
Streaming XML transformations using term rewriting

Alain Frisch
INRIA Rocquencourt
Alain.Frisch@inria.fr

Keisuke Nakano
Department of Mathematical Informatics

University of Tokyo
ksk@mist.i.u-tokyo.ac.jp

Abstract
This paper describes XStream, a Turing-complete programming
language which allows the programmer to write XML transforma-
tions in a functional tree-processing style and have them evaluated
in a streaming way: the output is produced incrementally while
the input is still being parsed. The programmer does not need to
care explicitly about buffering. We introduce the language, describe
some techniques used in the implementation and present some per-
formance results.

1. Introduction
This paper describes XStream, a small functional programming
language for XML transformations. The XStream compiler pro-
duces very efficient code which computes the result and produce
the output while the input XML document is still being parsed.
This processing model, often referred to as streaming evaluation,
has obvious advantages when dealing with big documents or when
combining many transformation in a pipeline. Even for documents
which would fit in memory, interleaving XML parsing, computa-
tion and output is a way to improve the use of three different re-
sources (input channel, processing unit, output channel).

XStream differs from other attempts to streaming XML trans-
formation on several points:

• XStream is Turing-complete and based on the very general
formalism of term-rewriting, which makes it easy to translate
transformations written in a purely functional style to XStream.
As a matter of fact, the λ-calculus and ML-like pattern match-
ing of trees can be directly translated to the core XStream
language (the prototype support this features natively). Previ-
ous work focused on languages with reduced expressive power,
such as XPath [1, 6, 7], a subset of XQuery [15], attributed tree
transducers [17], or macro-forest transducers [18]. Notable ex-
ceptions include streaming XQuery processors such as FluX-
Query [11] or the BEA/XQRL engine [3].

• XStream doesn’t require any explicit hint from the programmer
to enable streaming. This must be contrasted with e.g. the STX
language [25] which let the programmer define and use buffers,
with the explicit buffering primitives from [12], and of course
with XML stream processors written by hand in a general pur-
pose language. However, it should be noted that different ways

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

to express the same transformation in XStream can yield differ-
ent steaming behaviors, so in some situations, the programmer
might need to understand how XStream works. The good thing
is that the behavior of XStream runtime engine is easy to ex-
plain.

• XStream does not try to reject transformations which require
a large fragment of the input to be available to compute just
a small fragment of the output. Instead, it adopts a best effort
approach to ensure a real-time behavior (discard the input and
compute the output as soon as possible) but it does not enforce
it.
The rationale is that some transformations can behave rea-
sonnably on the specific inputs which occur in practice and we
don’t want to reject them. For instance, a transformation that
computes some kind of table of contents and appends it after
the input document formally requires an unbounded amount
of memory, but one expects the table of contents to be much
smaller than the document itself.
A typical representative of the opposite approach is the work by
Kodama, Suenaga and Kobayashi [12]. They propose a static
analysis (formulated as a type system based on ordered linear
types) to check that a transformation written in functional style
actually processes the input in a linear way.

• XStream does not decide statically which parts of the input
must be buffered and which parts can be treated in stream-
ing. The rationale is that this choice can depend on the con-
text where the code is used and on the specific inputs to be
processed. Suenaga, Kobayashi and Yonezawa [26] propose to
extend [12] with a static analysis to insert explicit buffering
primitives around parts of the program which cannot be dealt
in a purely streamable way. Because these primitives can only
materialize a whole subtree of the input, it is not possible to
interrupt bufferization and go back to streaming in the middle
of the subtree (e.g. because the information collected so far is
enough to determine that the subtree will be completely dis-
carded); also, it does not allow to start computing on the subtree
before it has been completely parsed (the computation unit re-
mains under exploited). The same comments apply to all query
engines based on a statically elaborated query plan, such as
FluXQuery [11] or the BEA/XQRL Streaming XQuery Pro-
cessor [3]. Instead, XStream never (even at runtime) makes a
binary decision between materializing a subtree or processing
it purely in streaming; the evaluation engine is responsible for
deciding dynamically which part of the input can be discarded.

Overview of the paper Section 2 gives an overview of the
XStream language, its syntax, high-level semantics, and stream-
ing behavior. Section 3 describes more formally the syntax and
semantics for a simplified version of the XStream source lan-
guage, which is based on the well-known notion of term rewriting.

type ev =
| Open of string | Close of string | End

let rev_iter f l = List.iter f (List.rev l)

let rec buffer buf bufs = match next() with
| Open "b" as ev ->

rev_iter (rev_iter out)
((ev::buf):: bufs);

copy ()
| Open "a" as ev ->

buffer [ev] (buf::bufs)
| Close "a" as ev ->

(match bufs with
| [] -> copy ()
| buf::bufs -> buffer buf bufs)

| ev -> buffer (ev::buf) bufs
and copy () = match next() with

| End -> ()
| Open "a" as ev -> buffer [ev] []
| ev -> out ev; copy ()

Listing 1. A hand-written implementation of a transformation

Section 4 introduces evaluations strategies which make streaming
processing possible: incremental parsing, incremental evaluation,
incremental pretty-printing. Section 6 describes concrete imple-
mentation techniques used in our XStream compiler. Section 5
shows step by step how XStream would evaluate the transforma-
tion used as a running example in Section 2. Section 7 compares
the performance of XStream with other XML transformation tech-
nologies (CDuce and various implementations of XQuery, XSLT
and STX). In Section 8 we propose possible extensions which we
would like to work on in the future. In Section 9, we give a de-
tailed comparison between XStream evaluation model and lazy
evaluation. In Section 10, we compare XStream with other ap-
proaches proposed to stream XML transformations. XStream is
distributed as open source software. It can be downloaded from
http://gallium.inria.fr/~frisch/xstream.

2. An overview of XStream
A hand-written streaming transformation XML streaming trans-
formers can be written by hand. This is usually done using an XML
parser which returns a stream of XML events (or tokens) describ-
ing sequentially the structure of the input XML document (the most
important events are: opening tag, closing tag, textual content). The
SAX API [22] is a well known interface for event parsers in push
mode (the parser is given callbacks to be called for each event), but
event parsers in pull mode (the parser provides a function to fetch
the next event) are usually easier to work with.

To show the benefits of programming with XStream, we will
first consider a hand-written implementation of an streaming trans-
formation and then show an equivalent XStream implementation.
Listing 1 is an example of a hand-written transformation expressed
in OCaml. This program assumes that the input XML document is
well-formed. The library function next and out are used to fetch
from the input and send to the output one XML event (the next
function would be provided by an XML pull parser). The function
copy is the main entry point; it simply copies the input stream to
the output until the opening tag for an <a> element is found. The
control is then passed to another function buffer, which keeps
track of a stack of buffers. Each buffer is represented as a list of

if(true(),x,_) | if(false(),_,x) -> x
or(true(),_) | or(_,true ()) -> true()
or(false(),x) | or(x,false ()) -> x

hasb(b[_] _) -> true()
hasb(%t[e1] e2) when << t <> "b" >> ->

or(hasb(e1),hasb(e2))
hasb (()) -> false()

main(a[e1] e2) ->
let q = main(e2) in
if(hasb(e1),a[main(e1)] q, q)

main(%t[e1] e2) when << t <> "a" >> ->
%t[main(e1)] main(e2)

main (()) -> ()

Listing 2. An XStream implementation of the same transformation

events and the stack is represented as a list of buffers (its topmost
element being distinguished).

The readers are invited to figure out by themselves what the
code from Listing 1 does. The answer is given in Listing 2 which is
a functional specification of the same transformation, and also an
example of an XStream script.

XStream scripts Before explaining Listing 2, we will give a quick
overview of the syntax of XStream scripts. A script is a sequence
of rewriting rules which collectively define a term rewriting system.
The terms are finite trees constructed over a signature made of:

• XML element constructors, written a[_] _ where a is an XML
tag; the first argument of the constructor represents the children
of the XML element and the second argument represents its
folllowing siblings. In other words, XStream represents XML
fragments using a classical binary encoding.

• The empty sequence, written ().
• A unary symbol main(_), which behaves as the entry point of

the transformation.
• Other symbols defined implicitly by their occurence in some

rewriting rule. They are used to represent both intensional
computations (function names) and intermediate results. The
script in Listing 2 creates two constant symbols true() and
false(), one unary symbol hasb(_), one binary symbol
or(_,_) and one ternary symbol if(_,_,_).

Any XML document (and any sequence of XML elements) can
be encoded with only the first two kinds of symbols. (In this sim-
plified presentation, we omit textual content and XML attributes.)

The rewriting rules in an XStream script have the form p -> e
where p is a pattern and e is an expression. In their simplest form,
patterns and expressions are simply terms with variables (the set
of variable of e being contained in the set of variables of p), but
some extensions are implemented: or-patterns (separated by |), let-
expressions, the %x notation used to capture arbitrary tag names and
guard expressions to add side constraints to rules.

