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Types

A type is a conciee description of the behavior of a program
fragment.

Typechecking provides safety or security guarantees.
It also encourages modularity and abstraction.

These aspects are not the topic of these lectures.
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Type inference

Types can be extremely cumbersome when they have to be
explicitly and repeatedly provided.

This leads to type inference...
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Constraints

A program fragment is well-typed iff each of its own
sub-fragments is itself well-typed and if their types are
consistent with respect to one another.

Thus, a type inference problem is naturally expressed as a
constraint made up of predicates about types, conjunction, and
existential quantification.
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Type annotations and propagation

Constraint solving is intractable or undecidable for some
(interesting) type systems.

In that case, mandatory type annotations can help. Full type
inference is abandoned.

If desired, type annotations can be locally propagated in ad hoc
ways to reduce the number of required annotations.
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Overview

The lectures are organized as follows:

1. Type inference for ML (now)
2. Arbitrary-rank polymorphism (this afternoon)

2. Generalized algebraic data types (tomorrow morning)
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Part |

Type inference for ML
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The simply-typed A-calculus

Hindley and Milner's type system, with Algorithm }
Hindley and Milner's type system, with constraints
Constraint solving by example

Data structures
Recursion

Optional type annotations
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The simply-typed A-calculus 9

The simply-typed A-calculus
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The simply-typed A-calculus

Syntax

Expressions are given by
ex=x|Mxe|ee

where x denotes a variable. Types are given by
ti=alt—or

where a denotes a type variable.
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The simply-typed A-calculus

Speciﬁcation

The simply-typed A-calculus is specified using a eet of rules
that allow deriving judgements:

v Abs
ar Cix:Tqi ket
Mk x:T(x)
F'EAxe:tqy > 1o
App
r[—54:1;4—>'52 r]—622'5/|

I’l—e4 éo T2

The specification is syntax-directed.
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The simply-typed A-calculus

Constraints

In order to reduce type inference to constraint solving, we
introduce a constraint language:

Ci=t=t|CAC|3acC

Constrainte are interpreted by defining when a valuation ¢
satisfies a constraint C.

A valuation is a (total) mapping of the type variables to ground
types. Ground types form a Herbrand universe, that is, they are
finite trees.
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The simply-typed A-calculus

Constraint generation

Type inference is reduced to constraint solving by defining a
mapping of pre-judgements to constrainte.

[MTEx:t] = IMx)=¢
[MTE2xe:t] = Faqao([Mix:arbe:az] Aar — az =1)
[Mkese:t] Ja([Fter:a—-t] Al Fes:d])

Il

The freshness conditions are local, but left implicit for brevity.
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The simply-typed A-calculus

Constraint generation, continued

(I.T) is a typing of e iff T'=e: T holds.

Theorem (Soundness and completeness)

¢ is a solution of [I'+e: 1] iff (¢I,¢r) is a typing of e.
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The simply-typed A-calculus

Principal typings

Corollary (Reduction)

Let (I',a) be composed of pairwise distinct type variables. Let the
domain of T coincide with the free variables of e.

Then, e is typable iff [+ e:a] is satisfiable.

Furthermore, if ¢ is a principal solution of [+ e: al, then
(¢r. pa) is a principal typing of e.

Corollary (Principal typings)
If e is typable, then e admits a principal typing.
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The simply-typed A-calculus

A variation on constraints

How about letting the constraint solver, instead of the
constraint generator, deal with environment access and lookup?

Let’s enrich the syntax of constraints:
Cu=...|x=ct|defx:tinC

The idea is to interpret constraints in such a way as to
validate the equivalence law

def x:tvinC=[t/x]C

The def form is an explicit substitution form.

Frangois Pottier A modern eye on ML type inference



The simply-typed A-calculus

Logical interpretation

As before, a valuation ¢ maps type variables a to ground types.
In addition, a valuation y maps variables x to ground types.

¢ and y satisfy x =t iff yx = ¢t holds.

¢ and y satisfy def x:tvinC iff ¢ and wlx+— ¢r] satisfy C.
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The simply-typed A-calculus

Constraint generation revisited

Constraint generation is now a mapping of an expression e and
a type T to a constraint [e: .

[x:z] = x=¢
. _ def x:aqin [e: az]
[Axe:t] = Haqas. ( SR
lerez:t] = Fa(ler:a—zt]Afez:a])

Look ma, no environments!
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The simply-typed A-calculus

Constraint generation revisited, continued

Theorem (Reduction)

e is typable iff [e:a] is satisfiable.

