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1 INTRODUCTION

Advances in multicore hardware during the last two decades have created a need for powerful
tools for writing efficient and trustworthy multicore software. These tools include well-designed
programming languages and their compilers, efficient thread-safe libraries, and expressive program
logics for proving the correctness of these and of the applications that exploit them. While some such
verification tools already exist, researchers are only beginning to explore whether and how these
tools can be exploited to modularly specify and verify realistic libraries that support fine-grained
shared-memory concurrency.

Most of the programming languages that support multicore programming present shared memory
as the primitive means of communication between threads. Although this design choice offers
the greatest flexibility for writing efficient programs, it comes at an important cost: in order to
achieve maximal efficiency, shared-memory concurrency cannot follow an intuitive sequentially
consistent semantics [Lamport 1979], where all threads have the same view of memory at every
time. Instead, these programming languages usually come with a subtle weak memory model,
which defines precisely how the memory accesses performed by different threads may interact
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with each other. This is the case, for example, of C, C++ and Rust, which share the C11 memory
model [Batty et al. 2011; Lahav et al. 2017]; of Java and of the languages based on the JVM [Manson
et al. 2005; Lochbihler 2012; Bender and Palsberg 2019]; and of the Multicore extension of the
OCaml programming language [Dolan et al. 2018, 2020].

Because its semantics is subtle, shared-memory concurrency creates difficult and interesting
challenges in modular program verification. Just in the past fifteen years, a large variety of concur-
rent separation logics have been designed in order to meet the challenge of formally specifying
and verifying programs that exploit shared-memory concurrency. Brookes [2004] and O’Hearn
[2007] introduced Concurrent Separation Logic [Brookes and O’Hearn 2016], which supported
coarse-grain sharing of resources via mutexes. Their approach was gradually improved over the
years, leading to expressive, higher-order separation logics, such as Iris [Jung et al. 2015, 2018].
Iris is able to express complex concurrent protocols, thanks to mechanisms such as ghost state and
invariants, and supports reasoning about fine-grain concurrency, at the level of individual memory
accesses. Concurrent data structures, such as mutexes, need not be considered primitive any more;
they can be implemented and verified. Still, plain Iris is restricted to sequentially consistent seman-
tics: it does not support weak memory models. A new generation of logics remove this restriction,
for various memory models: GPS [Turon et al. 2014], iGPS [Kaiser et al. 2017] and iRC11 [Dang
et al. 2020] target fragments of the C11 memory model, while Cosmo [Mével et al. 2020] targets the
Multicore OCaml memory model. iGPS, iRC11 and Cosmo are based on Iris.

These logics settle a strong theoretical ground; their confirmation as practical tools, however,
needs a demonstration that they allow the modular verification of realistic multicore programs. In
particular, they must enable their users to precisely specify and verify concurrent data structure
implementations. A concurrent queue is an archetypal example of such a data structure: it is widely
used in practice, for example to manage a sequence of tasks that are generated and handled by
different threads. While a coarse-grained implementation—that is, a sequential implementation
protected by a lock—would certainly be correct, there exist implementations which yield better
performance, especially under heavy contention, based on subtle fine-grained memory accesses.
These implementations are delicate and often rely on subtle properties of the memory model. An
informal correctness argument is difficult, likely unreliable, hence unconvincing. Thus, concurrent
data structures are prime candidates for formal verification. In fact, many machine-checked proofs
of concurrent data structures have appeared in the literature already [Parkinson et al. 2007; Frumin
et al. 2018, 2020; Zakowski et al. 2018], but relatively few verification efforts take place in a weak-
memory setting [Lé et al. 2013b,a], and fewer still rely on a modular methodology, where a proof of
a concurrent data structure and a proof of its client (perhaps a concurrent application, or another
concurrent data structure) can be modularly combined.

In this paper, we present a specification of a concurrent queue, and we formally verify that a
particular implementation satisfies this specification. While other such formalizations already exist
in a sequentially-consistent setting [Vindum and Birkedal 2021; Vindum et al. 2021], we consider a
weak-memory setting. Such a formalization effort is innovative and challenging in several aspects.

e Weak memory models are infamous for the subtlety of the reasoning that they impose. We
choose to use Cosmo [Mével et al. 2020], a recently-developed concurrent separation logic
based on Iris which supports the weak memory model of Multicore OCaml [Dolan et al. 2020,
2018]. We believe that this memory model and program logic strike a good balance between
the ease of reasoning enabled by the logic and the flexibility and performance allowed by the
memory model.

e In our quest for applicability, we wish to propose a realistic queue implementation, which
could be used in real-world programs. Since Multicore OCaml is still at an experimental stage
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and does not offer a wide variety of concurrent data structures yet, its ecosystem may benefit
from this new library. We take inspiration from a well-established algorithm [Rigtorp 2021]
that has been used in production in several applications.

e The specification of the concurrent queue should indicate that it behaves as if all of its
operations acted atomically on a common shared state, even though in reality they access
distinct parts of the memory and require many machine instructions. To address this challenge,
we use the recently-developed concept of logical atomicity [Jung et al. 2015; Jung 2019;
da Rocha Pinto et al. 2014], which we transport to the setting of Cosmo.

e To the best of our knowledge, this is the first use of logical atomicity in a weak-memory
setting. This raises new questions: for instance, even though our implementation realizes
a total order on the operations on a queue, it offers strictly weaker guarantees than would
be offered by a coarse-grained implementation. Indeed, in the context of a weak memory
model, the specification of a concurrent data structure must describe not only the result of its
operations, but also the manner in which these are synchronized, that is, the happens-before
relationships that exist between these. This additional information allows reasoning about
accesses to areas of memory outside of the data structure itself. This is crucial, for example, if a
queue is used to transfer the ownership of a piece of memory from a producer to a consumer:
there must exist a happens-before relationship between the enqueue operation and the
corresponding dequeue operation, so as to ensure that the consumer acquires the producer’s
view of this piece of memory. Our specification faithfully captures a subtle behavior of the
implementation: even though operations are totally ordered by logical atomicity, not all
operations are ordered by happens-before—but some are.

e We use the Coq proof assistant [The Coq development team 2020] to formally verify our
proofs. Our development is available from our repository [Mével et al. 2021].

We believe our approach, whose key ingredients are Cosmo and logical atomicity, scales to other
memory models and other data structures. Indeed, first, the core of Cosmo (beyond basic Separation
Logic) is a logic for reasoning with views, an operational description of the memory model; other
memory models than that of Multicore OCaml can also be termed in this fashion, as iGPS [Kaiser
et al. 2017] and iRC11 [Dang et al. 2020] have demonstrated for C11. Second, logical atomicity has
already successfully been used for various data structures in the Iris community [Iris developers
and contributors 2021; Frumin et al. 2020].

The paper begins with a detailed explanation of the specification of a concurrent queue (§2).
Then, we present an implementation of the queue in Multicore OCaml (§3), and explain our proof
of its correctness (§4). Next, we demonstrate that our specification is indeed usable, by exploiting it
in the context of a simple piece of client code, where the concurrent queue is used to establish a
pipeline between a set of producers and a set of consumers (§5). The paper ends with a review of
the related work (§6).

2 SPECIFICATION OF A MPMC QUEUE IN A CONCURRENT SEPARATION LOGIC

A queue is a first-in first-out container data structure. At any time, it holds an ordered list of items.
It supports two main operations: enqueue inserts an item at one extremity of the queue (the head);
dequeue extracts an item—if there is one—from the other extremity (the tail).

In a concurrent setting, a legitimate question is whether several threads can operate the queue
safely. The answer depends on the implementation. Possible restrictions include allowing only one
thread to enqueue (single producer), or allowing only one thread to dequeue (single consumer), or
both. In this paper we study an implementation of a multiple-producer, multiple-consumer (MPMC)
queue, that is, a queue in which any number of threads are allowed to enqueue and dequeue.
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{True }

make ()
Aq. 1sQueue q []

{lsQueue q [00s s Up—-1] } {IsQueue q [00s .-y Up—1] }
enqueue q v dequeue g
{A(). IsQueue q [op, ..., v,,,l,v]} {)Lv.l <n * v=vy * IsQueue q [0y, ..., vn,l]}

Fig. 1. A specification of the “queue” data structure in a sequential setting

In addition, this queue is bounded, that is, it occupies no more than a fixed memory size. A
motivation for that trait is that items may be enqueued more frequently than they are dequeued; in
this situation, a bounded queue has no risk of exhausting system memory; instead, if the maximum
size is reached, enqueuing either blocks or fails.