An XStream script denotes an XML transformation. Conceptu-
ally, if the input XML document is encoded in a term τ , then the
output is obtained by starting from the term main(τ) and then ap-
plying the rewriting rules from the script until a normal form is
obtained (and this normal form must be the encoding of an XML
document).

Back to the example Now we can explain the meaning of the
script in Listing 2. The if symbol is the usual ternary operator; the

or symbol implements the Boolean disjunction; the hasb symbol
checks whether a sequence of XML elements contains an sub-
element ; the main symbol performs a deep copy of a sequence
of XML elements but discards any sub-element of tag <a> which
does not contain a sub-element of tag .

The XStream script is a functional description of a transfor-
mation which deletes any <a> element without a descendant.
Which behavior does one expect from a streaming implementation
of this transformation? As long as the input stream does not contain
an opening tag event <a>, one can copy it verbatim to the output.
This is what the copy function from Listing 1 does. While pars-
ing the content of the <a> element, one needs to keep the input
in a buffer because one doesn’t know yet if it has to be copied to
the output or discarded. As soon as one encounters an opening tag
event , one can copy the buffer to the output and go back to the
original copy mode. Otherwise, if we reach the closing tag event
, it means that the corresponding XML element <a> has no
 descendant. The corresponding part of the buffer must be dis-
carded. In case of nested <a> elements, only part of the buffer is
concerned. That’s why it is necessary to keep a stack of buffers:
each buffer corresponds to one of the nested <a> elements. If we
reach the closing tag event corresponding to the opening tag
that initiated the buffering, we can go back to the original copy
mode. All this logic is implemented in the buffer function.

It should be clear that the transformation as implemented in
Listing 1 exhibits the optimal streaming behavior: it keeps in mem-
ory only the part of the input which is necessary for the rest of the
computation and it produces parts the output incrementally as soon
as possible. Writing the kind of code by hand, even for a transfor-
mation with such a simple specification, is very difficult and main-
taining it is a nightmare: a small change in the specification can
force a complete rewrite of the implementation. As a matter of fact,
a previous version of this paper contained (unintentionally) a wrong
implementation of the transformation.

Optimality The XStream compiler takes the source code in List-
ing 2 and produces a program which also exhibits the optimal
steaming behavior. We don’t claim any general optimality result
(and we don’t even propose a formal notion of optimality). Indeed,
imagine we had used the following rewriting rules instead of the
ones in Listing 2 for the symbol or:

or(true(),false()) |
or(true(),true()) |
or(false(),true()) -> true()

or(false(),false()) -> false()

The functional specification of the transformation would define the
same transformation, but the code produced by XStream would
keep in memory the whole content of an <a> element to determine
whether it must be copied or discarded, even if a element is
found early (unless it appears as an immediate children of the <a>
element).

The programmer must somewhat be informed on how XStream
works in order to write efficient code. The following rule of thumb
seems to be enough in practice: write rules that can be triggered as
soon as possible, even when some parts of the input terms are yet
unknown.

In the example above, the alternative definition of or is less
efficient than the one in Listing 2 because it waits for its two
arguments to be fully evaluated (to a Boolean value). When one
of the argument is known to evaluate to true(), it is not necessary
to continue the evaluation of the other argument. Failing to detect
this case is inefficient because of two reasons: (i) some parts of
the output could be delayed if they depend on the result of the
or operator; (ii) the computation for the other argument takes

time even if its result is useless. In addition, failing to simplify
or(false(),x) to x (and the symmetric rule) is space-inefficient.

How XStream works The idea behing XStream is pretty simple.
The high-level description of the semantics of an XStream script
that we mentioned earlier consists in parsing the input document
into a term x (that is, computing a substitution which maps the
variable x onto a term which encode the input document) and
then reducing the term main(x) until reaching a normal form. The
code produced by XStream does the same, but incrementally. It
maintains a current term which is initially main(x) and it reduces it
periodically. Initially, no information is known about x, but parsing
the input incrementally discovers the structure of x, thus triggering
more reduction steps. When parsing is over, the content of x is fully
known and the reduction can proceed until a final normal form. In
parallel to this incremental parsing and evaluation, parts of the final
result are extracted from the root of the current term, sent to the
output, and discarded from memory.

This process is described more formally in the following sec-
tions and illustrated on our running example in Section 5.

3. The specification language
We are now going to describe formally the syntax and semantics of
(a simplified version of) the XStream language. XStream scripts are
purely functional programs written in term-rewriting style. For this
simplified presentation, we will assume that XML documents are
only made of elements. In particular, we don’t consider attributes or
textual content, though they are supported by the implementation.

Let us consider the terms defined by the following grammar:

τ ::= () | a[τ]τ | x | σn(τ1, . . . , τn)

The meta-variable x ranges over an infinite set of variables. The
meta-variable a ranges over XML tags (to simplify, we assume here
that the set of XML tags is finite). The meta-variable σn ranges
over a set of symbols of arity n (defined by each XStream script).
Each symbol σn can be thought either as a data constructor or as a
function name. We assume that a distinguished unary symbol main
always exists.

The term () denotes the empty sequence. The term a[τ1]τ2

denotes the XML fragment starting with an element of tag a, with
content τ1, and followed by τ2. Any term built only with these two
constructions is said to represent an XML document. Any XML
document (without attributes or textual content) can be represented
by such a term. Note that our notion of XML document allows
several root elements (unlike the official XML specification).

A substitution Φ is a finite mapping from variables to terms.
We write τΦ for the application of a substitution Φ to a term τ
(variables which are not in the domain of Φ are left untouched).

We write FV(τ) for the set of free variables of a term τ . A
rewriting rule is a pair of terms, written τ1 → τ2 where τ1 is of the
form σn(. . .) and such that FV(τ2) ⊂ FV(τ1). Let r = (τ1 → τ2)

be a rewriting rule. We write τ
r→ τ ′ if there exists a substitution Φ

such that τ = τ1Φ and τ ′ = τ2Φ. Note that “function names”
such as main are allowed to appear nested in left-hand sides.
This can be useful to implement high-level optimizations (e.g.
rev(rev(x)) -> x). In reality, there is absolutely no distinction
between symbols used as function names and symbols used as data
structures.

A script is a finite set of rewriting rules. Let P = {r1, . . . , rn}
be a script. We write τ

P→ τ ′ if there is some 1 ≤ i ≤ n such that
τ

ri→ τ ′. We write P⇒ for the closure of P→ under context (in words:
this relation allows reduction to take place in arbitrary position, not
only at the root of terms). We write τ

P
 τ ′ if τ ′ can be reached

from τ by the reflexive and transitive closure of P⇒ and τ ′ is a
normal form under P⇒.

The semantics of a script P on a term τ , written P (τ) is the
set of normal forms for τ (terms τ ′ such that τ

P
 τ ′) , plus the

element ⊥ if there exists an infinite P⇒-derivation starting from τ).
A script is valid if, for any term τ which represents an XML

document, the set P (main(τ)) contains only terms representing
XML documents (and maybe ⊥). Our current implementation of
XStream assumes that the script is valid without trying to check
this property.

A correct implementation of a valid script P is a program
which, given an XML document represented by τ , produces an
XML document represented by some element of P (main(τ));
the program is allowed not to terminate on the input τ only if
⊥ ∈ P (main(τ)).

Syntactic sugar Listing 2 illustrates some additional sugar on the
syntax of scripts. Though the implementation supports the extended
syntax directly, it is possible to explain the new constructions con-
ceptually in terms of the simplified language:

• Or-patterns are allowed in left-hand sides. We can eliminate an
or-pattern by pushing it to the toplevel of the left-hand side, and
then duplicating the rule. E.g. the rule f(a()|b(),x) -> g(x)
is equivalent to f(a(),x)|f(b(),x) -> g(x) and can be de-
composed to the two rules f(a(),x) -> g(x), f(b(),x) -> g(x).

• Wildcards are allowed in left-hand side. A wildcard, written as
_, behaves just like a variable which is not used in the right-
hand side.

• The notation %t[τ1]τ2 in a rule means that this rule should be
duplicated once for each possible value of the tag %t. We re-
strict this duplication by putting some constraints on the values
for %t, e.g. %t <> ”a”.

• Let-bindings in right-hand side are eliminated by textual substi-
tution.

It is also possible to add two higher-level features to the speci-
fication language:

• A pattern matching match τ with [τi → τ ′i]1≤i≤n in a
right-hand side is translated to σk+1(τ, x1, . . . , xk) where
{x1, . . . , xk} =

S
i FV(τ ′i)\FV(τi) and σk+1 is a fresh sym-

bol subject to the following rewriting rules (1 ≤ i ≤ n):
σk+1(τi, x1, . . . , xk) → τ ′i

• Similarly, a lambda abstraction fun [x → τ] is translated to
fk(x1, . . . , xk) where {x1, . . . , xk} = FV(τ)\{x} and fk is
a fresh symbol. We consider a unique symbol apply of ar-
ity 2, and for each such λ-lifting, we add a rewriting rule
apply(fk(x1, . . . , xk), x) → τ .

