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Introduction

contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

this talk:
specifying a concurrent data structure under weak memory

specification challenges:

1. shared ownership =⇒ logical atomicity
2. weak memory =⇒ thread synchronization

• fine-grained concurrency =⇒ weaker than lock-based

tool:
Cosmo, our program logic for Multicore OCaml
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Sequential queues



A specification for sequential queues

{True }
make ()

{λq. IsQueue q []}

{IsQueue q [v0, ..., vn−1] }
enqueue q v

{λ(). IsQueue q [v0, ..., vn−1, v ]}

{IsQueue q [v0, ..., vn−1] }
dequeue q

{λv . 1 ≤ n ∗ v = v0 ∗ IsQueue q [v1, ..., vn−1]}
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Concurrent queues



Concurrency

for now we assume sequential consistency:
behaviors of the program are interleavings of its threads

can we keep the sequential spec?

valid, but. . .

IsQueue q [v0, ..., vn−1] is exclusive
=⇒ effectively no concurrent usage
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Invariants

[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares q in an invariant:

I , ∃n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1]

∗ R [v0, ..., vn−1]

the invariant owns q

anyone can access q by “opening” I :

{P ∗ I } e {I ∗ Q} I is an invariant e completes in one step
{P} e {Q}
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Logical atomicity

[in Iris]

logically atomic triples are triples 〈·〉 · 〈·〉 such that:

〈

x .

P〉 e 〈Q〉

∀x .

{P} e {Q}
〈

x .

P ∗ I 〉 e 〈I ∗ Q〉 I is an invariant
〈

x .

P〉 e 〈Q〉

tells that e behaves “atomically”

intuition: e takes a step which satisfies

∀x .

{P} · {Q}
(=⇒ related to linearizability)

x binds things which are known only during that step
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A specification for concurrent queues under SC

{True }
make ()

{λq. IsQueue q []}

〈n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1]〉
enqueue q v

〈λ(). IsQueue q [v0, ..., vn−1, v ] 〉

〈n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1] 〉
dequeue q

〈λv . 1 ≤ n ∗ v = v0 ∗ IsQueue q [v1, ..., vn−1]〉

(simplified)
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Concurrent queues in
weak memory



Weak memory models

weak memory models:
each thread has its own view of the state of the shared memory

• example: C11

• example: Multicore OCaml
[Dolan et al, PLDI 2018, Bounding data races in space and time]

operational semantics with thread-local views

Cosmo: a program logic for M-OCaml based on this semantics
[ICFP 2020]
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Cosmo

based on Iris (hence: separation logic, ghost state, invariants)

assertions can be subjective: depend on current (thread’s) view

• example: x  42

restriction: invariants are available to all threads
=⇒ objective assertions only

to be specified: IsQueue q [v0, ..., vn−1] is objective
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Synchronizing through the queue?

can we keep the SC spec?

valid, usable in limited cases, but. . .

let enqueuer q =

let x = array[2] in
x [1]← 3 ;

{ x [1] 3 }
enqueue q x

let dequeuer q =

let x = dequeue q in
{ x [1] 3 }
do_something x [1]

x [1] 3 is subjective
=⇒ cannot be transferred solely with an invariant

to be specified: dequeuer observes all writes done by enqueuer
(=⇒ “release-acquire” pattern)
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Views in Cosmo

a lattice of views (larger = more up-to-date)

new assertions:

↑ V “the ambient view contains V ” =⇒ subjective

transferred via thread synchronization

P @ V “P where the ambient view has been fixed to V” =⇒ objective

shareable via an invariant

splitting rule:

P a` ∃V. (↑ V ∗ P @ V)
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Transferring views through the queue

idea: pretend the queue stores the views being transferred

IsQueue q [ v0 , ..., vn−1 ]

the enqueuer pushes its view alongside the enqueued value:

〈n, v0 , ..., vn−1 .

IsQueue q [ v0 , ..., vn−1 ]

∗ ↑ V

〉
enqueue q v

〈λ(). IsQueue q [ v0 , ..., vn−1 , v ] 〉
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Comparison with refinement in weak memory

refinement spec: “this queue can replace a naïve queue + a lock”

issue: induces synchronization between all operations

many lock-free queues do not (we try to avoid synchronizations!)
=⇒ they do not satisfy the refinement spec

our spec is weaker (no guaranteed sync. from dequeuer to enqueuer)
=⇒ covers more lock-free queues
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Conclusion

concurrent program verification:

• invariants share resources among threads

• (logical) atomicity is part of specs

• view transfers express synchronizations, also part of specs

also in this work:

• proof of a non-trivial lock-free queue
(does not refine a lock-based queue w.r.t. sync.)

[a refinement proof in SC: Vindum & Birkedal, 2021, Mechanized Verification of

a Fine-Grained Concurrent Queue from Facebook’s Folly Library ]

• proof of a simple client

• machine-checked (Coq, Iris)
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