2.1 Specification in a Sequential Setting

Let us start by assuming a sequential setting. We can then use standard Separation Logic [Reynolds
2002] to reason about programs and the resources they manipulate. In Separation Logic, a queue g
holding n items [vy, ..., v,—1], where the left extremity of the list is the tail and the right extremity
is the head, can be represented with an assertion:

IsQueue q [vg, ..., vp-1]

As is usual in Separation Logic, this representation predicate asserts the unique ownership of
the entire data structure. When holding it, we can safely manipulate the queue without risk of
invalidating other assertions about resources that may alias parts of our queue. In particular, the
representation predicate cannot be duplicated; we say that it is exclusive.

The operations of the queue admit a simple sequential specification which is presented in Figure 1.
We use the standard Hoare triple notation, with a partial correctness meaning. The asterisk (*) is
the separating conjunction.

e The function make has no prerequisite and gives us the ownership of a new empty queue.

e If we own a queue g, then we can enqueue some item v into g; if this operation ever returns,
then it must return the unit value () and give us back the ownership of g, where v has been
appended at the head.

e Conversely, if we own a queue g, then we can dequeue from g; if this operation ever returns,
then it must return the first item v, found at the tail of ¢, and it gives us back the ownership
of g, where that first item has been removed.

This specification implies that dequeue cannot possibly return when the queue is empty (n = 0);
in this case, it must loop forever. This is pointless in a sequential setting, but becomes meaningful
in the presence of concurrency, where it makes sense for dequeue to wait until an item is enqueued.
This specification also applies to bounded queues, where (somewhat analogously) enqueue loops
when the capacity is reached (n = C), waiting until room becomes available.

2.2 Specification under Sequential Consistency

We now consider a situation where several threads can access the queue concurrently. Let us
assume for now that the memory model is sequentially consistent [Lamport 1979]. In a seminal
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{True }

make ()
{Aq. Jy. Queuelnv g y * IsQueue y []}

persistent(Queuelnv q y)

Queuelnv q y Queuelnv q y
<n, 0y - Up—1- IsQueue y [o, ..., Un_1]> <n, 0y - Up—1- IsSQueue y [vg, ..., Up—1] >
enqueue q v dequeue g
</1(). IsQueue y [vg, ..., 0p-1,0] > </10. 1<n * v=uy * IsQueuey [oy, .., vn,1]>

Fig. 2. A specification of the “queue” data structure in a sequentially consistent memory model

work, Brookes [2004] and O’Hearn [2007] devised Concurrent Separation Logic, an extension of
Separation Logic which enables to reason about programs where several threads can access a same
piece of memory. Though the original logic achieves sharing through hard-wired “conditional
critical regions”, it has spawned a variety of descendants lifting this limitation and pushing further
the applicability of such separation logics. In this work, we use Iris [Jung et al. 2018], a modular
framework for building separation logics.

In a derivative of Concurrent Separation Logic, we may retain the exact same specification as is
presented in Figure 1, recalling that IsQueue g [oy, ..., v,-1] is an exclusive assertion: a thread that
has this assertion can safely assume to be the only one allowed to operate on the queue. A client
application can transfer this assertion between threads via some means of synchronization: for
instance, it may use a lock to guard all operations on the shared queue, following the approach of
Concurrent Separation Logic. However this coarse grain concurrency has a run-time penalty, and
it also creates some contention on the use of the queue. These costs are often unnecessary, as many
data structures are designed specifically to support concurrent accesses. In this paper, as stated, we
wish to prove the correctness of a MPMC queue implementation, which should thus ensure, by
itself, thread safety. Hence we can achieve finer-grain concurrency, where operating on a queue
does not require its exclusive ownership.

In this context, another option is for the client to share this ownership among several threads,
logically. In an Iris-like logic, one would typically place the exclusive ownership in an invariant. An
invariant is an assertion which is agreed upon by all threads, and is owned by anyone; it remains
true forever. As the public state of the queue—the list [oy, ..., v,—1] of currently stored items—would
only be known from that invariant, the client would also express in there the properties about
this state that their particular application needs. Then, when one of the threads needs to access
the shared resource, it can open the invariant, get the assertions it contains, perform the desired
operation on the shared state, reestablish the invariant, and finally close it. However, to ensure
soundness in the face of concurrency, the use of invariants in Iris obeys a strict constraint: they
can remain open during at most one step of execution. Unfortunately, enqueue and dequeue are
complex operations which, a priori, take several steps. Hence a client would be unable to open their
invariant around the triples shown in Figure 1. Yet these operations are “atomic” in some empirical
sense.

The concept of logical atomicity [Jacobs and Piessens 2011; Jung 2019; Jung et al. 2015, §7] aims
at addressing that difficulty. To use it, we substitute ordinary Hoare triples with logically atomic
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LAHOARE LAINV
(x.P)e{Q) (x.>I*P)e(>1xQ)
Vx. {P} e {Q} F(x.P) e(Q)

Fig. 3. Selected rules for logically atomic triples

triples. Two important reasoning rules for logically atomic triples are given in Figure 3." A logically
atomic triple is denoted with angle brackets (. ..). Just like an ordinary triple, it specifies a program
fragment with a precondition and a postcondition. In fact, as witnessed by rule LAHOARE, one can
deduce an ordinary Hoare triple from a logically atomic triple. The core difference is that, thanks to
rule LAINV, invariants can be opened around a logically atomic triple, regardless of the number of
execution steps of the program fragment: in a sense, when a function is specified using a logically
atomic triple, one states that said function behaves as if it were atomic. The definition of logically
atomic triples is further discussed in §4.6 and given with detail in previous work [Jung 2019; Jung
et al. 2015, §7]. We now try to give an intuition of that concept: a logically atomic triple (P) e (Q)
states, roughly, that the expression e contains an atomic instruction, called the commit point, which
has P as a precondition and Q as a postcondition. Because it is atomic, invariants can be opened
around that commit point.

Using logically atomic triples, the specification can be written as shown in Figure 2. It closely
resembles that of the sequential setting (Figure 1). The first noticeable difference is the use of angle
brackets (...) denoting logically atomic triples instead of curly brackets {. ..} for ordinary Hoare
triples.

Another difference is the presence, in the syntax of logically atomic triples, of an explicit binder
for some variables (n, vy, ..., vn—1). This binder addresses a subtlety of logical atomicity: a client
calling enqueue or dequeue does not know in advance the state of the queue at the commit point,
which is when the precondition and postcondition are to be interpreted. Hence, both formulas have
to be parameterized by said shared state. Said otherwise, a logically atomic triple provides a family
of pre/postcondition pairs covering every possible shared state at the commit point.

The last departure from the sequential specification is that the representation predicate is split into
two parts: a persistent’ assertion Queuelnv g y and an exclusive assertion IsQueue y [0, ..., 05-1],
connected by a ghost name® y. That splitting is an artifact of our correctness proof technique,
which we detail in §4. Note that this does not complicate the use of the queue by the client: both
assertions are produced when creating the queue, and while the exclusive component can be put in
an invariant as before, the persistent component can be directly duplicated and distributed to all
threads.*

The use of such a specification in a concrete example will be detailed in §5.3. For now, we
illustrate how a weaker specification can be easily deduced from this one.

Following Iris notations, is an invariant whose content is the assertion I, and » is a step-indexing modality, a
technicality of Iris that we can ignore in this paper.

2In Iris terms, persistent qualifies an assertion that is duplicable. Once established, such an assertion holds forever.

3Ghost names in Iris are identifiers for pieces of ghost state. We say more on this in §4.

4 An Iris expert may want to conceal the queue invariant, Queuelnv q y, inside IsQueue y [2p, ..., on—1 ]. However, we
need to access this invariant at various places other than the commit point. This is feasible with a more elaborate definition
of logically atomic triples than the one given in this paper, so that they support aborting [Jung 2019]. Another drawback is
that we would lose the timelessness of the representation predicate.
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A persistent specification. If it were not for logical atomicity, and we still wanted to share the
ownership of the queue, we would have little choice left than renouncing to an exclusive repre-
sentation predicate. Only a persistent assertion would be provided, because the description of the
public state has to be stable in the face of interference by other threads. The resulting specification
would be much weaker. For example, we may merely specify that all of the elements stored in the
queue satisfy some predicate ®. In doing so, we lose most structural properties of a queue: the same
specification could also describe a stack or a bag.

QueuePersistent g ® QueuePersistent g ©

persistent(QueuePersistent ¢ ®) {®ov} enqueue go {A(). True}  {True} dequeue g {Av. Do}

To derive these Hoare triples from the ones of Figure 2, one simply defines the persistent assertion
as follows, where the boxed assertion is an Iris invariant:

Queuelnv q y
‘Hn, 00y - Up—1- ISQueue y [vg, .., Up—1] * Povg * -+ % Do,

QueuePersistent ¢ @ = Jy. *{

This assertion is trivial to produce at the creation of the queue, when make hands us the assertions
Queuelnv ¢ y and IsQueue y []. Then, for proving the weaker specification of enqueue and
dequeue, one opens the invariant around the associated logically atomic triples.