Since XStream is based on term rewriting (and can thus encode
the λ-calculus), it is clear that the language is Turing-complete.

4. Evaluation strategies
We will now describe several implementation strategies, that is,
ways to derive correct implementations from scripts. In the follow-
ing, we thus assume that P is given. In particular, we will intro-
duce incremental parsing and incremental pretty-printing as two
optimizations over a naive global evaluation strategy.

4.1 Global evaluation
The naive global implementation strategy closely follows the se-
mantics of the specification language. It consists in fully parsing the
input XML document into an in-memory term τ , reducing main(τ)

into a normal form (with an arbitrary reduction strategy), and then
pretty-printing this normal form into an XML document.

4.2 Incremental evaluation
We now assume that the input XML document is obtained through
an XML parser which produces a stream of events. Events are
described by the following grammar:

ε ::= <a> | </>
We don’t need to keep the tag of the closing events. We also

use </> to represent the end of the document. For instance, parsing
the XML document <a><c></c> will produce the
sequence of events <a>, , </>, </>, <c>, </>, </>.

Incremental parsing From a stream of events, it is possible to
reconstruct the XML document as a tree. We will formalize this
reconstruction process as the composition of basic substitutions,
which give incremental knowledge about the input document. First,
we introduce as notion of parsing stack, which stores a list of
variables:

S ::= x :: S | []

A parsing stack keeps track of which variables will receive the parts
of the document which remain to be parsed (one variable for each
level in the nested structure of XML corresponding to the current
node being parsed). Then we define a function Parse which maps a
pair of a parsing stack and a parsing event into a pair of new parsing
stack and a substitution. We write (x0 := τ) for the substitution
which maps x0 to τ . The function Parse is defined by:

Parse(x0 :: S, <a>) = (x1 :: x2 :: S, (x0 := a[x1]x2))
Parse(x0 :: S, </>) = (S, (x0 := ()))

We assume that the variables x1 and x2 are fresh. Let (εi)1≤i≤n

be the sequence of events produced by the XML parser on a well-
formed input XML document. We start with a stack S0 = x0 :: []
and we define (Si, Φi) = Parse(Si−1, εi) for 1 ≤ i ≤ n. Then
we have Sn = [] and the term x0Φ1 . . . Φn represents the input
XML document.

Incremental evaluation This incremental reconstruction of the
input XML document gives a strategy for evaluating of the trans-
formation while parsing the input. Instead of fully parsing the doc-
ument into a variable x0 and then normalizing the term represen-
tation instead of main(x0), we can instead parse the input incre-
mentally, apply the corresponding substitution and normalize the
current term (which is main(x0) initially) after each event.

Formally, the state of the streaming transformer is described
by a pair (τ, S) of a term in normal form and a parsing stack
(which always contains all the free variables of τ and maybe other
variables). We write (τ, S)

ε→ (τ ′, S′) if (S′, Φ) = Parse(S, ε)

and τΦ
P
 τ ′.

Again, consider a sequence of events (εi)1≤i≤n produced by the
XML parser on a well-formed input XML document. If we have
a sequence (τi, Si)0≤i≤n with S0 = x0 :: [], τ0 = main(x0)

and (τi−1, Si−1)
εi→ (τi, Si), then the final result τn is a correct

result (an element of P (main(x0Φ1 . . . Φn))). If the construction
of the sequence stops at some step (τi, Si) because of a non-
terminating derivation, then P (main(x0Φ1 . . . Φn)) contains ⊥.
These properties comes from the following commutation lemma:

Lemma 1. If τ
P⇒ τ ′, then τΦ

P⇒ τ ′Φ for any substitution Φ.

To summarize, the incremental evaluation strategy is as fol-
low. Start from a fresh variable x0, an initial parsing stack which
contains only x0, and the initial term main(x0). For each parsing
event, update the parsing stack, rewrite the current term by applying

the substitution given by Parse, and normalize this term. This de-
scription leaves the normalization strategy itself unspecified. Note
that contrary to the global evaluation strategy, we are now reducing
terms with free variables.

Discarding the input When the printing stack contains a variable
which is not free in term of the current state, this means that the
fragment of the input corresponding to this variable will simply
be discarded. One can exploit this property and avoid building and
applying the useless substitution corresponding to the parsing event
which arrives when this variable is in head position on the stack. In
theory, we could even inform the XML parser that a fragment of
the input must be ignored; the parser could enter a special mode in
which it discard the input efficiently without producing any event
and without building strings to store attributes and tag names. The
parser described in [6] exposes such an interface.

4.3 Incremental pretty-printing
The incremental evaluation strategy can be combined with an in-
cremental pretty-printer. The idea is to produce parts of the output
as soon as they become available. We can thus start sending the
result e.g. to the network early, and also release some memory.

To formalize the incremental pretty-printer, we introduce a no-
tion of printing stack, defined by the following grammar:

O ::= τ :: O | []

From a printing stack, we can extract printing events 1 in head
position. We consider the relation O

ε→ O′ defined by:

() :: O
</>→ O

a[τ1]τ2 :: O
<a>→ τ1 :: τ2 :: O

A printing state is a pair (s, O) where s is the sequence of already
printed events (which are not actually kept in memory) and O is a
printing stack. We write (s :: ε) for a sequence extended with a new
event. We consider the following extraction relation on printing
states: (s, O) → (s :: ε, O′) if O

ε→ O′. We write Print(s, O)
for the unique normal form for (s, O) with respect to extraction.

We can extend the notions of substitution and of reduction (for
a given script P) from terms to printing stacks.

We can now describe an implementation strategy which com-
bines incremental evaluation and incremental pretty-printing. The
state of the streaming transformer is described by a triple (s, S, O)
where s is a sequence of printed events, S is a parsing stack, and
O is a printing stack. Let (εi)1≤i≤n be the sequence of events pro-
duced by the XML parser. A sequence of states (si, Si, Oi)0≤i≤n

is correct with respect to (εi)1≤i≤n if it is such that:

• Initialization:

main(x0) :: []
P
 O′

0.

(s0, O0) = Print([], O′
0).

S0 = x0 :: [].
• For each parsing event 1 ≤ i ≤ n:

(Si, Φi) = Parse(Si−1, εi).

Oi−1Φi
P
 O′

i.

(si, Oi) = Print(si−1, O
′
i).

In other words, the evaluation proceeds as follow. We start from
an empty sequence of printed events, a parsing stack S0 which

1 We use the same notion of events as for the incremental parsing, that is,
we forget about the tag of closing events. It is easy to keep this information
in another stack, or to modify our formalization of the pretty-printer stack
to keep track of these tags, between terms in the stack.

contains only the variable x0 and a printing stack which contains
only the term main(x0). Before reading the first parsing event, we
normalize this printing stack to obtain a new printing stack O′

0. At
this point, some prefix of the output might already be available.
It is collected in s0, and the remaining stack is O0. When an
parsing event εi arrives, we do the following. First, we update the
parsing stack and obtain a substitution Φi which represents the new
information held by the event. We apply this substitution to the
printing stack Oi−1 and normalize it with respect to the rewriting
rules of the script P in order to obtain a new printing stack O′.
Finally, we extract from this stack new events in head position.

When parsing is over, the parsing stack Sn is empty (if the
input XML document is well-formed). If the script P is valid,
the transformer must have computed a complete XML document
(or maybe one of the normalization steps did not terminate). As a
consequence, the printing stack On is also empty and the output sn

is a linear representation of a correct result for P .
Correctness of this implementation strategy relies on two facts:

• Substitution and reduction on printing stacks commute with
extraction.

• Because rules in scripts cannot rewrite XML elements (and the
empty sequence ()), we know that parts of the output which are
extracted won’t need to be substituted nor normalized.

Let us develop the second point above. If we allowed the script
made of the two rules main(x) -> x and a[()] y -> y, then the
behavior of XStream would be to copy an opening tag event <a>
immediatly to the output when parsed (because the term a[x1] x2
is a normal form), and it would thus transform the document <a/>
into itself, even if it not a normal form for the rewriting system. Dis-
allowing rules whose root symbol is an XML constructor prevents
such a case.

Stopping the evaluation When the printing stack is empty, the
computation is over. This might happen well before the end of
parsing, if the transformation does not need the rest of the input.

5. An example, step-by-step
Figure 1 shows the successive steps of the evaluation of the
XStream program given in Listing 2 on the input XML stream
<a><c></></><d></></></> (the last event indicates the end
of the stream).

