Formal Verification of a Concurrent
Bounded Queue in a Weak Memory Model

Glen Mével, Jacques-Henri Jourdan
ICFP 2021, online

LMF & Inria Paris

Introduction

contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

Introduction

contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory

Introduction

contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory
specification challenges:

1. shared ownership = logical atomicity

Introduction

contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory
specification challenges:

1. shared ownership = logical atomicity
2. weak memory = thread synchronization

Introduction

contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory
specification challenges:

1. shared ownership = logical atomicity
2. weak memory = thread synchronization

e fine-grained concurrency = weaker than lock-based

Introduction

contribution:
spec and proof for a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

this talk:
specifying a concurrent data structure under weak memory

specification challenges:

1. shared ownership = logical atomicity
2. weak memory = thread synchronization

e fine-grained concurrency = weaker than lock-based

tool:
Cosmo, our program logic for Multicore OCaml

Sequential queues

A specification for sequential queues

{True } {IsQueue q [vo, -, Va—1] }
make () enqueue q v

{/\q. IsQueue g []} {)\(). IsQueue q [vo, -, Va1, V]}

{IsQueue q [vo, -, Va—1] }
dequeue q

{/\v. 1<n x v=y * IsQueue q [v,..., v,,_l]}

A specification for sequential queues

{True } {IsQueue q [vo, .., Va—1] }
make () enqueue q v

{/\q. IsQueue g []} {)\(). IsQueue q [vo, -, Va1, V]}

{IsQueue q [vo, -, Va—1] }
dequeue q

{/\v. 1<n x v=y * IsQueue q [v,..., v,,_l]}

A specification for sequential queues

{True } {IsQueue q [vo, -, Va—1] }
make () enqueue q v

{/\q. IsQueue g []} {)\(). IsQueue q [vo, -, Va1, V]}

{IsQueue q [vo, -, Va—1] }
dequeue q

{/\v. 1<n x v=y * IsQueue q [v,..., v,,_l]}

A specification for sequential queues

{True } {IsQueue q [vo, -, Va—1] }
welzs () enqueue q v

{/\q. IsQueue q []} {)\(). IsQueue g [vo, ..., V-1, V]}

{IsQueue q [vo, -, Va—1] }
dequeue q

{/\v. 1<n x v=y * IsQueue q [v,..., v,,_l]}

Concurrent queues

Concurrency

for now we assume sequential consistency:
behaviors of the program are interleavings of its threads

can we keep the sequential spec?

Concurrency

for now we assume sequential consistency:
behaviors of the program are interleavings of its threads

can we keep the sequential spec? valid, but. ..

IsQueue g [vo, ..., Va—1] is exclusive
— effectively no concurrent usage

Invariants

[in a concurrent separation logic such as Iris]
an invariant holds at all times

idea: the user shares g in an invariant:
A
I = 3n, vy, ..., Vh—1. IsQueue g vy, ..., Vp_1]

the invariant owns g

Invariants

[in a concurrent separation logic such as Iris]
an invariant holds at all times

idea: the user shares g in an invariant:
A
I = 3n, vy, ..., vp—1. IsQueue g [vo, ..., Vp—1]

the invariant owns g

Invariants

[in a concurrent separation logic such as Iris]
an invariant holds at all times

idea: the user shares g in an invariant:
I 2 3n, v, ..., V1. IsQueue g [vo, ..., Va_1] * R [Vo, ..., Va_1]

the invariant owns g

Invariants

[in a concurrent separation logic such as Iris]
an invariant holds at all times
idea: the user shares g in an invariant:
I 2 3n, v, ..., vo_1. IsQueue g [vo, ..., Vo_1] * R [Vo, ..., V1]
the invariant owns g

anyone can access g by “opening” I:

{Pxl}e{l*Q} I is an invariant e completes in one step

{Pye{@}

Invariants

[in a concurrent separation logic such as Iris]
an invariant holds at all times
idea: the user shares g in an invariant:
I 2 3n, v, ..., vo_1. IsQueue g [vo, ..., Vo_1] * R [Vo, ..., V1]
the invariant owns g

anyone can access g by “opening” I:

{Pxl}e{l*Q} I is an invariant e completes in one step

{Pye{@}

Invariants

[in a concurrent separation logic such as Iris]
an invariant holds at all times
idea: the user shares g in an invariant:
I 2 3n, v, ..., vo_1. IsQueue g [vo, ..., Vo_1] * R [Vo, ..., V1]
the invariant owns g

anyone can access g by “opening” I:

{Pxl}e{l*Q} I is an invariant e completes in one step

{Pye{@}

Logical atomicity

[in Iris]

logically atomic triples are triples (-) - (-) such that:

{ Pe(Q (Pxl)e(l*Q) | is an invariant
{P}e{Q} (P)e(Q)

Logical atomicity

[in Iris]

logically atomic triples are triples (-) - (-) such that:

{ Pe(Q (Pxl)e(l*Q) | is an invariant
{P}e{Q} (P)e(Q)

tells that e behaves “atomically”