2.3 Specification under Weak Memory

Up to now, we have ignored the weakly consistent behavior of the semantics of Multicore OCaml.
In this section, we take this aspect into account and propose a refined specification.

We use the separation logic Cosmo [Mével et al. 2020], which provides a proof framework for
the weak memory model of Multicore OCaml. This memory model has been described by Dolan
et al. [2018] under the form of a small-step operational semantics. Following previous authors,
such as Kaiser et al. [2017], the semantics features a notion of view® which captures the essence of
weak memory, namely, the fact that each thread has different knowledge of the state of the shared
memory. A view represents this subjective knowledge. Cosmo builds on this operational semantics,
and brings views to the level of the program logic. All assertions of the logic depend on an ambient
view, which corresponds to the current view of the subject thread. Thus, Cosmo assertions are in
general subjective, that is, implicitly dependent on an ambient view.

Because Cosmo is based on Iris, logically atomic triples can also be defined in Cosmo. In fact, the
specification shown in Figure 2 still applies.

Yet, as such, it is of little value in a weakly consistent context. Indeed, as explained in §2.2, it is
designed so that IsQueue y [y, ...,v,—1] can be shared among threads by means of an invariant.
But, in Cosmo, invariants are restricted to a special class of assertions called objective assertions—
those assertions that do not actually depend on the ambient view. Hence, our first addition to the
specification is to stipulate that the representation predicate is objective. This reflects the fact that
there exists a total order on the updates to the logical state, on which all threads objectively agree.

Even with this addition, the specification given in §2.2 is not precise enough to verify interesting
clients such as the one described in §5. Indeed, in a weakly consistent setting, one typically expects
a concurrent data structure to establish synchronization between some of its concurrent accesses.
For example, imagine that thread A enqueues a pointer to a complex data structure (say, a hash
table). Then, when thread B dequeues this pointer, B should obtain the unique ownership of the
hash table and be able to access it accordingly. In a weakly consistent memory model, B expects to
see all of the changes that A has made to the data structure. This is guaranteed only if there is a
happens-before relationship from the enqueuing event to the dequeuing event.

SDolan et al. [2018] call these views frontiers.
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SEEN-ZERO SEEN-TwoO SPLIT-SUBJECTIVE-OBJECTIVE

FTL TV TV 4+ T(VIUVs) P4+ IAV.TV«P@YV)

Fig. 4. Selected Cosmo rules

persistent(Queuelnvqgy) objective(IsQueuey 7 H [(v0, Vo), (0n-1,Vu-1)1)
{1 }
make ()

{Aq. Jy. Queuelnvgy * IsQueuey VoV, []}

Queuelnvqy
7',7'{,n, (Uo,(V()),. ce (vn_l,(Vn_l).
IsQueuey 7 H [(00,V0)s 0> (0n-1,V-1)] * 1V

enqueue q v
</1(). IsQueuey T (HUV) [(00:V0)se-s(0n-1:Vn-1),(0,V)] = T?—{>

Queuelnvgy

T,W,H,(Z)(),(V()),...,(Un_l,(vn_l).
IsQueuey T H [(06,V0),s(0n-1,Vu1)] * TV

dequeue g
</10. IsQueuey (TUV)H [(01, V1) (0n-1,Vi-1)] * TT = TV = 1<n = v=00>

Queuelnvqy
T,?-(,n,(vo,(VO),...,(Un_l,(Vn_l).
IsQueuey 7 H [(©0, V), (Un-1,V-1)] x TV
try_enqueue q v
b IsQueuey 7 H [(©0,V0)sw s (Un—1,V=1)] x b=false
" |1sQueuey T (HUY) [(00,V0)se s (0n-1,Vn=1),(0,V)] = TH % b=true
Queuelnvgy
T’Han’(UO)(VO)"":(Un—lr(Vn—l)'
IsQueuey T H [(00,V0),,(0n-1,V-1)] * TV

try_dequeue g
</107 [lsQueuey T H [(09,V)ss(0-1,Vi—1)] * o’ =None >

IsQueuey (TUVYH [(01, V)50 (On-1,Vi1)] = TT # TVy * 1<n = o’ =Someu,

Fig. 5. A specification of the “queue” data structure in a weak memory model
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One possibility would be to guarantee that our concurrent queue implementation behaves like
its coarse-grained alternative, that is, a sequential implementation guarded by a lock. This would
correspond to an intuitive definition of linearizability, even though this notion is difficult to define
precisely outside of the world of sequential consistency [Smith et al. 2019]. However, our concurrent
queue library is weaker than that: it does guarantee some happens-before relationships, but not
between all pairs of accesses. Namely, it guarantees a happens-before relationship:

(1) from an enqueuer to the dequeuer that obtains the corresponding item;
(2) from an enqueuer to the following enqueuers;
(3) from a dequeuer to the following dequeuers.

The first one permits resource transfer through the queue as described in the example above.

In Cosmo, happens-before relationships can be expressed as transfers of views. To the user of
this logic, views (denoted in this paper by calligraphic capital letters, such as 7, H,V,S) are
abstract values equipped with lattice structure: the least view L is the empty view, and larger
views correspond to more recent knowledge. Cosmo features two kinds of assertions to deal with
views. First, if V is a view, then the persistent assertion TV indicates that the current thread
has the knowledge contained in V. Second, if ‘V is a view and P is a (subjective) assertion, then
P @ V denotes the assertion P where V has been substituted for the ambient view; as it does not
depend on the ambient view anymore, P @ V is objective.® Cosmo provides reasoning rules about
these assertions, shown in Figure 4. We comment on rule SPLIT-SUBJECTIVE-OBJECTIVE in the next
paragraph.

In Cosmo, the usual way of specifying a happens-before relationship between two program
points is by giving the client the ability to transfer any assertion of the form TV between these
two points: this corresponds to saying that the destination program point has all the knowledge
the source program point had about the shared memory. As seen later with the example of the
pipeline (§5.3), this is sufficient for transferring any subjective resource from a sender to a receiver.
Indeed, rule SpLIT-SUBJECTIVE-OBJECTIVE says that we can split any subjective assertion P into
two assertions TV and P @ V for some view V and, conversely, we can reconstruct P from two
such assertions. The second part being objective, it can be shared in an invariant. Hence, to transfer
P, it is enough to transfer its subjective part TV.

In the specification of the queue, to express the happens-before relationships mentioned earlier,
the representation predicate now takes more parameters:

IsQueue y T H [(v0, Vo) s e (01, Vi-1)

(1) For each item vy in the queue, we now have a corresponding view V. This view materializes
the flow of memory knowledge from the thread which enqueued the item, to the one which
will dequeue it.

(2) The head view H materializes memory knowledge accumulated by successive enqueuers.

(3) The tail view 7" materializes memory knowledge accumulated by successive dequeuers.

The queue that we study, however, does not guarantee any happens-before relationship from a
dequeuer to an enqueuer.” Hence, it provides fewer guarantees than a sequential queue guarded by
a lock.

Interestingly, Cosmo is able to express this subtle difference between the behavior of our library
and that of a lock-based implementation: the full specification under weak memory is shown

® An equivalent definition is the following: asserting P @ V is asserting that, even without other knowledge, if we have
the knowledge contained in V, then P holds. In other words, P @ V is objective and entails TV - P.

"This is not entirely true: the implementation shown in §3 does create a happens-before relationship from the dequeuer
of rank k to the enqueuer of rank k + C (hence also to all enqueuers of subsequent ranks). We choose to not reveal this in
the specification, since the constant C is an implementation detail.
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x € VAR — variables
¢t € Loc — memory locations
b € {false, true} — Boolean values
n ez — integer values
ve=pf.dx.e|lf|()|b]|n — values
| None | Some v | (v,...,0)
® € {AV,+ X,mod,...} — operators
e = — expressions:
x|pf.lx.eleelede — A-calculus with recursive functions
| €] )| b|n|None|Somee]|(e...,e) — primitive values and constructors
| if e then e elsee - conditional
| match e with Some x — e | None — e - pattern matching
| let (x,...,x) =eine - tuples
| fork e - spawning a new thread
| arraynale] e | e[e]na | e[e]na < € - non-atomic cells
| arrayaife] e | elela | ele]ar < € — atomic cells
| CASe[e] ee - atomic compare-and-set
e n=... — syntactic sugar:
| let recxx ... x=eine — definitions of recursive functions
|letx ... x=eine|e;e — definitions, sequencing
| for x frome to e do e done - loops
| refrae| lael e =ne - non-atomic references
|refa e|lase|e=a e|CASeee — atomic references

Fig. 6. The syntax of a fragment of Multicore OCaml

in Figure 5. This specification extends the previous one (Figure 2) with views. The mentioned
happens-before relationships are captured as follows.