Each line corresponds to one event in the input stream (the first
line represents the state before parsing begins). The input event is
shown in the first column, the induced substitution in the second
column and the parsing stack in the third column.

The fourth column is the most interesting one. It represents the
printing stack. To make the notation shorter, we use m and h instead
of main and hasb, we expand the let notation, we omit (). Also
we represent the whole stack and the already output part as a single
term. For instance, the term a[c[b[m(x5)]m(x6)]m(x4)]m(x2) denotes
the printing stack made of the four terms m(x5), m(x6), m(x4), m(x2);
the fragment a[c[b[is what has been sent to the output (the corre-
sponding events are shown in the last column) and discarded from
memory.

We can observe that while parsing the content of the <a> ele-
ment and before the opening tag event has been seen, the input
is kept in an inner part of the current term. This corresponds intu-
itively to a notion of buffer. Reducing the if symbol either discards
the buffer or makes it visible at the root of the current term (and thus
allows it to be sent to the output and discarded from memory).

Input Substitution Parsing stack Current term Output
x0 :: [] m(x0)

<a> x0 := a[x1]x2 x1 :: x2 :: [] if(h(x1), a[m(x1)]m(x2), m(x2))
<c> x1 := c[x3]x4 x3 :: x4 :: x2 :: [] if(or(h(x3), h(x4)), a[c[m(x3)]m(x4)]m(x2), m(x2))
 x3 := b[x5]x6 x5 :: x6 :: x4 :: x2 :: [] a[c[b[m(x5)]m(x6)]m(x4)]m(x2) <a><c>

 x5 := () x6 :: x4 :: x2 :: [] a[c[b[]m(x6)]m(x4)]m(x2)

</c> x6 := () x4 :: x2 :: [] a[c[b[]]m(x4)]m(x2) </c>

<a> x4 := a[x7]x8 x7 :: x8 :: x2 :: [] a[c[b[]]if(h(x7), a[m(x7)]m(x8), m(x8))]m(x2)
 x7 := () x8 :: x2 :: [] a[c[b[]]m(x8)]m(x2)
 x8 := () x2 :: [] a[c[b[]]]m(x2)

</> x2 := () [] a[c[b[]]]() </>

Figure 1. Step-by-step evaluation of the example transformation

6. Implementation
We have implemented a compiler for XStream which produces an
executable from a script describing an XML transformation. The
script in evaluated with incremental parsing and pretty-printing. In
this section, we describe some aspects of the implementation.

The XStream compiler currently uses Objective Caml as a back-
end: from a script, it produces OCaml source code which is then
compiled by the OCaml native compiler. The resulting programs
use the Expat parser (http://expat.sourceforge.net/). The
only OCaml feature which is really piggybacked is the pattern
matching compiler. In particular the code produced by XStream
does not use higher-order functions and it explicitly manages the
memory. It would thus be quite feasible to use a C back-end instead.

A tricky point of the implementation is to deal with the fact that
OCaml programs are not allowed to recurse very deeply (except for
tail calls) because they use the system stack to implement function
calls. A solution which completely avoids non-tail calls (such as
continuation-passing style or trampolines) would induce a large
overhead for some basic operations. We currently use a hybrid
technique which consists in keeping a counter that store the current
depth of recursion (an approximation of stack usage) and to turn to
a trampoline technique when this counter reaches a fixed value. We
found out that the overhead compared to normal function calls is
small and that we can still deal with very deep recursion.

6.1 Representation of terms
A first naive idea would be to implement the algebra of terms by
functional trees. However, we need to be able to find variables, de-
tect redexes, substitute a new term. In order to support these op-
erations efficiently, we use a imperative graph data-structure. The
graph is global: it stores all the terms which appear in the printing
stack. It is basically a DAG with multiple roots. A node which rep-
resents of symbol of arity n comes with a tuple of n ordered chil-
dren (downlinks). The DAG representation creates some sharing in
the terms. We maintain the invariant that each variable appears at
most once in the graph (variables can thus be identified by node
identity).

When an inner node X is replaced with a node X ′ by the
incremental parser or by a rewriting rule, all the parents of X must
be informed. We thus keep for each node X a list of pairs (Y, i)
(uplinks) where Y is a parent node and i is the position of i amongst
the children of Y . These uplinks makes it possible to redirect (by
in-place assignment) the i-th downlink of Y from X to X ′.

The parsing stack stores a sequence of variables. We simply
represent it as the list of the corresponding nodes in the graph. It
is thus immediate to find the node to be substituted when the next
parsing event arrives.

When a node is no longer referenced, it can be destroyed. Note
that a children of such a node can still be referenced (by another
node, or because it is in the parsing stack). Because of uplinks,
the node to be destroyed is thus formally accessible from alive
data, and so we cannot rely on a garbage collector to free the
node. We could use a mechanism of weak-references, but this is
tricky: we would have to destroy the uplinks pointing to this node
when the node is actually garbage collected, and so we would
need finalizers as well. This becomes rather heavy. Also we prefer
to destroy nodes as soon as possible, without having to wait for
the next GC pass. Indeed, destroying a node might prevent doing
useless computation. We thus choose to manually destroy nodes
when they are no longer referenced. Because of uplinks, we know
if there is any parent node. We also keep an additional reference
count to avoid destroying roots of the graph (during the evaluation
of right-hand sides of rewriting rules, the freshly created nodes are
not linked to the rest of the graph).

When a node is destroyed, one must remove the uplinks from
all its children (and check whether this children can in turn be
destroyed). In the current implementation, the set of uplinks of a
node is represented as a singly linked list. To remove an uplink,
we must thus traverse such a list. We could use a doubly linked list
instead, with a technique similar to the one described in [23], but
the overhead induced by the extra structure would probably makes
this solution slower in practice.

6.2 Applying rewriting rules
The core of the evaluation process consists in normalizing the terms
in the printing stack. Concretely, one needs to detect a node X
where a rewriting rule could apply, produce fresh nodes corre-
sponding to the right-hand side (with a root node X ′), and replace
X with X ′.

Because of sharing, a single reduction step might actually sim-
ulate many reduction steps in the terms.

When we replace a node X by a new node X ′, this might create
new redexes. These potential redexes are necessarily found close
to X . Let d be the maximal depth of left-hand sides of the script,
where we define the depth of a term as the maximal number of
nested symbols and constructors. E.g. a left-hand side σ2(x, a[y]z)
has depth 2. If d = 2, then a redex can only be rooted at an
immediate parent of X . In general, a redex can only appear rooted
at k-ancestor of X with k ≤ d − 1. (We define a 1-ancestor as an
immediate parent and a (k+1)-ancestor as an immediate parent of a
k-ancestor.) The compiler also compute which symbols can trigger
rewriting rules (simply by collecting all the non-root symbols from
left-hand sides). We could use more refined heuristics but we found
the current solution acceptable.

We maintain (in a stack) the set of nodes which need to be
inspected and check them in turn. When this set is empty, the graph

has been normalized. Checking whether the node is a redex and
computing the corresponding right-hand side basically amounts
to ML pattern matching. Our implementation directly uses the
pattern matching compiler from OCaml. Since OCaml supports or-
patterns, we don’t actually expand them and instead we treat them
directly.

OCaml enforces a first-match policy for pattern matching and
XStream inherits this property. This makes it possible to optimize
some patterns. For instance, the guards in the rules of Listing 2
could be eliminated.

6.3 Functional evaluation
It is often the case that a node freshly constructed during the
evaluation of a right-hand side can be immediately reduced. In
order to avoid the overhead of substitution in the graph, we check
whether a node creation would produce a redex. More precisely,
when the right-hand side of a rule is evaluated, the symbols (node
constructors) are interpreted as function calls. That is, instead of
producing a fresh node in the graph, we first evaluate the arguments
and then check whether one of the rewriting rules could be applied
to the node that would be created. If this is the case, we proceed
recursively, as would be the case for a normal strict implementation
of a functional language. If no rule can be applied, the node is really
created (and it does not need to be marked as a potential redex). In
order to avoid a stack overflow, we maintain in a counter the depth
of recursion; when this counter reaches a fixed limit, we also stop
recursion and create a node in the graph (and mark it as a potential
redex).

The optimization mentioned in the previous paragraph is made
even more effective by the following observation. It is not necessary
to normalize the term between each parsing events. Instead, one
can wait for a fixed number of parsing events and only start the
normalization process. (The current prototype waits for 20 events.)
The effect is to delay a little bit the computation and the output with
respect to parsing events, but the overhead of manipulating nodes
in the graph is significantly reduced.

6.4 Non-linear patterns, maximal sharing
Our description of the specification language does not restrict the
left-hand sides of rewriting rules to be linear. When a variable
appear several times, the semantics is to check the equivalence of
the corresponding subterms (as usual in term rewriting). Currently,
our implementation does not support non-linear patterns. We could
support it simply by adding guards to check deep equivalence.
Another strategy would be to keep the invariant that equivalent
nodes are physically equal (a.k.a. maximal sharing).

