l)

with [ Not found →
let rec extract s = fun

[ [ ] → failwith "no extraction"

| [ (s2 , e) :: sys ] → if s = s2 then (e, sys)
else extract s sys

] in
(∗ knowing that dependencies must be in the rest of system ∗)
let (e, new sys) = extract s system in
let (e flattened , new l) = flatten regexp new sys l e in
(e flattened , [ (s , e flattened) :: new l ]) ]

| Symb (Alph s) → (Symb s , l)
| Union e1 e2 →

let (e1 f , l left) = flatten regexp system l e1 in
let (e2 f , l right) = flatten regexp system l left e2 in
(Union e1 f e2 f , l right)

| Conc e1 e2 →
let (e1 f , l left) = flatten regexp system l e1 in
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let (e2 f , l right) = flatten regexp system l left e2 in
(Conc e1 f e2 f , l right)

| Star e →
let (e f , new l) = flatten regexp system l e in
(Star e f , new l)

| Epsilon e →
let (e f , new l) = flatten regexp system l e in
(Epsilon e f , new l)

| Plus e →
let (e f , new l) = flatten regexp system l e in
(Plus e f , new l)

] in
let (e, system) = match sys with

[ [ ] → failwith "empty system!!"

| [ ( , e) :: system ] → (e, system)
] in

let (e f , ) = flatten regexp system [ ] e in
e f

;
end;

The parameter l of flatten regexp defines the list of regular expressions already flattened for
a kind of lazy evaluation, it is initialized to the empty list. The parameter system represents
the list of couple - name and regexp - not yet treated. The function flatten regexp, providing
a system and a list of expressions already flattened, replaces each symbol that is a name of
regular expression by the associated one.

12.4 The concrete syntax for modular aums

A modular aum is a two-level structure: a regexp defined over an aum alphabet. And
now we precise the concrete syntax for defining modular aums. It includes a name for the
initial state, together with the name of the aum which recognizes the empty word, a basic
alphabet of symbols represented as lower case strings between delimiters alphabet and end
(corresponding to names of aums), then follows the definition of the regexp as a regexp
system, between delimiters automaton and end together with a parameter for the name of
the module implementing the state transitions.

module Id = struct
value name = "Regular";
value version = "2.3";
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end;

module Regular (Ast : Camlp4 .Sig .Camlp4Ast) = struct
module Ast = Ast ;
open Ast ;
module Token = Camlp4 .Struct .Token.Make Loc;
module Lexer = Camlp4 .Struct .Lexer .Make Token;
open Camlp4 .Sig ;
module Parser = struct

open Berry Sethi ;
open Regexp system;

Using a standard lexer.

module Gram = Camlp4 .Struct .Grammar .Static.Make Lexer ;

We define the entry point of grammar def auto:

value def auto = Gram.Entry .mk "def auto"

;

Here is the definition of the grammatical construction for a concrete system of regular ex-
pressions.

EXTEND Gram
GLOBAL : def auto;
def auto :

[ [ "initial"; init = LIDENT ; empty aum = LIDENT ;
"alphabet"; aums = aum names ; "end";
"automaton"; module name = UIDENT ;
system = rule list ; "end"; ‘EOI →

(empty aum, init , aums , module name, system)
]

];
aum names :

[ [ l = LIST1 aum name SEP ";" → l ]
];

aum name :
[ [ l = LIDENT → l ]
];

rule list :
[ [ r = LIST1 rule SEP "in" → r ]
];

rule :
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[ [ "node"; name = UIDENT ; "="; e = expreg → (name, e) ]
];

expreg :
[ [ e1 = expreg ; "|"; e2 = expreg → Union e1 e2 ]
| [ e1 = expreg ; "."; e2 = expreg → Conc e1 e2 ]
| [ e = expreg ; "*" → Star e
| e = expreg ; "?" → Epsilon e
| e = expreg ; "+" → Plus e ]
| [ n = INT →

match int of string n with
[ 1 → One
| → failwith "integer not autorized"

]
| name = LIDENT → Symb (Alph name)
| name = UIDENT → Symb (Name name)
| "("; e = expreg ; ")" → e ]

];
END ;

end;

N.B. Since we use a pre-defined lexer, one must take care of possible conflicts: “a*.b” would
be interpreted with the floating-point times instead of suffix “*” followed by infix “.”.
The construction automaton ... end is parameterized by a string which will be the name
of the module for the resulting automaton.

12.5 Example: Sanskrit morphology

We give a concrete example in the case of Sanskrit morphology. We have various phases for
nominal forms:

• Noun for declined substantives

• Iic for beginnings of compounds

• Ifc for endings of compounds

similarly for verbal forms:

• Root for conjugated forms of roots

• Pv1 for preverb sequences
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• Auxi for auxiliary verb forms

• Iiv for periphrastic prefixes

and finally for adverbs and particles:

• Unde undeclinable forms (infinitives, adverbs, etc.)