(1) When a thread with a local view V (in other words, with TV as a precondition) enqueues
an item v, it pairs it with the view V. Afterwards, when another thread dequeues that same
item vy, it merges the view V} that was paired with it into its own local view (in other words,
it obtains TV}, as a postcondition).

(2) When a thread enqueues an item, it also obtains the head view H left by the previous
enqueuer (in other words, it obtains T as a postcondition), and it adds its own view V to
the head view (which becomes H U V).

(3) When a thread dequeues an item, it also obtains the tail view 7~ left by the previous dequeuer
(in other words, it obtains T 7™ as a postcondition), and it adds its own view V to the tail view
(which becomes 7 LI V).

3 IMPLEMENTATION OF A BOUNDED MPMC QUEUE USING A RING BUFFER

We now present an implementation of a bounded MPMC queue, that satisfies the specification
devised in §2. For the purpose of the formalization, it is written in an idealized version of the
Multicore OCaml language which we introduce in §3.1, before showing the code (§3.2, §3.3) and
giving intuitions about its mode of operation (§3.4, §3.5).
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{¢1k] ~na } £1K] ~na
tk]na {[k]na <0
{AU’.U’zv x {[k] '\»nav} A0 . [k] ~pa 0
{¢lK] ~u 0, V) } {el] ~u CVY « 1V}
t[k]at t[klat <0
{10 =0 £[k] ~u (0. V) = 1V} 20 tlk] ~u 0. VUV
{o0 # 01+ £0k] ot (00, V) {elk] ~u @, V) = 1V
CAS f[k] 01 02 CAS [[k] 01 02
v’ = false v’ = true
20’ 34 £[k] ~>a (00, V) 207, 3 L[] ~oa (0, V LUV
% %

Fig. 7. Simplified Cosmo triples for the memory operations of Multicore OCaml

3.1 Multicore OCaml

The syntax of our idealized version of Multicore OCaml is presented in Figure 6. It is untyped
(contrary to the actual Multicore OCaml language) and equipped with a standard call-by-value,
left-to-right evaluation. The parts of interest are the memory operations. Their semantics have
been described by Mével et al. [2020]; however, in the present paper, each location stores an array
of values, whose cells act as independent memory cells with respect to the memory model. Cells
are rigidly ascribed an access mode @, which is either “atomic” (o = at) or “non-atomic” (@ = na).
When 0 < n, the expression array,[n] v allocates a block of n cells whose access mode is « and
whose initial value is v. Reading from a cell with access mode « at offset k of location ¢ is written
t[k]q. Writing a value o to a cell with access mode « at offset k of location ¢ is written £[k], « .
In addition, atomic cells support the usual compare-and-set operation: CAS ¢[k] vy v; reads the
atomic cell at offset k of location ¢, tests whether its value is equal to vy, overwrites it with v, if
that is the case, and returns the Boolean result of the test; importantly, the read and the write
operations happen atomically. There is syntactic sugar for single-cell locations, or “references”:
ref, v allocates a location of length one, !, ¢ reads at offset zero, ¢ :=, v writes at offset zero and
CAS ¢ v; v; performs compare-and-set at offset zero.

Lastly, fork e creates a new thread which executes e. The expression fork e returns the unit
value () without waiting for the completion of the new thread.

The memory model of Multicore OCaml describes how the memory operations interact with the
shared memory. Dolan et al. [2018] give an operational account, which is out of the scope of the
current paper. However, to give some intuition, we show in Figure 7 what this semantics translates
to in the Cosmo program logic. In the following paragraphs, we give an overview of these triples
which are explained more thoroughly by Mével et al. [2020].

There are different points-to assertions for atomic cells and for non-atomic cells. As is standard,
these predicates assert unique ownership of the cells.
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Operations on non-atomic cells obey the usual-looking Hoare triples, but an important departure
from sequential consistency is that their associated points-to assertion £[k] ~>p, v is subjective: the
knowledge of the latest value v of a non-atomic cell £[k] is relative to the ambient view.®

On the other hand, the points-to assertion £[k] ~»>, (v, V) that represents an atomic cell is
objective: this implies that an atomic cell £[k] stores a single value v on which all threads agree. In
addition, an atomic cell also stores a view V. As can be seen in the triples of atomic operations, this
view accumulates the knowledge of all writers and transmits this knowledge to readers. This means
that there is a happens-before relationship from a write operation to a read operation which reads
from it (in a release-acquire fashion). In fact, atomic accesses are the prime means of inter-thread
synchronization in Multicore OCaml.

The last two triples say that a failed CAS operation behaves as an atomic read (returning false),
while a successful CAS operation behaves as the combination of an atomic read and an atomic
write (returning true).

3.2 Overview of the Data Structure

The code of the concurrent queue library we consider appears in Figure 8. It uses a ring buffer of
fixed capacity C > 1. The buffer is represented by two arrays of length C, statuses and items;in
each slot (whose offset ranges from 0 included to C excluded), the buffer thus stores a status in an
atomic field and an item in a non-atomic field. The data structure also has two integers stored in
atomic references, head and tail.

Items are identified by their rank (starting at zero) of insertion in the queue since its creation. The
item of rank k is stored in slot “k mod C”, which from now on we denote as k. The reference head
stores the number of items that have been enqueued since the creation of the queue, including
those that have since been dequeued. In other words, it is the rank of the next item to be enqueued.
Similarly, tail stores the number of items that have been dequeued since the creation of the queue.
In other words, it is the rank of the next item to be dequeued.

Each slot is in one of two states: either it is occupied, meaning that it stores some item of the
queue; or it is available, meaning that the value it stores is irrelevant. In addition, for the concurrent
queue operations to work properly, we must remember for which rank each slot was last used.’
The status encodes this information in a single integer, as follows:

e an even status 2k indicates that slot k is available for storing a future item of rank k;
e an odd status 2k + 1 indicates that slot k is currently occupied by the item of rank k.
Let h and t be the value of references head and tail, respectively. At any time, the ranks of

items that are stored in the queue—or in the process of being stored—range from t included to h
excluded, and there cannot be more than C such items. Thus, an invariant property of the queue is:

0<t<h<t+C

3.3 Explanation of the Code

The function enqueue repeatedly calls try_enqueue until it succeeds; the latter can fail either
because the buffer is full or because of a competing enqueuer.'’
When calling try_enqueue, we start by reading the current value h of the reference head. To

check that slot  is available for rank h, we read its status. If it differs from 2h, we fail: a status

8This single-value points-to assertion effectively forbids reasoning about races on non-atomic cells. The operational
semantics of Dolan et al. [2018] is more general, as it gives a well-defined (albeit nondeterministic) semantics to racy uses of
non-atomic cells.

% Actually, we need not remember the full rank k: only the cycle, k + C, is needed.

0The code does not distinguish between these two causes, but this is feasible with only one more test.
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let make () =
let tail = ref, 0 in
let head = refy 0 in
let items = arrayn,[C] ) in
let statuses = array,[C] 0 in
for i from0 toC—-1do
‘ statuses|[i]pa < 2i
done;
(tail, head, statuses, items)

let try_enqueue g v = let try_dequeue g =
let (tail, head, let (tail, head,
statuses,items) =g in statuses,items) =q in
let h=!;head in lett =14 tail in
let s = statuses[hmod C], in let s = statuses[t mod C], in
if s =2h ACAS head h (h+ 1) then if s=2t+1ACAS tail ¢ (t+1) then
let v = items[t mod C]y, in
items[hmod Cly, « v; items[t mod Clna < O;
statuses[hmod Cly « 2R+ 1; statuses[t mod Cl, < 2(t + C);
true Some v
else else
false None
let rec enqueue gou = let rec dequeue q =
if try_enqueue qo match try_dequeue g with
then () | Some v — v
else enqueue qu | None — dequeue g

Fig. 8. Implementation of the bounded queue

less than 2h indicates that the buffer is full'!, a status greater than 2h indicates interference from
another competing enqueuing thread, which has been attributed rank h before we have.

If the status is 2h, then we try to increment head from h to h + 1. If the CAS fails, we fail: again,
another competing enqueuer has been attributed rank h.

If the CAS succeeds, then we are attributed rank h and can proceed to inserting an item into
slot h. As we will explain later, this implies that its status has not changed since we read it: the slot
is still available. We write the new item, and then we update the status accordingly. This update
must come last, as it serves as a signal that the slot is now occupied with an item and ready for
dequeuers.