Logical atomicity

[in Iris]

logically atomic triples are triples (-) - (-) such that:

{ Pe(Q (Pxl)e(l*Q) | is an invariant
{P}e{Q} (P)e(Q)

tells that e behaves “atomically”

intuition: e takes a step which satisfies {P} - {Q}
(= related to linearizability)

Logical atomicity

[in Iris]

logically atomic triples are triples (-) - (-) such that:

(x.P) e (Q) (x.Px1)e(l+Q) [is an invariant
Vx. {P} e{Q} (x.P)e(Q)

tells that e behaves “atomically”

intuition: e takes a step which satisfies Vx. {P} - {Q}
(= related to linearizability)

x binds things which are known only during that step

A specification for concurrent queues under SC

{True } <n7 VOy -vs Vn—1. ISQueue ¢ [vo, ..., v,,_1]>
make () enqueue q v
{/\q. IsQueue g []} <)\(). IsQueue g [vo, ..., Va1, V] >
<n, VOy -y Vn—1- IsSQueue g [vo, ..., Vo—1] >
dequeue q

<)\v. 1<n % v=y * IsQueue q[vi,..., v,,_1]>

A specification for concurrent queues under SC

{True } <n, VOy -vs Vn—1. ISQueue ¢ [vo, ..., v,,_1]>
make () enqueue q v
{/\q. IsQueue g []} <)\(). IsQueue g [vo, ..., Va1, V] >
<n, VOy -y Vn—1- IsSQueue g [vo, ..., Vo—1] >
dequeue q

<)\v. 1<n % v=y * IsQueue q[vi,..., v,,_1]>

A specification for concurrent queues under SC

{True } <n, VO, ooy Vn—1. IsQueue q [, ..., v,,_1]>
make () enqueue q v
{/\q. IsQueue g []} <)\(). IsQueue g [vo, ..., Va1, V] >
<n, VO, ooy V1. IsSQueue g [vo, ...y Vn—1] >
dequeue q

<)\v. 1<n % v=y * IsQueue q[vi,..., v,,_1]>

A specification for concurrent queues under SC

{True } <n7 VOy -vs Vn—1. ISQueue ¢ [vo, ..., v,,_1]>
make () enqueue q v
{/\q. IsQueue g []} <)\(). IsQueue g [vo, ..., Va1, V] >
<n, VOy -y Vn—1- IsSQueue g [vo, ..., Vo—1] >
dequeue ¢ (simplified)

<)\v. 1<n % v=y * IsQueue q[vi,..., v,,_1]>

Concurrent queues in
weak memory

Weak memory models

weak memory models:
each thread has its own view of the state of the shared memory

e example: C11

e example: Multicore OCaml

[Dolan et al, PLDI 2018, Bounding data races in space and time]

operational semantics with thread-local views

Weak memory models

weak memory models:
each thread has its own view of the state of the shared memory

e example: C11

e example: Multicore OCaml

[Dolan et al, PLDI 2018, Bounding data races in space and time]

operational semantics with thread-local views

Weak memory models

weak memory models:
each thread has its own view of the state of the shared memory

e example: C11

e example: Multicore OCaml

[Dolan et al, PLDI 2018, Bounding data races in space and time]
operational semantics with thread-local views

Cosmo: a program logic for M-OCaml based on this semantics
[ICFP 2020]

Cosmo

based on Iris (hence: separation logic, ghost state, invariants)

assertions can be subjective: depend on current (thread's) view

e example: x ~» 42

Cosmo

based on Iris (hence: separation logic, ghost state, invariants)

assertions can be subjective: depend on current (thread's) view

e example: x ~» 42

restriction: invariants are available to all threads
= objective assertions only

Cosmo

based on Iris (hence: separation logic, ghost state, invariants)

assertions can be subjective: depend on current (thread's) view

e example: x ~» 42

restriction: invariants are available to all threads

= objective assertions only

to be specified: IsQueue g [vp, ..., vo—1] is objective

Synchronizing through the queue?

can we keep the SC spec?

Synchronizing through the queue?

can we keep the SC spec? valid, usable in limited cases, but. ..

let enqueuer q = let dequeuer q =
let x = array[2] in let x = dequeue g in
x[1] < 3; {x[1]~3}
{x[1]~3} do_something x[1]

enqueue q X

Synchronizing through the queue?

can we keep the SC spec? valid, usable in limited cases, but. ..

let enqueuer q = let dequeuer q =
let x = array[2] in let x = dequeue g in
x[1] < 3; {x[1]~3}
{x[1]~3} do_something x[1]

enqueue q X

x[1] ~ 3 is subjective
— cannot be transferred solely with an invariant

Synchronizing through the queue?

can we keep the SC spec? valid, usable in limited cases, but. ..

let enqueuer q = let dequeuer q =
let x = array[2] in let x = dequeue g in
x[1] < 3; {x[1]~3}
{x[1]~3} do_something x[1]

enqueue g X
x[1] ~ 3 is subjective

— cannot be transferred solely with an invariant

to be specified: dequeuer observes all writes done by enqueuer
(= “release-acquire” pattern)