• Abso (absolutives)

• Pv2 for preverb sequences

Pv1 and Pv2 are two occurrences of the language of preverbs, issued from the linearization
of the regular expression defining a Sanskrit sentence as a non-empty sequence of inflected
word forms:

initial init epsilon_aum

alphabet

noun ; root; unde; abso; iic; iiv; auxi; ifc; prev

end

automaton Disp

node INVAR = prev.abso | unde in

node CONJUG = prev? . root in

node SUBST = iic* .noun | iic+ .ifc in

node VERB = CONJUG | iiv.auxi in

node PHRASE = (SUBST | VERB | INVAR)+

end

We remark that our language permits a succinct expression to what would be a complex
regular expression if it had to be flattened.

12.6 Module Generate ast

Let us define a module for generating the abstract syntax tree of a program implementing a
phase automaton, assuming we provided a name for the aum of empty word, a list of aums
used in the definition of the automaton, a name for the module associated to the automaton,
the phase representing the first state of the automaton, the list of phases, the follow sets and
the list of terminal states.
Dummy location needed for the quotation mechanism
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value loc = Loc.ghost
;
module Generate ast : sig

type aum name = string
and module name = string
and phase = (string × int)
and follows = list (phase × list phase)
and program = Ast .str item;
value gen ast : aum name → list aum name → module name →

phase → list phase → follows →
list phase → program;

end = struct

The implementation consists in encapsulating the structures in the given datatypes and
functions, with help of the macro-generating facilities of Camlp4. The reader is advised to
skip this section at first reading.

type aum name = string
and module name = string
and phase = (string × int)
and follows = list (phase × list phase)
and program = Ast .str item

;

To append a number i to name capitalized, except for the number 0:

value convert uid int (name, i) =
let cap = String .capitalize name in
if i = 0 (∗ the name is used once in the regular expression ∗)
then cap else cap ˆ string of int i

;

Generates the type record auto vect .

value gen type vect phases =
let f n acc = <: ctyp < $lid : n$ : Auto.auto; $acc$ >> in
let type record = List .fold right f phases <: ctyp <>> in

<:str item < type auto vect = { $type record$ } >>
;

Generates the type phase.
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value gen type phase phases =
(∗ first compute the names of all phases ∗)
let list type = List .map convert uid int phases in
let sslt = List .fold right (fun x acc → <: ctyp < $uid : x$ | $acc$ >>) list type <:

ctyp <>> in
<:str item < type phase = [ $sslt$ ] >>

;

Generates the transducer function.

value gen fun morphism phases =
let mc =

let process (x , y) acc =
<:match case < $uid : x$ → Fsm.autos .$lid : y$ | $acc$ >> in

List .fold right process phases <: match case <>> in
<:str item < value transducer = fun [ $mc$ ] >>

;

Generates the dispatch function.

value gen fun dispatch follows =
(∗ translates a follow ∗)
let trad a follow (n, ln) acc =
let tln = List .fold right tr ln <: expr < [ ] >>

where tr x l =
let x ′ = convert uid int x in
<:expr < [ $uid : x ′$ :: $l$ ] >> in

<:match case < $uid : convert uid int n$ → $tln$ | $acc$ >> in
(∗ translates follow sets ∗)
let match cases = List .fold right trad a follow follows <: match case <>> in
<:str item < value dispatch = fun [ $match cases$ ] >>

;
value gen initial state initial phase =
<:str item < value initial = $uid : convert uid int initial phase$ >>

;

Generation of the list of terminal states.

value gen fun terminal l =
let the list =

List .fold right tr l <: expr < [ ] >>
where tr e l =

let e ′ = <: expr < $uid : convert uid int e$ >> in
<:expr < [ $ e ′$ :: $l$ ] >> in
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<:str item < value terminal phase = List .mem phase $the list$ >>
;

Generates the module with name module name

value gen module empty aum module name initial phase phases
follows terminal =

(∗ declaration and definition of types and functions ∗)
let type phase = gen type phase [ initial phase :: phases ]
and fun morphism = gen fun morphism

[ (convert uid int initial phase, empty aum) ::
(List .map (fun (x , y) → (convert uid int (x , y), x )) phases) ]

and fun dispatch = gen fun dispatch follows
and value initial = gen initial state initial phase
and fun terminal = gen fun terminal terminal in
let st = <: str item < $type phase$;

$fun morphism$;
$fun dispatch$;
$value initial$;
$fun terminal$ >> in

(∗ end of decl and def ∗)
<:str item < module $module name$ =

functor ( Fsm : sig value autos : auto vect ; end ) → struct $st$ end>>
;

Generates all declarations of the file we want to generate

value gen ast empty aum aums module name initial phase phases
follows terminal =

let type vect = gen type vect [ empty aum :: aums ] in
let module body =

gen module empty aum module name initial phase phases
follows terminal in

let module contents = <: str item < $type vect$; $module body$ >> in
let automata functor =

<:str item < module Automata =
(∗ Automata is a functor with parameter module Auto ∗)
functor (Auto : sig type auto; end) → struct $module contents$ end >> in

automata functor
;
end;
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12.7 Generating the plug-in module

open Berry Sethi ;
open Parser ;

Reads on input channel ch the phase automaton description, parses it using the entry point
def auto, calls the Berry-Sethi algorithm, and returns the resulting plug-in module as Ocaml
abstract syntax.