UTechnically, the public state of the queue may contain less than C elements in this case, so that we may consider it is
not full. Here, by “full” we mean that the next buffer slot is either not reclaimed by anyone or still in the process of being
emptied by another thread. Even though the buffer is “full”, it may have available slots if dequeuing has completed more
rapidly in these other slots.
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Similarly, dequeue repeatedly calls try_dequeue until it succeeds; the latter works analogously
to try_enqueue,'? and can fail either because the buffer is empty or because of a competing
dequeuer.!?

3.4 Monotonicity of the Internal State of the Queue

Once the queue has been created, the reference head is only accessed from function try_enqueue.
The only place where it is modified is the compare-and-set operation in this function, which
attempts to increment it by one, using a compare-and-set operation. Hence this counter is strictly
monotonic, and we can regard a successful increment from h to h + 1 as uniquely attributing rank A
to the candidate enqueuer. Only then it is allowed to write into slot h.

Similarly, tail is only accessed from function try_dequeue, is strictly monotonic, and a suc-
cessful increment from ¢ to t + 1 uniquely attributes rank ¢ to the candidate dequeuer. Only then it
is allowed to write into slot 7.

The status of a given slot is strictly monotonic too. Indeed, there are two places where it is
updated. As an enqueuer, when we write 2k + 1, no other enqueuer updated the status since we
read it to be 2h, because only we have been attributed rank h. In particular, it remained even, so no
dequeuer tried to obtain rank h and update the status of slot h. Hence, the status is still 21 when
we overwrite it with 2h + 1. Symmetrically, the status is still 2t + 1 when a dequeuer overwrites it
with 2(¢ + C).

3.5 Notes on Contention in the Queue

A noteworthy feature of this implementation is that it tries to limit competition between enqueuers
and dequeuers. Indeed, enqueuers and dequeuers generally operate on separate references: en-
queuers never access tail and dequeuers never access head. Hence in favorable situations—when
the buffer is neither empty nor full—there are no enqueuer-dequeuer competitions beyond ones
between an enqueuer and a dequeuer of the same rank.

A weakness of this implementation, however, is that it does not enjoy any non-blocking prop-
erty [Fraser 2004, Chapter 2]: if an enqueuer or a dequeuer halts after it has been attributed a
rank but before it updates the corresponding slot, then after some time, any other thread trying to
enqueue or dequeue fails. »

4 PROOF OF THE SPECIFICATION FOR THE RING BUFFER

We now turn to proving the following.

THEOREM 4.1. There exist predicates IsQueue and Queuelnv such that the implementation shown
in Figure 8 (§3) satisfies the functional specification appearing in Figure 5 (§2.3).

In the Iris methodology, which Cosmo is based on, concurrent protocols are established thanks to
ghost state and invariants. Ghost state in Iris is a flexible tool for defining custom resources. It takes
values from algebraic structures called CMRAs; for the purpose of this paper, it is enough to think
of a CMRA as a set equipped with a binary composition operation (-) that is partial, associative and
commutative. Ghost state values are assigned to ghost variables. The separation logic assertion [cﬁy,
where a is an element of some CMRA, intuitively means that we own a fragment of the ghost
variable y and that this fragment has value a. Unlike what happens with a traditional points-to

assertion, the ownership and value of a ghost variable can be split into fragments according to the

120verwriting the extracted value with a unit value () is unnecessary for functional correctness but it prevents memory
leaks.
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Fig. 9. Definitions of assertions intervening in the proof of the bounded queue
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composition operation of the CMRA: La LT fcﬂy S \[bily. In Cosmo, ghost state is objective, as
it is independent from the physical state of the memory.

Ghost state can be coupled with invariants such as the ones presented in §2.2 to describe protocols
that threads must follow to access shared resources. In Figure 9, one can see how this methodology
is used for describing the internal protocol of the queue: the persistent predicate Queuelnv q y is in
fact an invariant; the exclusive representation predicate IsQueue y 7 H [(vo, Vo), - (0n-1, Vi-1)]
is defined using ghost state, as are several internal resources. We detail these definitions in the

following sections.

4.1 Public State

The assertion IsQueue y T H [(vo, Vo), ... (Un-1, Vn—1)], defined in Figure 9a, exposes to the
user the public state of the queue. This public state, as motivated in §2.3, is composed of the
tail view, the head view, and the list of current items with their views. It is tied to the internal
state of the queue via the use of an authoritative ghost state, stored in a ghost variable y. More
precisely, the public state is kept in sync with the values which appear in an authoritative assertion

The two assertions satisfy the properties shown in Figure 10a. Rule ISQUEUE-AGREE asserts that
the state known to the invariant (first premise) is identical to that known to the representation
predicate (second premise). Rule ISQUEUE-UPDATE asserts that, whenever we own both the repre-
sentation predicate and its authoritative counterpart, we can update the public state to any other
value by taking a ghost update step. Such a ghost update is allowed by the Iris modality denoted .

We achieve these properties by using an adequate CMRA for the values of the ghost variable y.
This CMRA is built by composing several classical Iris constructs: the exclusive CMRA Ex(S), and
the authoritative CMRA AutH(M). We do not explain the construction in more detail; we refer the
interested reader to the documentation of Iris [Jung et al. 2018].

It is worth remarking that this construction makes the representation predicate exclusive: it is
absurd to own simultaneously two assertions of the form [sQueue y — — —.

4.2 Internal Invariant

Along with the exclusive representation predicate IsQueue y T H [(vo, Vo) , ..., (0n-1, Vi-1)], we
provide the user with a persistent assertion Queuelnv g y defined in Figure 9e. It contains the
internal invariant governing the queue g, whose public state is exposed via the ghost variable y. In
addition to the public state, there are two more ghost variables, named ymono and yiokens, Which
are hidden to the user of the queue but needed internally. Thus they are existentially quantified in
this persistent assertion. We will explain the purpose and meaning of these ghost variables in a
moment. For now, we look at the internal invariant, Queuelnvinner q ¥ ¥mono Ytokens-

This invariant owns most of the physical locations of the queue: tail, head, statuses, and some
parts of the array items. Recall that points-to assertions for atomic cells are objective and can be
placed inside an invariant. The array-points-to assertion statuses ~» [(so, Sp), ..., (Sc-1, Sc-1)]
is a shorthand for the following iterated conjunction:

>x< statuses[i] ~a (s, Si)
0<i<C

Also, since we encode references as arrays of length one, we write tail ~», (¢, 7") as a shorthand
for tail[0] ~oy (£, T).

Apart from this physical state, the invariant also stores ghost state. It owns the authority on all
three ghost variables, ¥, Ymono and yiokens- The authority of y is simple: it ties internal values to the
public state of the queue, as explained earlier. We now explain the other two pieces of ghost state.
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Fig. 10. Axiomatic description of the ghost state of the queue
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4.3 Monotonicity of Statuses

The purpose of the ghost variable ymono is to reflect the fact that statuses are monotonic. More
precisely, they are strictly monotonic: every write to a status cell necessarily increases its value.
As a consequence, as long as the value of a status cell has not increased, we know that no write
happened to it and, in particular, that the view that it stores has not increased either. In other words,
we have the monotonicity of the value-view pair stored in a status cell, for the lexicographic order
where the order on views is reversed:

(5, 81) E(52,82) &= 51 < V(51=5A8538)

This stronger monotonicity property will be used in proofs, and specifying it is thus an additional
requirement of working with a weak memory model.

To reflect monotonicity of the status of offset i, we use two assertions, | {i > e (s,S)} jymm
and Witness yimono i (5,S), connected via a ghost variable ymono. Relevant definitions appear
in Figure 9c. The first assertion, owned by the invariant of the queue is connected by the invariant
to the value-view pair stored in the status cell. It is exclusive: for any offset i, two assertions of

the form| {i > e —} | cannot hold simultaneously. The second assertion Witness ymono i (s, S)
means that the value-view pair stored in the status cell is at least (s, S). Importantly, a witness
assertion is persistent: once it has been established, it remains true forever and can be duplicated at
will.

We thus have the properties summarized in Figure 10b. Rule WITNESs-PERSISTENT is the persis-
tence just mentioned. Rule WITNESs-ORDER asserts that a witness gives a lower bound on what the
status cell currently stores. Rule WiTNESs-UPDATE asserts that we can update a status cell to any
larger (or equal) content, and obtain a witness for that content.

We achieve these properties by constructing an adequate CMRA for the values taken by the ghost
variable ymono. Again, we will not explain standard Iris constructs here, except for one point. The
construction involves building a CMRA whose carrier set is Z X VIEW, the set of status-view pairs,
and whose inclusion order!® coincides with the desired order C. A general recipe for deriving a
CMRA structure with a given inclusion order, if that order admits binary joins, consists in taking the
join operation as the composition of the CMRA [Timany and Birkedal 2021]. In this case, we equip
the product set Z X View with the join-semilattice structure whose definition appears in Figure 9b.