Maximal sharing allows not only to evaluate non-linear patterns
efficiently, but it can also use less memory to store the graph.
Also, sharing nodes does not only mean sharing data, but also
computations.

Maximal sharing of immutable terms built in a bottom-up way is
classically done by hash-consing. The same technique can actually
be used in our setting (graph with in-place modification), and it is
only slightly trickier. Here is how to do so. Each node is given a
unique identifier. When a fresh node is created and assuming that
its children have already been maximally shared, a simple lookup
in a hash-table is enough to find whether there already exists in the
graph an equivalent node (same symbol, same children). When a
node X is replaced in the graph by a node X ′, one must update the
entry in the hash table corresponding to the parents of X (because
the unique identifier for X ′ is not the same as for X), and doing so,
we might detect that some parents are actually equivalent to other
nodes, thus producing more sharing. This process is propagated up
in the DAG.

Some preliminary tests showed that the overhead induced by
this technique is high, and are not compensated by the gains, except
for specially crafted examples. Also, we believe that non-linear
patterns are not so important, so we simply decided not to support
them.

We mentioned that the specification language can be extended
with a let x = τ1 in τ2 construction in right-hand sides of
rewriting rules. It can be seen as just syntactic sugar for the term τ2

where X has been replaced with τ1. Our implementation supports
the construction directly so as to preserve the trivial sharing it
induces when x is used several times in τ2.

6.5 Data, attributes and the interface with OCaml
In our formalization of the specification language, our algebra has
a single kind (terms). We thus said that there is one constructor of
arity 2 a[_], _ for each XML tag, and that rules which inspect the
tags must be duplicated once for each possible tag. In reality, there
is an infinite number of possible XML tags and we also want to
deal with strings and maybe integers or other basic types to define
interesting computations.

XStream lets the programmer declare explicitly some symbols
together with their signatures. Each argument can be either a term
(that is, concretely, a node in the graph) or a value of any OCaml
type (which does not mention the term type). For instance, the
constructor for XML elements could has been defined as (but it
is actually built-in):

declare elt(string ,
<<(string*string) list >>,_,_)

which means that the first argument is a string, the second is a list of
pair of strings (to represent the XML attributes of the element) and
the two other arguments are terms. The <<...>> notation is used to
introduce syntactically OCaml types (we can omit these delimiters
for simple types such as string or int). XStream allows OCaml
expressions and patterns to be used in place of these arguments
with the same <<...>> notation (the delimiters can be omitted
around variables and literals). The notation a[t1],t2 is then just
syntactic sugar for elt(”a”, [], t1, t2), and %x[t1],t2 really is
elt(x,[],t1,t2) (the empty list [] is replaced by a wildcard
in pattern position). Similarly, elt("a",x,t1,t2) can be written
a[@x t1] t2. The guards on Listing 2 are interpreted as OCaml
guard when rules are translated to OCaml pattern matching by the
compiler.

In order to support textual content in XML, there is another
built-in declaration:

declare str(string ,_)

which represents an XML fragment starting with some text (and
followed by another XML fragment, that is, a term).

Listing 3 shows an example of a transformation which uses
XML attributes and integers. This transformation returns a single
element whose content is a string representing the n-th XML tag
found in the input, in document order, where n is the value of
the XML attribute n of the root element. Of course, the program
produced by XStream for this transformation stops as soon as this
tag has been parsed.

7. Benchmark
A paper on a language with a new evaluation scheme would not be
complete without a benchmark section. This section thus compares
the performance of XStream with other technologies for XML
transformation.

Transformation specification We choose a specific transforma-
tion task which has been previously used as a benchmark between

declare nth(int ,_)

nth(0,str(t,_)) -> str(t,())
nth(n,str(_,l)) when << n > 0 >> ->

nth(<< n - 1 >>,l)

tags(%t[e1] e2 ,q) ->
str(t,(tags (e1,tags(e2 ,q))))

tags((),q) -> q
tags(str(_,e),q) -> tags(e,q)

main(_[@attr _]_ as x) ->
let i =

<<int_of_string (List.assoc "n" attr)>>
in
a[nth(i,tags(x ,()))] ()

Listing 3. Attributes and integers

CDuce [2] and XSLT [2]. The XStream code is given in Listing 4.
The input document is assumed to store a database of the descen-
dants of a number of persons (the root of the document is a <doc>
element). A person is described as an XML element:

<person gender ="..." >
<name >...</name >
<children >... </ children >

</person >

The gender attribute is either "F" or "M" according to whether
the person is a woman or a man. The <name> sub-element con-
tains a single string. The <children> sub-element contains one
<person> element for each child of the person. The task is to trans-
form such an element into:

<woman name ="..." >
<sons >...</sons >
<daughters >... </ daughters >

</woman >

or into <man>...</man> according to the gender of the person.
The name is moved from a sub-element into an attribute; the gender
information is moved from an attribute into a tag name; the children
are split according to their gender and transformed recursively.

Tools We wrote the same transformation in the CDuce [2],
XSLT [28], XQuery [27] and STX [25] languages. For these four
languages, we tried several implementation variants and picked the
most efficient one for each tool. All these implementations, and all
the tools needed to reproduce the benchmark, can be found in the
XStream distribution.

We used four well established XSLT engines: Xalan C++ ver-
sion 1.10, the XSLTC compiler version 1.4 from the Xalan-Java
project (an XSLT-to-Java bytecode compiler), Saxon version 8.7.3
(a Java-based implementation), and the xsltproc tool built above
the Gnome project’s libxml/libxslt libraries (written in C).

We used two Java-based implementations of XQuery which
are reputed to be efficient: Qizx/open version 1.1 and the XQuery
engine from Saxon version 8.7.3.

STX is a one-pass, event-oriented transformation language for
XML documents, with explicit buffering primitives (see Section 10
for a comparison with XStream). We used Joost version 2006-05-
05 which is the most efficient STX interpreter available. Joost is
implemented in Java.

We used the CDuce compiler version 4.1, which is implemented
in OCaml. This compiler produces some kind of intermediate code
which is then evaluated by an OCaml interpreter.

Protocol We generated random XML documents of various sizes.
They consist of a long sequence of toplevel <person> elements,
each one containing a number of descendant (the maximum nest-
ing depth of <person> elements is 6). For each implementation
and each input document, we ran the transformation five times,
measured the wall-clock time and took the geometrical mean over
the three executions. We excluded compilation time for XStream,
CDuce and XSLTC (the other implementations are interpreters).
The machine used for this benchmark is a Pentium 4 2.80Ghz
with 1Gb of RAM. The Java Virtual Machine (used by Qizx/open,
Saxon, Xalan) is Sun’s J2RE version 1.5.0 with maximum Java
heap size set to 512Mb. Saxon was run with the -pull option
which gave some noticeable speedup.

We also measured the maximum memory size used by each
implementation. To do this, we fetched every second the VmRSS
field (resident set size) from the pseudo file /proc/pid/status
(this is the same information as returned by the top command). We
ran this benchmark separately from the time measurement in order
not to disturb it.

Streaming behavior Of course, XStream is able to process the
toplevel <person> elements one by one in a streaming fashion.
But it does more: within a toplevel <person> element, the male
children are also processed on the fly, and so are their own male
children, and so on.

We were not able to obtain the same behavior with STX. The
problem is that the transformation requires one STX buffer at each
nesting level (to store the daughters). The STX version used for the
benchmark (which is available from XStream’s website) has been
specialized to deal with bounded-depth documents (depth 6) and
the buffering code need to be duplicated for each level. Another
version which only tried to stream the toplevel elements (and not
their male children) turned out to be much slower.

Results The throughput results are given in Figure 2 in Mb per
second (higher is better) with respect to the size of the input. A
star indicates that the process was killed either by the OS or by the
JVM. The memory results are given in the same figure.

Comments All the Java-based implementations suffers from the
JVM initialization costs and the just-in-time compilation. In a real-
istic framework, the Java code would be preloaded so this runtime
overhead would not matter. The tools which are interpreters (and
not compilers) usually start by doing some form of internal compi-
lation. This also explain slow startup behavior.

XStream and Joost/STX are the only implementations which
use a bounded amount of memory and which can deal with very
large XML documents. The most important difference between
XStream and STX, except the speed difference, is that XStream
allows the programmer to write the transformation in a tree-
processing style, whereas STX makes explicit the use of buffers
and requires code duplication.