This statement is marginally simpler than its earlier analogue.

But the true point of introducing the def form becomes
apparent only in Hindley and Milner’s type system...
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Hindley and Milner’s type system, with Algorithm }

Hindley and Milner's type system, with Algorithm }
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Hindley and Milner’s type system, with Algorithm }

Syntax

ML extends the A-calculus with a new let form:
ex=...lletx=¢ine

A type scheme is a type where zero or more type variables are
universally quantified:
oux=Var
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Hindley and Milner’s type system, with Algorithm }

Speciﬁcation

Three new typing rules are introduced in addition to those of
the simply-typed A-calculus:

Gen Inst
le:t a # fov(lh) l-e:Vaz
Fe:Var Fhe:[T/dr
Let

lkes:o x:obke:t

lkletx=eqsinex:t

Type schemes now occur in environments and judgements.
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Hindley and Milner’s type system, with Algorithm }

Milner’'s Algorithm }

This type inference algorithm expects a pre-judgement T e,
produces a type T, and uses two global variables, V and ¢.

V is an (infinite) fresh name supply:

fresh = doa€V
doV «—V\{a}
return a

¢ is a substitution (of types for type variables), initially the
identity.
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Hindley and Milner’s type system, with Algorithm }

Milner’'s Algorithm 1, continued

Here is the algorithm in monadic style:

HrEx) = letVaq...a,0 =T(x)
dodj,...,ay, =fresh,..., fresh
return [af /a]]’_,(v) — take a fresh instance
HIM - Axeq) = doa = fresh
doty = Hx:abeq)
return a — t4 — form an arrow type
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Hindley and Milner’s type system, with Algorithm }

Milner’'s Algorithm 1, continued

}(F [ &4 62) = do Tq = }(F I 6/[)

doto = FFe)
do a = fresh
do ¢ — mau((t1) = plrz — a)) 0 P
return a — solve ©4 =To — a

FrEletx=eqsines) = doty=H Feq)
let o = gftv(q)(r)).qb(m) — generalize
return HIx: 0 F ep)

Generation and solving of equations are intermixed.
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Hindley and Milner’s type system, with Algorithm }

Correctness of algorithm 7}

Theorem (Correctness)

If HI'Fe) terminates in state (¢,V) and returns t, then
@) Fe:p(r) is a judgement.
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Hindley and Milner’s type system, with Algorithm }

Completeness of algorithm }

Theorem (Completeness)

Let T be an environment. Let (¢o,Vo) be a state that satisfies
the algorithm’s invariant. Let 6o and top be such that

Godo(l) Fe:to is a judgement. Then, the execution of I - e)
out of the initial state (¢o,Vo) succeeds. Let (¢p4,V4) be its
final state and t4 be its result. Then, there exists a substitution
04 such that Godo and 01¢4 coincide outside Vo and such that
To equalﬁ 944)4 ('134),
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Hindley and Milner’s type system, with Algorithm }

Completeness of algorithm } (excerpt of proof)

[...] We have

011 (y) = Oapeps(y) = 05 P5(y).

Since a is fresh for v and ¢, we can pursue with

25(r) = O2ga(y) = 04 (v) = Bogpoly)-

Thus, 641¢4 and Godo coincide outside Vo [..]
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Hindley and Milner’s type system, with Algorithm }

Substitutions versus constraints

Reasoning in terms of substitutions means working with most
general unifiers, composition, and restriction.

Reasoning in terms of constraints means working with equations,
conjunction, and existential quantiﬁcation.
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Hindley and Milner’s type system, with Algorithm }

Relative typings (terminology)

A typing (I,t) is relative to T iff ite first component ' is an
instance of T.

A typing of e is principal relative to ' iff it is relative to I' and
every typing of e relative to I is an instance of it.
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Hindley and Milner’s type system, with Algorithm }

Relative principal typings

Corollary (Relative principal typings)

The execution of HI' & ¢e) succeeds iff e admits a typing relative
to T.

Furthermore, if ¢4 and t4 are the algorithm’s results, then
(1), p1(v4)) is a typing of e and is principal relative to T.

This is also known as the principal types property.
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Hindley and Milner’s type system, with constraints

Hindley and Milner's type system, with constraints
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Hindley and Milner’s type system, with constraints

Constraints

We must extend the syntax of constraints so that a variable x
can stand for a type scheme.

To avoid mingling constraint generation and constraint solving,
we must allow type schemes to incorporate constrainte.