4.4 Available and Occupied Slots

In Figure 9e, the last two lines of the invariant describe the state of each slot. For clarity, we
introduce two abbreviations: the assertion Available k (s, S) represents slot k being available for a
future item of rank k + C; the assertion Occupied k (s, S) (v, V) represents slot Ebeing occupied
by the item of rank k, whose value is v with the associated view V. In these two abbreviations, the
status field of the slot has value s and stores view S. These abbreviations are also where we keep
the ownership of the non-atomic cell items [E], via a points-to assertion.

Recall that, in Cosmo, unlike an atomic points-to assertion, a non-atomic points-to assertion
is subjective: its truth depends on the view of the subject thread. As a consequence, it cannot be
placed in an invariant as is. In order to share this assertion, we must explicitly indicate at which
view it holds. This is the purpose of the @ connective.

At which view can we own a non-atomic memory cell? At a view which contains the latest write
event to that cell. Fortunately, in our case, any thread—enqueuer or dequeuer—which writes to the
non-atomic cell items[E] then writes to the atomic cell statuses [E] Thus it adds its knowledge,
including its own write to the item field, to the view S stored by the status field.

BFor two elements a and b of a CMRA M, we say that b is included in a if there exists some ¢ such thata=b - c.
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With all this said, a first attempt at representing the buffer might look as follows:

-~

Queuelnvinner q ¥ ¥mono Yiokens = ¥ >’k Available k (s, Sp)
h—C<k<t
Occupied k (i Sp) (o, Vi)

t<k<h

s=2(k+C) = (items[ic\] ~na-) @S

s=2k+1 x (items[k] »mno) @S * VCS

Available k (s, S)
Occupied k (s, S) (v,V)

That is, we describe the C slots by ranging from h —C to h. The indices from h—C to t correspond
to available slots, while indices from t to h correspond to slots occupied by the items of the queue.
In both cases, we own the item field at the view S which is stored in the corresponding status field.
The item field of an available slot stores an arbitrary value, while for an occupied slot it stores the
item o.

An occupied slot should also carry the view V which the queue is supposed to transfer from
the enqueuer to the dequeuer alongside item v. This again relies on the view S: the enqueuer adds
V to S when updating the status, and the dequeuer adds S into its own view when reading the
status; so, to retrieve V, it is enough to state the inclusion V C S.

The tentative invariant stated above, however, is not correct: while an invariant has to hold at
any point of the execution, the assertion above is temporarily invalidated when a thread enqueues
or dequeues. Specifically, the thread breaks the assertion when it increments head or tail, thus
committing to enqueuing or dequeuing, until it updates the status of the corresponding slot. It is
thus necessary to represent slots which are in a temporary state. In the actual invariant shown
in Figure 9e, slots from h — C to t are either available or in a temporary state where they appear as
occupied (s; = 2k +1), until a dequeuer finishes emptying them; slots from ¢ to h are either occupied

1~ 1=

or in a temporary state where they appear as available (s; = 2k), until an enqueuer finishes filling
them.

When an enqueuer or dequeuer moves a slot into a temporary state, it takes ownership of its
item field, so that it can write to it. Hence the invariant does not have the corresponding points-to
assertion. The thread must give it back when updating the status.

4.5 Slot Tokens

This time frame—when a slot is in a temporary state—is also when the last piece of ghost state,
stored in the ghost variable yiokens, intervenes. Other threads can make the queue progress between
the moment when an enqueuer is attributed rank k, and the moment when it returns the updated
slot to the invariant. An enqueuer needs the assurance that the queue has not gotten too far and
attributed the slot on which it was working to a dequeuer, or to another enqueuer in a subsequent
cycle.

To this effect, we start by stating how advances of the head and tail are limited with respect to
one another; indeed, we prove these inequalities as part of the invariant:

0<t<h<t+C

We also maintain in existence one token for each rank from h —C to h. These tokens are exclusive
assertions, and there cannot exist two tokens whose ranks are congruent modulo C. Hence the
token of rank k is enough to grant unique write access to slot k. We use it as follows.

(1) When an enqueuer is attributed rank k, it borrows a newly created token of the same rank.
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(2) When returning the updated slot to the invariant, the enqueuer also returns the token; from
that moment the token is thus kept in the assertion Occupied k (s, S) (v, V).

(3) When a dequeuer is attributed rank k, it claims that assertion and borrows the token.

(4) When returning the updated slot to the invariant, the dequeuer also returns the token; from
that moment the token is thus kept in the assertion Available k (s, S).

In step 1, the token is created while destructing the token of rank k — C taken from the assertion
Available (k — C) —, which represents the available cell that the thread claims for enqueuing.

To be able to distinguish between the two temporary states (enqueuing and dequeuing), we give
the token a flavor: from steps 1 to 2 it is a write token; from steps 3 to 4 it is a read token. At any
moment, there are read tokens from rank h — C to t, and write tokens from ¢ to h.

We have a last requirement: when an enqueuer is attributed rank k, the new item is added to
the public state immediately—the CAS operation on head is the commit point of enqueuing—even
though the enqueuer has not actually written the item yet. When it finally returns the updated
slot, the enqueuer has lost track of the public state, which may have continued to progress in the
meantime. At that moment, it thus needs a reminder that the item it just wrote is indeed the one it
was expected to write. We implement this by adding the value v—and view V—of the item as a
payload to the write token.

The read token of rank k is denoted by TokenR yiokens k, While the write token of rank k with
payload v and V is denoted by TokenW yiokens k (0, V). Their authoritative counterpart, owned

by the invariant, is an assertion of the form | e m |"*“™* where m is a finite map. Its domain is the

range [h — C, h) of ranks which have a token, and its images are the payload (considering that
read tokens bear a payload of ()). In the invariant, the value of the map is connected to that of the
public state.

The assertions are defined in Figure 9d and satisfy the properties in Figure 10c. The first three
properties say that tokens are exclusive. The next two say that tokens agree with the authoritative
counterpart, hence with the public state. Rule TOKEN-UPDATE-RW corresponds to step 1 in the list
above, where we create a write token of rank k by destructing a read token of rank k — C. Likewise,
rule TokEN-UPDATE-WR corresponds to step 3, where we turn a write token into a read token of
the same rank.

In addition to these rules, the finite map described in the internal invariant is such that, whenever
we own a read token (respectively a write token), the rank of this token necessarily lies in the
range [h — C, t) (respectively [t, h)), where t and h are the values of tail and head which are
existentially quantified in the invariant. Thanks to that property, at step 4 (respectively 2), when a
dequeuer (respectively an enqueuer) returns the token, it knows that the rank it has been operating
on is still in the right range—in other words, that the queue has not advanced too far while the
thread was working.

There are more properties that are invariants of the queue, and thus could be stated and verified.
However, they are not needed to prove that the code satisfies its specification. For example, the
fact that tail and head are strictly monotonic, and the fact that statuses are non-negative, are not
explicitly used.

4.6 Logical Atomicity

The specification that we wish to prove is a logically atomic Hoare triple. The definition of such
triples for Iris is given by Jung et al. [2015, §7] and further refined by Jung [2019]. It turns out that
this definition can be ported as is using the connectives of Cosmo. As we will see in §4.7 and §5.3,
the logically atomic triples so defined can be proved and are sufficient for interesting clients. We
do not attempt to replicate in this paper the full definition. An approximate definition that suffices
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to capture the essence of logical atomicity, and to understand our proof, is:
(x.Pye(®) = v¥, |"2%3x. P « (Vo. do = ‘7Y 0)] - wpe{¥}

In this formula, the variable P is a Cosmo assertion (of type vProp); the variables ® and ¥ are
predicates on values (of type VAL — vPRrop); P and ® may refer to the name x. The assertion
wp e {¥} is the weakest precondition for program e and postcondition ¥ (in Iris, Hoare triples are
syntactic sugar for weakest preconditions).

The purpose of a logically atomic triple is to give a specification to a non-atomic program e as
if it were atomic. In practice, we require that the proof of e accesses the precondition and turns it
into the postcondition in one atomic step only, which we call the commit point of this logically
atomic program. That is, if e satisfies the triple (x. P) e (®), then it can perform several steps of
computation but, as soon as it accesses the resource P, it must return the resource @ in the same
step of computation.!* Once it has done so, e can perform further computation steps but P is not
available anymore. As explained in §2.2, thanks to this constraint, the client of this specification
can open invariants around e as if e were atomic.