Views in Cosmo

a lattice of views (larger = more up-to-date)

Views in Cosmo

a lattice of views (larger = more up-to-date)

new assertions:

TV ‘“the ambient view contains V" = subjective

P@Y “P where the ambient view has been fixed to V' = objective

Views in Cosmo

a lattice of views (larger = more up-to-date)

new assertions:

TV ‘“the ambient view contains V" = subjective

P@Y “P where the ambient view has been fixed to V' = objective

splitting rule:

P—-3V.(1V«P@YV)

Views in Cosmo

a lattice of views (larger = more up-to-date)
new assertions:

TV ‘“the ambient view contains V" = subjective

P @Y “P where the ambient view has been fixed to V' = objective

shareable via an invariant

splitting rule:

P—-3V.(1V«P@YV)

Views in Cosmo

a lattice of views (larger = more up-to-date)

new assertions:

TV ‘“the ambient view contains V" = subjective
transferred via thread synchronization

P@Y “P where the ambient view has been fixed to V' = objective
shareable via an invariant

splitting rule:

P--3V.(1VxP@YV)

Transferring views through the queue

idea: pretend the queue stores the views being transferred
IsQueue g [vo sy Vi1]

the enqueuer pushes its view alongside the enqueued value:

n, v vy Vno1
IsQueue g [vo T VA]
enqueue q v
<)\(). IsQueue g [vo yeeey Vin—1 s, v] >

10

Transferring views through the queue

idea: pretend the queue stores the views being transferred

IsQueue g [(vo, Vo), vy (Vn—1, Vn—1)]

the enqueuer pushes its view alongside the enqueued value:

n, v vy Vno1
IsQueue g [vo T VA]
enqueue q v
<)\(). IsQueue g [vo yeeey Vin—1 s, v] >

10

Transferring views through the queue

idea: pretend the queue stores the views being transferred

IsQueue g [(vo, Vo), vy (Vn—1, Vn—1)]
the enqueuer pushes its view alongside the enqueued value:

n, (V(), Vo), ceey (V,,fl, Vn71)~

IsQueue g [(vo, Vo), -5 (Va—1, Vn—1)] * TV
enqueue q v
<)\(). IsQueue g [(vo, Vo), ---; (Va—1, Vn-1), (v, V)] >

10

Transferring views through the queue

idea: pretend the queue stores the views being transferred
IsQueue g [(vo, Vo), vy (Vn—1, Vn—1)]
the dequeuer pulls that view:

n, vo y ey Vn—1

IsQueue g [vo , V1 sy Vi1]

dequeue g

</\v. IsQueue g [w1 sy Vi1] x 1<nx*xv= vo>

10

Transferring views through the queue

idea: pretend the queue stores the views being transferred

IsQueue g [(vo, Vo), vy (Vn—1, Vn—1)]
the dequeuer pulls that view:

n, (V07 VO)a ceey (anla anl).
ISQueue q [(VOa VO)? (Vla Vl)v 200g) (Vn—lvvn—].)]

dequeue g

</\v. IsQueue g [(vi, V1), ooy (Vo—1,Vn=1)] * TVo * 1<n x v= vo>

10

Comparison with refinement in weak memory

refinement spec: “this queue can replace a naive queue + a lock”

11

Comparison with refinement in weak memory

refinement spec: “this queue can replace a naive queue + a lock”
issue: induces synchronization between all operations

many lock-free queues do not (we try to avoid synchronizations!)
— they do not satisfy the refinement spec

11

Comparison with refinement in weak memory

refinement spec: “this queue can replace a naive queue + a lock”
issue: induces synchronization between all operations

many lock-free queues do not (we try to avoid synchronizations!)
— they do not satisfy the refinement spec

our spec is weaker (no guaranteed sync. from dequeuer to enqueuer)
= covers more lock-free queues

11

Conclusion

Conclusion

concurrent program verification:

e invariants share resources among threads

e (logical) atomicity is part of specs

12

Conclusion

concurrent program verification in weak memory:

e invariants share resources among threads
e (logical) atomicity is part of specs

e view transfers express synchronizations, also part of specs

12

Conclusion

concurrent program verification in weak memory:
e invariants share resources among threads
e (logical) atomicity is part of specs

e view transfers express synchronizations, also part of specs
also in this work:

e proof of a non-trivial lock-free queue
(does not refine a lock-based queue w.r.t. sync.)

e proof of a simple client

‘)

e machine-checked (Coq, Iris) &9

12

Conclusion

concurrent program verification in weak memory:

e invariants share resources among threads
e (logical) atomicity is part of specs

e view transfers express synchronizations, also part of specs
also in this work:

e proof of a non-trivial lock-free queue
(does not refine a lock-based queue w.r.t. sync.)
[a refinement proof in SC: Vindum & Birkedal, 2021, Mechanized Verification of
a Fine-Grained Concurrent Queue from Facebook’s Folly Library]

e proof of a simple client

‘)

e machine-checked (Coq, Iris) &9

12

	Sequential queues
	Concurrent queues
	Concurrent queues in weak memory
	Conclusion