Reverse transformation Some transformations cannot benefit
from streaming at all. A typical example is a transformation that
reverses the order of top-level elements (children of the root). In
order to evaluate the overhead of XStream in a worst-case situation,
we ran our benchmark on such a transformation. The source code
for the various implementations are given in Listing 5. Note that
the XQuery and XSLT 2.0 (Saxon) versions use a built-in reverse
operator. The results are given in Figure 3 and 4. Since the trans-
formation require the whole document to be loaded in memory, the
tools which can deal better with large documents are those with
the more compact in-memory representation of XML documents

(* Get elements with a specific tag *)
declare extract(string ,_,_)
extract(t, %s[@a x] y,q) when <<s=t>> -> %s[@a x] extract(t,y,q)
extract(t,_[_] y,q) -> extract(t,y,q)
extract(_,(),q) -> q

split(person[@a name[str(n,_)] children[c] _] y,q) ->
let tag = << match List.assoc "gender" a with "M" -> "man" | _ ->"woman" >> in
let a' = << ["name",n] >> in (* The new attribute *)
let c = split(c,()) in (* Transform recursively *)
let s = extract ("man",c,()) in (* Split according to gender *)
let d = extract (" woman",c,()) in
%tag[@a ' sons[s] daughters[d]] split(y,q)

split(str(_,y),q) -> split(y,q)
split((),q) -> q

main(doc[x] _) -> doc[split(x ,())] ()

Listing 4. The transformation used as benchmark

Throughput in Mb/s Maximum memory in Mb
input size: 1Mb 2Mb 5Mb 10Mb 20Mb 40Mb 80Mb 160Mb 320Mb
XStream 4.45 5.30 6.12 6.01 6.25 6.47 7.24 7.23 7.25
CDuce 3.38 3.45 4.43 4.24 4.06 3.74 3.35 2.61 ?

Saxon (XQuery) 0.31 0.63 1.03 1.25 1.41 1.51 1.58 ? ?
Qizx/open (XQuery) 0.51 0.76 1.21 1.30 1.43 1.50 1.53 ? ?

XSLTC (XSLT) 0.85 1.41 2.48 3.05 3.41 3.18 2.72 0.88 ?
Saxon (XSLT) 0.42 0.83 1.53 1.94 2.29 2.55 2.76 ? ?
xsltproc (XSLT) 2.13 2.54 3.43 2.47 1.59 1.04 0.60 ? ?
Xalan (XSLT) 1.07 1.23 1.43 1.19 1.08 0.68 0.46 0.24 ?

Joost (STX) 0.35 0.39 0.51 0.53 0.55 0.54 0.57 0.56 0.60

10Mb 20Mb 40Mb 80Mb
1.0 1.0 1.0 1.0

38.7 69.5 165.8 348.6
76.8 134.1 258.8 499.8
65.8 112.4 205.9 398.7
57.3 102.3 215.0 440.8
79.9 134.7 249.3 496.9

109.5 216.3 430.6 852.8
42.1 77.9 149.4 290.2
16.7 16.7 16.7 16.7

Figure 2. Benchmark results

(CDuce and Xalan). The benchmark suggests two improvements
to XStream memory representation: element names could be hash-
consed (as in e.g. CDuce), and XML fragments which are fully
computed don’t require to keep upward pointers.

Conclusion Of course, we should try many more different trans-
formations before drawing any definitive conclusion from the
benchmark. XStream will behave well for transformations which
it can evaluate really in streaming, keeping very little of the docu-
ment in memory. Even when memory usage is not a key criterion
(medium-sized documents), XStream performs relatively well.

We did not try to tweak any of the garbage collector parameters
for the Java- and OCaml-based implementations. Clever choices
could give huge speed-ups.

It is unfair to compare implementations with different source
languages and different target/implementation languages. Also, it
should be noted that XStream’s XML data model is simpler than
the one used by XSLT or XQuery implementation (e.g. no pointer
to the parent element, no namespace). Still, the benchmark suggests
that XStream is a promising approach to deal with large XML
documents.

8. Extensions, future work
Concatenation XStream’s XML data model currently relies on a
binary encoding of XML trees. An XML fragment can be either
the empty sequence, an XML element with a tag, a sequence of
children and a sequence of right-siblings, or some text with a
sequence of right-siblings. Modulo syntactic sugar, the data model
is pre-defined by the following declarations:

declare elt(string ,
<<(string*string) list >>,_,_)

declare str(string ,_)
declare nil()

Note that this data model does not natively support concatenation of
XML fragments. One can of course define a concatenation symbol
with the following rules:

concat ((),e) | concat(e,()) -> e
concat (%t[@a e1] e2,e) ->

%t[@a e1] concat(e2 ,e)
concat(str(s,e2),e) -> str(s,concat(e2 ,e))

(The pattern concat(e, ()) is just an extra optimization.) As it
well known by functional programmers, this implementation of
concatenation gives a quadratic behavior when sequences are used
to accumulate results on the right. An alternative is to consider
concat as uninterpreted symbol (except maybe for simplification
rules dealing with empty sequences.) Then, of course, all rules for
other symbols which deconstruct XML must be extended to deal
with the concatenation. (A variant would be in addition to remove
the last argument of the elt and str symbols. Of course, the
translation from one data model to the other can be implemented
by the programmer.) A good situation is when concatenation nodes
don’t need to be deconstructed (the pretty-printer could be extended
to deal with concatenation natively.)

Another solution is to get rid of concatenation by adding extra
“queue” arguments, when possible. A typical example is the tags

(* XStream version *)
rev(%t[x] y, a) -> rev(y, %t[x] a)
rev(%t y, a) -> rev(y, %t a)
rev((), a) -> a
main(doc[x] _) -> doc[rev(x,())] ()

(* CDuce version *)
type T = [(AnyXml | Char)*]
let rev ((T,T) -> T) ([],q) -> q | ((hd ,tl),q) -> rev (tl ,(hd,q))
match src with <doc >l -> dump_xml_utf8 <doc >(rev (l,[]))

(* XQuery version *)
<doc >{fn:reverse (./ doc/node ())}</doc >

(* XSLT 1.0 version *)
<xsl:template match ="/ doc">
<doc >
<xsl:for -each select ="child ::node()">
<xsl:sort select =" position ()" data -type=" number" order=" descending "/>
<xsl:apply -templates select ="." mode="copy"/>
</xsl:for -each >

</doc >
</xsl:template >
<xsl:template match="node ()" mode="copy">
<xsl:copy >
<xsl:apply -templates select ="child::node ()" mode="copy"/>

</xsl:copy >
</xsl:template >

(* XSLT 2.0 version *)
<xsl:template match="doc">
<doc >
<xsl:copy >
<xsl:copy -of select =" reverse(node ())"/>

</xsl:copy >
</doc >

</xsl:template >

Listing 5. The reverse transformation

input size: 1Mb 2Mb 5Mb 10Mb 20Mb 40Mb 80Mb 160Mb 320Mb
XStream 3.76 3.84 4.88 4.64 4.54 4.24 3.85 ? ?

CDuce 1.98 2.39 3.38 3.62 3.50 3.48 3.44 2.99 2.34
Saxon (XQuery) 0.74 1.09 1.86 2.29 2.78 3.13 3.44 ? ?
Qizx/open (XQuery) 0.54 1.10 1.81 2.11 2.18 2.09 ? ? ?

XSLTC (XSLT 1.0) 0.70 1.27 2.34 2.96 3.34 3.07 2.65 1.00 ?
Saxon (XSLT 2.0) 0.60 1.06 1.96 2.47 3.09 3.56 3.84 ? ?
xsltproc (XSLT 1.0) 1.82 3.18 4.18 4.14 4.22 4.25 ? ? ?
Xalan (XSLT 1.0) 0.39 1.06 1.35 1.19 1.00 0.73 0.44 0.23 ?

Figure 3. Benchmark results for the reverse transformation: throughput in Mb/s

input size: 10Mb 20Mb 40Mb 80Mb
XStream 71.7 144.5 272.7 540.8
CDuce 32.3 60.2 116.3 226.6
Saxon (XQuery) 76.3 133.6 248.3 477.3
Qizx (XQuery) 89.8 167.6 312.2 529.5
XSLTC (XSLT 1.0) 58.0 103.5 215.6 442.5
Saxon (XSLT 2.0) 76.8 134.1 248.8 498.5
xsltproc (XSLT 1.0) 122.2 241.5 480.7 ?
Xalan (XSLT 1.0) 42.2 78.1 149.7 290.5

Figure 4. Benchmark results for the reverse transformation: maximum memory in Mb

main(%t[e1]e2 ,e)|main(e,%t[e1]e2) ->
%t[e1] main(e1,e)

main((),e) | main(e,()) -> e

Listing 6. Merging multiple inputs with arbitrary interleaving

main(%t[e1] e2 , %s[e3] e4) ->
%t[e1] %s[e3] main(e2 ,e4)

main((),e) | main(e,()) -> e

Listing 7. Merging multiple inputs with fixed interleaving

symbol from Listing 3. It would be interesting to perform such a
transformation automatically.