To capture this atomicity requirement, we ask the proof of the logically atomic triple for e to be
valid for any postcondition ¥ chosen by the client. Given that ¥ is arbitrary, the only means of
establishing this postcondition is to use the premise "T2%3x.P « (Yo.®0 ~+ °>T¥ o), whichis
known as an atomic update. When desired, this atomic update gives access to the precondition P for
some value of x, and, in exchange for the postcondition ® of the logically atomic triple, it returns
the resource ¥, which can then be used to finish the proof. Crucially, the masks @ and T annotating
the fancy updates T=° and °27 require that the atomic update be used during one atomic step
only, as required.

Using the invariant rules of Iris [Jung et al. 2018], it is easy to show that atomic updates can be
used to open and close invariants. Rule LAINV follows as a corollary, rule LAHOARE is immediate.

4.7 Proof of try_enqueue

We now outline the proof that try_enqueue satisfies its specification from Figure 5. The proof for
try_dequeue is similar; those for enqueue and dequeue are deduced from the previous two by an
obvious induction; and the proof of make is simply a matter of initializing the ghost state. The inter-
ested reader may find these proofs, conducted in the Coq proof assistant, in our repository [Mével
et al. 2021].

Recalling here the specification in Figure 5, and unfolding the definition of Queuelnv q y, we
ought to prove the following assertion:

‘ Queuelnvinner ¢ ¥ Ymono Ytokens ‘

T, 7‘{, n, (Z)o,(VO) 3 eeey (U,,_l,(Vn_l).
IsQueue y T~ H [(v0, Vb)) 5 oor (0n—1, V1] x TV
try_enqueue g v
bV IsQueue y T~ H [(vo, Vo) » or (On—1, Vi—1)] x b= false
" 1sQueue y T (H UV) [(00, Vo) s - (0n=1, Vi-1), (0, V)] = TH = b=true

14The full definition of logically atomic triples allows to access the precondition atomically before the commit point,
hence without turning it into the postcondition. This is called aborting; it is not needed in our proof, and out of the scope of
this paper.
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After unfolding the logically atomic triple, we must prove wp (try_enqueue g v) {¥} for
any ¥, when in the proof context we have the internal invariant of the queue (with ghost vari-
ables ¥, Ymono» Ytokens) as well as the atomic update whose precondition and postcondition are that
of the triple above. We then step through the program using usual weakest-precondition calculus.

The first interesting step is the atomic read of head. The ownership of that reference is shared
in the invariant of the queue. Hence, to access it, we must open the invariant; then we get the
points-to assertion, we can step through the read operation, return the points-to assertion and
close the invariant again. After we have done so, and thus forgotten all the quantities which are
existentially quantified inside that invariant, we learn little about the value that has just been read,
excepted that it is a non-negative integer, say k.

The second interesting step is the atomic read at index k of the array statuses. Again the
invariant owns this cell, so we open it around the read instruction. This read yields some value s!
and, since it is atomic, it also augments our current (thread) view with the view S! which, at
this moment, is stored in this cell. In other words, we gain the (persistent) assertion T S!. We can
remember more information before closing the invariant: indeed, from the authority of ymono found
in the invariant, we derive a witness for the strict monotonicity of the status that we just read:
Witness ¥mono k (s, SY).

Next, the program tests whether s! = 2k. If the test fails, then the program returns false. In this
case, we have to provide as postcondition of the logically atomic triple the untouched representation
predicate that is in its precondition (IsQueue y 7T H [(vy, Vo), ..., (Un-1, V—1)]). We do this by
committing the atomic update in a trivial way, then conclude the proof.

If s! = 2k, the program proceeds to performing CAS head k (k + 1). To access head, we open
the invariant again. If that operation fails, the program also returns false and, after closing the
invariant without having updated ghost state, we conclude as before.

If the CAS succeeds, then a number of things happen logically. First, if h and t are the values
of head and tail at the moment of the CAS, then h = k. Second, we deduce that the buffer is not
full, i.e. h < t + C. Indeed, the invariant directly gives us h < t + C; if we had h = t + C, then in
particular, t < k — C < h, so the invariant would own the following for slot k—C:

Occupied (k = C) (s Siz) (k-0 Vi-c) V sz =2(k-C)
Because k — C = E this implies:
SEZZ(]C—C)+1 \ SEZZ(]C—C)

In either case, we get sz < 2k = s', which contradicts the monotonicity of the status of that slot.

We derive the contradiction by combining the assertion Witness ¥mono k (s', S*) that we had since

1 'Ymono

we read the status, and the authority | e (s¢, Sp) ! that is found in the invariant.

Third, we thus know that h — C < k—C< t, so that the invariant gives us:

Available (k = C) (s S=z) V sz =2(k-0) +1

Again the second disjunct is absurd because the status is monotonic. Hence the slot we are claiming
is available indeed. From this we get s; = 2k = s!, the points-to assertion (items[E] ~na —) @ SE
and the read token of rank k — C. The sets of read tokens and write tokens depend on the value of
tail and head, and we have just incremented the latter, to k + 1, so we destruct the read token of
rank k — C and create a write token of rank k instead, giving it as payload the item (v, V) that we
are trying to enqueue.
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This is also when the strict monotonicity of the status comes into play: because s; = s, it gives us
Sy C S'. But we have T S! in our proof context, so we obtain the points-to assertion as a subjective
assertion: items[E] ~pa

We commit the atomic update now. Indeed the successful CAS is the commit point of try_enqueue.
We know that the program will return true, so we must provide the corresponding postcondition
of the logically atomic triple, where our item (v, V) has been appended to the public state of the
queue. Thus we take a ghost step to update this public state. By committing, we finally obtain
the assertion ¥ true that will serve at the end of the proof, since true is the return value of the
operation. Along the way, we also collect the persistent assertion TV from the precondition of the
logically atomic triple.

Finally, we keep on our side the write token, the non-atomic points-to assertion items [7;] ~na =
we reconstruct the invariant, updated for the new value of head, and we close it.

The next step of the program writes the value v to the non-atomic item field, which is easy

since we have the points-to assertion at hand. This assertion then becomes items[k] ~>p, v. We
turn it back to an objective assertion, which gives us a view ‘W and two assertions T‘W and
(items[E] ~na 0) @ W.

The last step of the program is to update the (atomic) status of the slot. Once more we open
the invariant. If we again note h and ¢ the current values of head and tail (potentially different
from the last time we opened the invariant), then owning a write token for rank k teaches us that
t < k < h. The invariant then gives us for slot k:

Occupied k (si. Sp) (ok, Vi) Vv sp =2k

The left disjunct would own our write token, but we already have it and it is exclusive; hence
we are in the right disjunct, s; = 2k = s!. We perform the atomic write with value s? £ 2k + 1
(strict monotonicity is respected), and since we have both TV and T“W in context, we can push
the view 8% = V U ‘W to this atomic location while writing. We then switch to the left disjunct, by
constituting the assertion:

st =2k+1

(items[k] ~opa 0) @ S

TokenW Viokens k (0, V)

Ves?

Occupied k (32,82) (0,V) 4 3k

Hence we return the non-atomic points-to assertion and the write token to the invariant before
closing it.

5 ASIMPLE PIPELINE

We now demonstrate the use of our specification of a concurrent queue by a simple client application,
that chains two treatments on a sequence of data, where each treatment is applied in a separate
thread. Thus the sequence of intermediate values is transferred from a producer to a consumer
using a concurrent queue.

5.1 Implementation of the Pipeline

The code of the application is presented in Figure 11. It provides a single function, pipeline, which
takes as arguments two functions g and f, a sequence xs, and returns a sequence obtained by
applying g o f to each item of the input sequence. The functions g and f need not be pure: they
can have side effects and rely on some state.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 66. Publication date: August 2021.



66:24 Glen Mével and Jacques-Henri Jourdan

let pipeline g f xs = let pipef nxsys f = let pipegnyszsg=
let n = length xs in for k from0 ton —1do for k from0 ton —1do
let ys = make () in let x = xs[k]pa in let y = dequeue ys in
fork (pipef n xs ys f); lety=fxin letz=guyin
let zs = arrayn[n] () in enqueue ys y zS[i]pa « 2
pipeg nys zs g; done done
zs

Fig. 11. Implementation of a pipeline

[ [xs|=n * xs~>h [x0,...xp-1] * >X< wp f xi {dy.wp gy {Az.R k z}}]
0<k<n
pipeline g f xs
[Azs.ﬂzo,...,zn,l. |zs|=n = zs~>}, [20, .. Zn—1] * * Rk z ]
0<k<n

Fig. 12. A specification for the pipeline

For simplicity, input and output sequences are encoded as (non-atomic) arrays, whose length
can be obtained via a primitive operation length —. However the implementation can be modified
to consume and produce lists of unknown length, or even infinite streams, provided an encoding of
such data structures; we would then use a sentinel value in the queue to signal the end of stream.