value parse implem ?directive handler loc strm =
let (empty aum, init , aums , module name, system) =

Gram.parse def auto loc strm in
let exp = Regexp system.flatten (List .rev system)
and initial phase = (init , 0) in
let (initial phase, phases , follows , terminal) = compile initial phase exp in
Generate ast .gen ast empty aum aums module name initial phase phases follows terminal

;
value parse interf ?directive handler loc strm = assert False
;

end
;
let module M = Camlp4 .Register .OCamlParser Id Regular in ()
;

For generating the code from a concrete automaton in a file xxx .aut one may call:
camlp4 pr r .cmo ./regular .cmo − impl xxx .aut
This will pretty-print the result to standard output, where it may be redirected to a file.

For instance, the modular aum described above for the Sanskrit example [sanskrit.aut]
generates the following code :

module Automata (Auto : sig type auto = ’a; end) =

struct

type auto_vect =

{ epsilon_aum : Auto.auto;

noun : Auto.auto;

root : Auto.auto;

unde : Auto.auto;

abso : Auto.auto;

iic : Auto.auto;

iiv : Auto.auto;

auxi : Auto.auto;

ifc : Auto.auto;
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prev : Auto.auto }

;

module Disp (Fsm : sig value autos : auto_vect; end) =

struct

type phase =

[ Init

| Iic1

| Noun

| Iic2

| Ifc

| Prev1

| Root

| Iiv

| Auxi

| Prev2

| Abso

| Unde ]

;

value transducer =

fun

[ Init -> Fsm.autos.empty_aum

| Iic1 -> Fsm.autos.iic

| Noun -> Fsm.autos.noun

| Iic2 -> Fsm.autos.iic

| Ifc -> Fsm.autos.ifc

| Prev1 -> Fsm.autos.prev

| Root -> Fsm.autos.root

| Iiv -> Fsm.autos.iiv

| Auxi -> Fsm.autos.auxi

| Prev2 -> Fsm.autos.prev

| Abso -> Fsm.autos.abso

| Unde -> Fsm.autos.unde ]

;

value dispatch =

fun

[ Init -> [Iic1; Noun; Iic2; Prev1; Root; Iiv; Prev2; Unde]

| Iic1 -> [Iic1; Noun]

| Noun -> [Iic1; Noun; Iic2; Prev1; Root; Iiv; Prev2; Unde]

| Iic2 -> [Iic2; Ifc]

| Ifc -> [Iic1; Noun; Iic2; Prev1; Root; Iiv; Prev2; Unde]
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| Prev1 -> [Root]

| Root -> [Iic1; Noun; Iic2; Prev1; Root; Iiv; Prev2; Unde]

| Iiv -> [Auxi]

| Auxi -> [Iic1; Noun; Iic2; Prev1; Root; Iiv; Prev2; Unde]

| Prev2 -> [Abso]

| Abso -> [Iic1; Noun; Iic2; Prev1; Root; Iiv; Prev2; Unde]

| Unde -> [Iic1; Noun; Iic2; Prev1; Root; Iiv; Prev2; Unde] ]

;

value initial = Init;

value terminal phase =

List.mem phase [Noun; Ifc; Root; Auxi; Abso; Unde]

;

end

;

end

;

Here is the resulting local automaton (adding empty nodes S, Subst, Verb, Invar and
Accept for better reading):

13 Producing the engine

We now have all the pieces to connect our dispatch plug-in to the generic reactive engine,
parameterized by the automata vector provided by the user for recognizing the various
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phases. Let us give a concrete example.
Given the automata functor corresponding to Sanskrit morphology in a Sanskrit dispatch

module, we show how to link it to the Reactt functor in order to produce a Sanskrit engine
generator:

Module Sanskrit engine

Engine sanskrit engine using aumt structure with sanskrit.aut.

open Aumt ; (∗ Auto ∗)
open Reactt ; (∗ React ∗)
open Sanskrit dispatch; (∗ Automata ∗)

module Automata Aumt = Automata Auto
;
open Automata Aumt ; (∗ auto vect Disp ∗)

module Gen engine
(Fsm : sig value autos : auto vect ; end) = struct

module Phases = Disp Fsm
;
open Phases (∗ phase, transducer, etc ∗)
;
module Engine = React Phases
;
end

;

Now we may provide the Sanskrit lexicons for the various lexical sorts as a vector
auto vect = {epsilon aum = aum 0 ; noun = aum noun; ... prev = aum prev}
in a module Sanskrit Aumt .
We may then call the properly instanciated functor (Gen engine Sanskrit Aumt) in order
to get e.g. Engine.react1 .

What we just constructed is a simple engine which may recognize a Sanskrit sentence as
a sequence of inflected word forms. Actually such forms are glued together using a euphony
junction process known as sandhi. It is possible to invert the sandhi relation while doing the
recognition, and to use the transducer output to give a trace of the sandhi relation between
the words. Piping this process through a lemmatizer, which itselfs inverts the flexional
morphology, yields a Sanskrit tagger. This application is described in [18].
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