Finally, it might be possible to get some inspiration from purely
functional implementation of sequences with efficient concatenation[20]
in order to derive a clever treatment of concatenation. It is not clear,
however, how to deal in this setting with sharing and imperative up-
dates in terms.

Multiple inputs It is possible to extend our formalism to deal
with multiple inputs. We assumed that scripts define a distinguished
unary symbol main. In a script with n inputs, this symbol would be
of arity n. An example of a transformation with two inputs is given
in Listing 6. This scripts takes two XML streams and merge the
toplevel elements, with arbitrary interleaving 2. Another example
is given in Listing 7. Here, the two XML streams are merged in a
synchronized way.

To implement a script with n inputs, we need to run n XML
parsers simultaneously and to maintain n parsing stacks. The tricky
point is to schedule the n parsers. We can simply run them con-
currently and rely on the system’s process/thread scheduler; when
an event is made available by one of the parser, the corresponding
parsing stack is updated and the unique printing stack is normalized
(one would probably need a global lock to avoid race-conditions).
Such a scenario works well for a script such as in Listing 6. How-
ever, for the script in Listing 7, it is desirable to ensure that the
toplevel elements of two input streams are read at a comparable
rate. Otherwise, the one which is read faster needs to be buffered
in memory. If the input streams come from the network, or simply
if the size of the toplevel elements are arbitrary, then it is better if
the main transformer loop is in charge of scheduling the different
parsers. A scheduling heuristics must choose on which input stream
to accept the next event. A strategy could be to wait for one event
on each stream and choose the one which would minimize the size
of the printing stack, after normalization and extraction. We leave
to future work the precise design and study of such heuristics.

Controlling the reduction strategy The main evaluation loop of
an XStream program consists in normalizing the printing stack. Our
current implementation does not try to be clever when it chooses
which redex to reduce next. It just picks one from the current set of
nodes which need to be inspected. One could imagine adding some
heuristics or some programmer-specified annotations to improve

2 In practice, the interpreter will commit to pick one element from one the
two inputs as soon as a root tag is available. An alternative implementation
(which the interested reader can try to write as an exercise) would require
a whole element to be available before committing to copying it. Also, this
transformation is an example of a non deterministic XStream script (that is,
a non-confluent rewriting system) which could be useful also in the setting
of a single input, e.g. as a library function to merge two sequences, when the
choice of interleaving does not matter. Hard-coding a specific interleaving
strategy gives less opportunity to get a good streaming behavior.

the normalization process. Let us consider for instance the if
symbol as defined in Listing 2. It it is a good idea to reduce the first
argument, and then try to apply the rewriting rules for if before
looking at the other ones. Indeed, if the first argument reduces to
either true() or false(), one can immediately destroy one the
two other arguments. For many other symbols, however, there is no
point trying to reduce an instance of the symbol before reducing its
arguments. The literature on lazy evaluation and strictness analysis
might give interesting starting points to design good heuristics for
driving the normalization process.

Dynamic instrumentation XStream programs store suspended
computations as data. Currently, data is only inspected by rewrit-
ing rules and by the pretty-printer. However, the reified aspect of
computation opens the door to various kind of dynamic instrumen-
tation. For instance, it is trivial to support checkpointing (the abil-
ity to stop a program, store its current state, and restart it later,
maybe on a different machine). Instead of storing the whole com-
putation, it is possible to detect dynamically some parts which are
stuck (e.g. parts of the result which can not yet be extracted to the
output stream) and to store them in order to free some memory. The
extra knowledge about the computation could make it possible to
do a better job than the OS virtual memory manager.

Encoding existing XML transformation languages into XStream
XStream could be used as a back-end for higher-level XML
transformation/programming languages, such as XDuce [8, 10],
CDuce [2, 5], XSLT [28] or XQuery [27]. In particular, we are
planning to investigate in a future work the details of the transla-
tion from CDuce to XStream. The CDuce and XDuce languages
rely on regular expression patterns [9]. Patterns are usually com-
piled to tree automata, using static type information as an optimiza-
tion [4, 13, 14]. It is then straightforward to translate automata into
XStream. For instance, consider the following CDuce fragment:

match e with [(x:: <a>_ | _)*] -> f x

The semantics of the pattern is to extract in a new sequence all the
elements of tag a. This CDuce fragment could be compiled to the
XStream fragment f(p(e)) where the new fresh symbol p is subject
to the following rules, directly obtained from an automaton version
of the pattern:

p(a[x1] x2) -> a[x1] p(x2)
p(%t[_] x) when << t <> "a" >> -> p(x)
p(()) -> ()

As another example, consider the CDuce fragment:

match e with t -> e1 | _ -> e2

where t is some CDuce type. This pattern matching can be com-
piled to the XStream fragment if(q(e), e1, e2) where q is a sym-
bol subject to rewriting rules which mimics the automaton asso-
ciated to t (possibly taking static type information about e into
account as described in [4, 13, 14]). As the name of the current sec-
tion suggests, we leave the details of the translation from regular
expression patterns to XStream for a future publication.

9. Comparison with lazy evaluation
Our evaluation scheme is somewhat reminiscent of lazy evaluation.
Lazy computation is pulled by the output: when some part of the
output must be printed, the functional expression is reduced enough
to compute this part. This might induce, as a side effect, some of
the input to be read. The effect is roughly similar to the behavior of
an XStream program, but the evaluation of an XStream program is
instead pushed by the input. In a sense, XStream is eager: between
two parsing events, the functional expression is reduced up to a
normal form.

Let us consider the two requirements for streaming that we
mentioned in the introduction: greediness and memory-awareness.
We will show that XStream sometimes beats a lazy evaluator on
both these criteria.

First, consider the term or(hasb(x), hasa(x)) where or and
hasb are defined as in Listing 2 and hasa is defined as hasb,
replacing b by a. A lazy evaluator would choose to reduce first
one of the two arguments of the or operators into a head normal
form, which should be true() or false(). Imagine that hasb(x)
is reduced first and that the input document (bound to x) contains no
b element, but an a element close to the beginning. In this case, the
lazy evaluator will have to parse the whole input, whereas XStream
would only parse it until the first a element. This example shows
that for some situations, the eager approach taken by XStream
will beat any sequential evaluator (be it lazy or strict) in terms of
greediness.

Now, consider the following script:

main(x) -> a[x] last(x)
last ((%t[e1] ()) as x) -> x
last(_[_] (_[_] as x)) -> last(x)

The transformation basically consists in duplicating the last toplevel
element from the input. XStream would evaluate this script as
expected: the input is copied on the fly and the program uses a
bounded amount of memory. A lazy evaluator, instead, would start
evaluating the expression a[x], thus forcing the parsing of the in-
put in x. The input would indeed be copied on the fly to the output,
but the last(x) expression would not be reduced before the end
of the input. Since the lazy evaluator would keep a reference to the
whole input, its memory usage would be linear in the size of the
input. In this example, XStream beats a lazy evaluator in terms of
memory-awareness. (For a more realistic scenario, replace last by
a symbol which computes e.g. a table of contents.)

The advantage of the incremental reduction strategy over the
global evaluation strategy is that some computation can be in-
terleaved with the actual parsing of the input XML document.
It should be noted, though, that the incremental strategy might
globally induces more computation than the global strategy (or
a lazy evaluator). As an example, consider a script defined by
main(x) -> if (hasb(x),f(x),g(x)) where f and g yield
some complex computation, and if, hasb are as in Listing 2. In the
global semantics with a call-by-name reduction strategy, one could
choose to compute first a normal form for hasb(x), and only com-
pute one of f(x) or g(x) according to whether this normal form is
true() or false(). With the incremental strategy, one would start
to compute both f(x) and g(x), and throw away the computation
for g(x) only if some is found. Note that is it not necessar-
ily bad to do more computation since this might allow to use less
memory. This would be the case e.g. if the (intermediate) results of
f(x) and g(x) are significantly smaller than x.

Note that even with the incremental strategy, it is possible
to suspend manually some computation. Indeed, instead of us-
ing the ternary if symbol as above, the programmer can write
match hasb(x) with[true() → f(x)|false() → g(x)], which is
just syntactic sugar for σ2(hasb(x), x) where σ2 is a fresh sym-
bol subject to the two rewriting rules σ2(true(), x) → f(x) and
σ2(false(), x) → g(x). The computation of f(x) and g(x) is
suspended until the result of hasb(x) is available.

10. Related work
XStream evaluates in streaming XML transformations given by
functional specifications. In this section, we mention other works
with the same goal.

While plenty of work has been devoted to the automatic deriva-
tion of XML stream processors from declarative programs, most

of them deals with query languages, such as XPath [1, 6, 7] and a
subset of XQuery [15]. They are not expressive enough to describe
some simple transformations such as the structure-preserving trans-
formation renaming all the labels a to b, which can be expressed
naturally in recursive functional style.