The code is straightforward: we create a concurrent queue ys, then we fork a thread. The queue
is shared between the main thread and the forked thread, while xs is transmitted to the forked
thread. The forked thread reads items from xs in turn, applies f to them and enqueues the results.
The main thread creates a new (non-atomic) array zs to store the output; then, it dequeues n items,
where n is the number of items in the input sequence, applies g to them, and adds the results to zs.
Finally, it returns zs.

5.2 Specification of the Pipeline

A possible specification for this pipeline is shown in Figure 12. It is higher-order, and expressed
using the weakest-precondition predicate.

In postcondition we obtain one assertion R k zi for each item of the stream, related to its
position k (in particular, R may relate the output value z; to the input value xi).

In the precondition, essentially, we want to state that for some predicates P and Q, we have the
assertions P k xj for all items of the input stream, and functions f and g satisfy Hoare triples of
the form:

{Pkx} fx{dy.Qky}
{Qkylgyi{rz. Rk z}
so that, by the chaining rule, the composition satisfies:
{Pkx}tg(fx){Az.Rkz}

By using weakest preconditions instead of Hoare triples, we avoid mentioning the predicate P;
by taking advantage of the higher-order nature of Iris, we can nest the triples so as to conceal the
intermediate predicate Q.
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Y : AuTH(ExX(VIEW X VIEW X LisT(VAL X VIEW)))
¥e Yg : AUTH(EX(N))

Pipelnv g f R = 3q,y,ys Vg Queuelnv gy * ‘ Pipelnvinner g f Ry yr ¥, ‘
dng,ng, T, H, (y"gii‘{",g)’ (y,zfj,(vm_l).
Ng < ng * Lf?ﬂﬂ * L'”gjlyg
Pipelnvinner g f Ry yryy = % IsQueue y T H [(yng,;V;J, (ynf_l,(an_l)]
K (wpguk{1z.Rkz}) @ Vi

ng <k<ng
1T
nf<n \.nfly

L__—1

XS ~%. [X0s ooy Xn—1]

>x< wp f xk {Ay. wpgy{/lz.sz}}

ng<k<n

PipeF g f Ry yr ng xs [xo, ... Xp-1] = %

ey

zs~r 20,0 Zn-1]
Rk Z

0<k<ng

|
*

PipeG g f Ry yg ng zs 20, .., Zn-1] =

Fig. 13. Internal invariants of the pipeline

We use the primitive Cosmo assertion |xs| = n to stipulate that the length of a given array is n
(recall that the array-points-to assertion is shorthand for a separating conjunction of points-to
assertions for cells of the array in some range of indices, but it does not state that there are no cells
beyond those mentioned).

5.3 Proof of the Specification for the Pipeline

We know prove the following result.
THEOREM 5.1. The code shown in Figure 11 satisfies the specification appearing in Figure 12.

The proof relies on the assertions presented in Figure 13. The persistent assertion Pipelnv g f R
join together the internal invariant of the queue with that of the pipeline. The two assertions
PipeF g f Ry yr nr xs [xo,...,x,-1] and PipeG g f Ry ys ng zs [z, ..., Zn—1] are owned by the
threads which compute f and g, respectively, and describe their loop invariants.

We again associate the queue to a ghost variable y. In addition, we use two ghost variables y¢
and y, whose values are the current positions n¢ and ng of the loops computing f and g, respectively.
This ghost state allows both threads, while in their respecting loops, to agree with the shared
invariant on these values. At any time, we have 0 < ny < n¢ < n.

e Indices in the range [ng, n) have not been processed by f yet. Hence, for these indices, we

still have the weakest-precondition assertions wp f x; {—} initially provided to the pipeline.
These assertions can be regarded as a permission to run f once on the corresponding items.
The thread computing f owns these assertions, and it also owns the array xs containing the
input items.
Indices in the range [ng, nf) have been processed by f but are yet to be processed by g.
Hence, we have consumed their initial weakest-precondition assertions, and have obtained
weakest-precondition assertions wp g yx {—} as a result. These assertions are stored in the
shared invariant. The invariant also owns the queue ys, whose contents are the intermediate
items for exactly this range of indices.
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e Indices in the range [0, ng) have been processed by both f and g. Hence, we have consumed
their intermediate weakest-precondition assertions, and have obtained postconditions R k zj
as a result. These are owned by the thread computing g, along with the array zs which
contains the output items.

The key point is that the assertion wp g yx {—} has been given by the thread computing f to the
invariant when enqueuing the corresponding item, and will be taken by the thread computing g
when dequeuing that item. This assertion is thus exchanged between two threads with differing
views of the shared memory, and transits via a neutral ground: an objective invariant. We make the
assertion objective by specifying at which view it holds: namely, the view V). which the enqueuer
had and which the dequeuer will acquire. Therefore, we rely crucially on the enqueuer-to-dequeuer
synchronization guaranteed by the queue.

With these invariant assertions correctly stated, the proof is rather straightforward. When
creating the pipeline, we have 0 = ny = ny and assertions Pipelnvinner and PipeG hold trivially
(the queue is empty and there are no output items computed yet); the assertion PipeF is constituted
exactly from the preconditions of the pipeline (Figure 12), and is given by the main thread to the
child thread that will compute f. When the pipeline has completed its work, we have ny = nf=n
and the assertion PipeG provides exactly the postcondition of the pipeline.

Thanks to the logically atomic triples in the specification of the queue, when enqueuing (respec-
tively, dequeuing), we can open the invariant of the pipeline and move assertions to it (respectively,
from it) as already explained.

6 RELATED WORK

The verification of fine-grained concurrent data structures is a well-studied problem with a par-
ticularly rich literature. Several approaches were tried, targeting various verification frameworks,
various data structures in different contexts.

The notion of linearizability is central for specifying such libraries. Dongol and Derrick [2015]
gave a survey of the different techniques used for linearizability of concurrent libraries at that time.
Of particular interest in the context of separation logic is the technique of logical atomicity, which
has been recently proved to be equivalent to linearizability [Birkedal et al. 2021] in the context of a
sequentially consistent model. This concept has been developed through several iterations over
the last decade [da Rocha Pinto et al. 2014; Jung et al. 2015; Jacobs and Piessens 2011; Svendsen
et al. 2013; Jung et al. 2020]. In the present work, we adapt an unpublished, modern version of Iris’s
logically atomic triples [Jung 2019], to the setting of Cosmo. This is, to the best of our knowledge,
the first use of logical atomicity in a weakly consistent setting.

Another popular approach for proving the correctness of concurrent libraries is the use of re-
finement with respect to a simpler implementation. This is the track chosen by ReLoC [Frumin
et al. 2018], which has recently been combined with logical atomicity [Frumin et al. 2020]. Inter-
estingly, ReloC has been recently used for proving the correctness of several concurrent queue
implementations [Vindum and Birkedal 2021; Vindum et al. 2021], one of which is very close to
ours. However, these proofs do not handle relaxed memory behaviors, so that they do not provide
a solution to the problem of specifying the lack of happens-before relationship between some data
structure accesses, which we discussed in §2.3. Because it lacks some happens-before relationships,
our queue implementation is not a refinement of a naive implementation which would use a lock
to protect a sequential implementation, so a refinement-based approach would not be useful for
proving our library correct. The refinement approach has also been used to prove correct some
data structures used in a concurrent garbage collector [Zakowski et al. 2018].
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In a weakly consistent setting, new problems arise. As discussed in §2.3, even the definition of
linearizability needs special care. Smith et al. [2019] propose new definitions of linearizability for the
case of weak memory models. In contrast, other authors have developed new kinds of specifications
which allow for weak behaviors of the library itself [Krishna et al. 2020; Emmi and Enea 2019; Raad
et al. 2019]. We found that our method of combining logically atomic triples with views is expressive
and allows for concise specifications at the same time. Previous works include the generalization of
various methods to weak consistency: Lé et al. [2013b,a] used manual methods directly tied to the
axiomatic memory model to prove the correctness of a queue and of a work-stealing algorithm,
while Lahav and Vafeiadis [2015] adapted the Owicki-Gries methodology to the release-acquire
fragment of the C11 memory model and applied it to verify a read-copy-update library. The idea of
a separation logic for programs with a relaxed memory semantics has been first developed in the
RSL logic [Vafeiadis and Narayan 2013], and further developed in subsequent work [Turon et al.
2014; Doko and Vafeiadis 2016; Kaiser et al. 2017; Dang et al. 2020; Mével et al. 2020]. None of these
papers addressed the problem of the full functional correctness of a data structure. In particular,
the specification proposed for a circular buffer in GPS [Turon et al. 2014] is a weak specification
in the style of the persistent specification given at the end of §2.2: in contrast to ours, it does not
specify in which order the elements leave the queue.
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