The second author previously proposed XTiSP [17], an XML
transformation language intended for stream processing. XTiSP
programs can be translated into attributed tree transducers (att),
and then composed with an XML parser also expressed as an att,
using an original composition method [16]. In a later work [18],
he proposed to base XTiSP instead on macro-forest transducers
(mft) [21] as a model of XML transformation, thus improving the
expressive power of the language. Macro-forest transducers are
a generalization of top-down tree transducers with accumulators.
They can be seen as a subclass of XStream scripts. In an mft,
only the first argument of each symbol can be inspected; the other
arguments can only be copied to the output. The left-hand side
of a rewriting rule can only be of the form f(a[x1]x2, y1, ..., yk)
or f((), y1, ..., yk). The right-hand side of a rule can call other
symbols, but only with the first argument being x1 or x2. It is
well-known that the expressive power of macro-forest transducers
is not closed under composition (unlike XStream). A pushdown
machine is proposed in [19] as an implementation strategy for
streaming mfts. This idea of using a pushdown is similar to our
formalization of incremental parsing with a stack. The advantage
of our presentation is to clearly dissociate incremental parsing from
the actual reduction engine.

Compared to [18], this paper is based on simple term rewriting,
which is more uniform, more expressive, and better known than
macro-forest transducers. As a consequence, it does not impose
constraints which might seem ad hoc from the point of view of
a functional programmer. In particular, XStream naturally supports
higher-order functions, deep pattern matching (see Section 3 for an
encoding of these features), and Booleans (see e.g. the if and or
symbols in Listing 2) without any special treatment. This paper also
details implementation techniques and expands on the comparison
with lazy evaluation.

STX [25] is a one-pass, event-oriented transformation language
for XML documents. The language is based on a notion of tem-
plates as XSLT, but instead of matching subtree, STX templates
match and react to parsing events. STX uses different program-
ming constructions for streaming and processing which require
buffering (explicit primitives to create, populate and deconstruct
buffers). Also, STX is really geared towards a forward process-
ing model and does not allow composition nor look-ahead in the
documents. Simple transformations requires the programmer to in-
sert explicit opening/closing tags (with the risk of producing ill-
formed XML documents). STX keeps the context of the currently
processed node: the stack of ancestors and the position within sib-
lings. This context can be simulated in XStream either by the con-
trol flow or by explicitly managed extra arguments.

Kodama, Suenaga and Kobayashi [12] propose a static analysis
to check that a transformation written in functional style actually
processes the input in a linear way (each node is accessed exactly
once in document order), thus guaranteeing that the transformation
can be trivially evaluated in streaming. In order to allow non-
trivial transformations, the language is extended with primitives to
materialize a whole subtree in memory and then work on it without
any restriction. Suenaga, Kobayashi and Yonezawa [26] propose
a system to automatically insert these buffering primitives where
necessary. In this approach, any subtree will be processed either
in a purely linear (streaming) way or in a completely buffered way.
Moreover, this decision is made statically. This makes it impossible
to deal efficiently with a transformation such as in Listing 2, where
the decision to copy the input or to buffer it depends on the actual

input and is not scoped on a whole subtree (when a tag is found
under a <a>, it is not necessary to buffer the rest of the subtree
rooted at the <a>). Let us give another example which would
be evaluated efficiently by XStream and not by this approach: a
transformation which appends to a document some kind of table
of contents (e.g. the sequence of all the <title> elements found
in the document). XStream would copy the input on the fly and
only keep the table of contents in memory. The system from [26]
would instead buffer the whole input, because it is not used strictly
linearly.

FluXQuery [11] is an XQuery engine that optimizes query eval-
uation using schema constraints derived from DTDs. FluX, the in-
ternal algebra of FluXQuery, is an extension of XQuery with an ex-
plicit stream processor construction, built from event handlers. The
FluXQuery query optimizer elaborates regular XQuery into FluX,
using ordering and cardinality constraints from the DTD. This ap-
proach suffers from the same main drawback as [26]: a subtree is
either processed sequentially or buffered, but the decision has to be
done statically. The idea of using static type information to discover
more streaming opportunities could be recasted in XStream as an
optimization stage, or would, more realistically be applied during
the compilation from a higher-language (such as XQuery, XSLT,
or CDuce) into XStream. The CDuce pattern matching compiler
actually follows this idea since it uses precise type information to
produce efficient one-pass automata version of patterns; by trans-
lating these automata to XStream, one would get a type-optimized
streaming implementation of patterns.

The BEA/XQRL processor [3] is another XQuery engine that
attempts to pipeline XML processing. Its query optimizer generates
a query execution plan which is a composition of iterators (stream
transformers). The lack of a more detailled description and of an
easily available standalone implementation prevents us from doing
a more detailled comparison.

11. Conclusion
We have presented XStream, a Turing-complete purely functional
language intended to write XML transformations. XStream allows
the programmer to write a transformation in a tree-processing style
and have it evaluated efficiently in streaming when this is possible.
Our preliminary performance comparison indicates that the current
prototype is already quite efficient and thus suggests trying to use
XStream as a back-end for higher-order XML languages.

References
[1] M. Altinel and M. J. Franklin. Efficient filtering of XML documents

for selective dissemination of information. In The VLDB Journal,
pages 53–64, 2000.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric
general-purpose language. In ACM International Conference on
Functional Programming (ICFP), 2003.

[3] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal. The
BEA/XQRL streaming XQuery processor. In VLDB, 2003.

[4] A. Frisch. Regular tree language recognition with static information.
In IFIP Conference on Theoretical Computer Science (TCS),
Toulouse, 2004. Kluwer.

[5] A. Frisch and the CDuce team. CDuce: User’s manual, 2004.
http://www.cduce.org/manual.html.

[6] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata and stream
indexes. ACM Transactions on Database Systems, 29(4):752–788,
December 2004.

[7] A. K. Gupta and D. Suciu. Stream processing of XPath queries
with predicates. In ACM SIGMOD International Conference on
Management of Data, pages 419–430, 2003.

[8] H. Hosoya and B. C. Pierce. XDuce: A typed XML processing
language. In Proceedings of Third International Workshop on the
Web and Data bas es (WebDB2000), 2000.

[9] H. Hosoya and B. C. Pierce. Regular expression pattern matching for
XML. In Journal of Functional Programming, volume 13(4). 2002.

[10] H. Hosoya and B. C. Pierce. A typed XML processing language.
In ACM Transactions on Internet Technology, volume 3(2), pages
117–148. 2003.

[11] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-
based scheduling of event processors and buffer minimization for
queries on structured data streams. In VLDB, 2004.

[12] K. Kodama, K. Suenaga, and N. Kobayashi. Translation of
tree-processing programs into stream-processing programs based
on ordered linear type. In The Second ASIAN Symposium on
Programming Languages and Systems (APLAS’04), 2004.

[13] M. Y. Levin. Matching automata for regular patterns. In International
Conference on Functional Programming (ICFP), 2003.

[14] M. Y. Levin and B. C. Pierce. Type-based optimization for regular
patterns. In First International Workshop on High Performance XML
Processing, 2004.

[15] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A
transducer-based XML query processor. In VLDB, pages 227–238,
2002.

[16] K. Nakano. Composing stack-attributed tree transducers. Technical
Report METR-2004-01, Department of Mathematical Informatics,
University of Tokyo, 2004.

[17] K. Nakano. An implementation scheme for XML transformation
languages through derivation of stream processors. In The Second
ASIAN Symposium on Programming Languages and Systems
(APLAS’04), 2004.

[18] K. Nakano. Streamlining functional XML processing. In The First
DIKU-IST Joint Workshop on Foundations of Software, 2005.

[19] K. Nakano and S.-C. Mu. A pushdown machine for recursive XML
processing. In The Fourth ASIAN Symposium on Programming
Languages and Systems (APLAS 2006), 2006.

[20] C. Okasaki. Purely Functional Data Structures. PhD thesis, Carnegie
Mellon University, 1996.

[21] T. Perst and H. Seidl. Macro forest transducers. Information
Processing Letters, 89(3):141–149, 2004.

[22] SAX; http://www.saxproject.org/.

[23] O. Shivers and M. Wand. Bottom-up β-reduction: uplinks and λ-dags.
In Proceedings of the 14th European Symposium on Programming
(ESOP 2005), 2005.

[24] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements
of real-time stream processing. SIGMOD Record, 34(4):42–47, dec
2005.

[25] Streaming Transformations for XML (STX); http://stx.
sourceforge.net/.

[26] K. Suenaga, N. Kobayashi, and A. Yonezawa. Extension of
type-based approach to generation of stream-processing programs
by automatic insertion of buffering primitives. In International
Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR2005), 2005.

[27] XQuery 1.0: An XML Query Language; http://www.w3.org/TR/
xquery/.

[28] XSL Transformations (XSLT); http://www.w3.org/TR/xslt/.