The syntax of constraints and of constrained type schemes is:

t=t|CAC|TaC|x=<t|defx:¢inC
Va[Clt

Il

)
|
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Hindley and Milner’s type system, with constraints

Constraints, continued

The idea is to interpret constraints in such a way as to
validate the equivalence laws

def x:¢in C =[¢/x]C
(Va[Cle) Xt/ =3Fa.(CATt=T1)
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Hindley and Milner’s type system, with constraints

Interpreting constraints

A type variable a still denotes a ground type.

A variable x now denotes a set of ground types.

¢ and y satisfy x <t iff yx 3 ¢t holde.

¢ and y satisfy def x:¢inC iff ¢ and W[XHi(Q)] satisfy C.
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Hindley and Milner’s type system, with constraints

Interpreting type schemes

The interpretation of Va[C].v under ¢ and y is the set of all
¢’t, where ¢ and @’ coincide outside a and where ¢’ and y
satisfy C.

For instance, the interpretation of Va[dp.a = P — y].a — a under
¢ and y is the set of all ground types of the form
(t — ¢y) — (t — ¢y), where t ranges over ground types.

This is also the interpretation of Vp.(P —y) — (P —y). Every
constrained type scheme is equivalent to a standard type
scheme.
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Hindley and Milner’s type system, with constraints

Constraint generation, first attempt

Constraint generation is modified as follows:

[x:z] = x=<¢

[letx=eqsinex:t] = defx:Va[les:a]lain[ez: 1]

Val[[es : a]l.a can be thought of as a principal constrained type
scheme for eq.

This definition is correct under a call-by-name semantics.
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Hindley and Milner’s type system, with constraints

Constraint generation, correct attempt

Constraint generation is defined by
[x:7] = x=<¢
llet x=eq4inex:t] = letx:Va[[es:a]lain[es:1]
where, by definition,
let x:cinC=defx:¢cin(dax<aAn()

[let x =eq iney: t] now implies Ja.[es : a], which guarantees
that eq is well-typed. This definition is correct under a
call-by-value semantics.
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Hindley and Milner’s type system, with constraints

Constraint generation, continued

Theorem (Soundness and completeness)

Let T be an environment whose domain is fv(e). The expression e
is well-typed relative to I iff def I inJa.le: d] is satisfiable.
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Hindley and Milner’s type system, with constraints

Taking constraints seriously

Note that

> constraint generation has linear complexity;

> constraint generation and constraint solving are separate.

This makes constraints suitable for use in an efficient and
modular implementation.

The constraint language will remain simple as the programming
language grows.
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Constraint solving by example

Constraint solving by example
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Constraint solving by example

An initial environment

Let o stand for assoc :Vap.a — list (a X p) — P.

We take o to be the initial environment, so that the
constraints considered next are implicitly wrapped within the
context def o in [].
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Constraint solving by example

A code fragment

Let e stand for the expression

ﬂx.ﬂlq .;\/2.
let assocx = assoc x in
(assocx 14, ass00% Ip)

One anticipates that assocx receives a polymorphic type scheme,
which is instantiated twice at different types..
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Constraint solving by example

The generated constraint

Let I stand for x:a;lq:aq;lz: as. Then, the constraint [e: €] is
(with a few minor simplifications)

e=a—ay —ads—p
def I in

<
Jaayagp. let assocx : Vy[30. ( isjog 20—y >].y in

p=p1xp2
3P4Po. < Vi Fb.(assocx <6 — PNl X&) )
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Constraint solving by example

Simpliﬁcation

Constraint solving can be viewed as a rewriting process that
exploite equivalence laws. Because equivalence is, by construction,
a congruence, rewriting is permitted within an arbitrary context.

For instance, environment access is allowed by the law
let x:¢ginClx <t]=let x:¢inClgc <X 7]

where C is an arbitrary context.
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Constraint solving by example

Simpliﬁcation, continued

Thus, within the context def [o;l in [],
as550c X0 Yy Ax =<0
can be rewritten

dap.(a = list(axP)—>Pp=6—>y)ANa=~
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Constraint solving by example

Simpliﬁcation, continued

36.(Hap.(a - list(axp) =P =5 > y)ANa=0)

simplifies down to

36.(Fap.(a =6 ANlist(axp) = p=y)ANa=7)
F6.(Ap.(list (6 X P) = P =y)ANa =6)
3p.(list (a X B) — b = y)

This is first-order unification.
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Constraint solving by example

Simpliﬁcation, continued

The constrained type scheme
Vy[dd.(assoc <6 —y Ax =)y
is thus equivalent to
Vy[3p.(list (a x p) = P =)y
which can also be written

VyPllist (a x p) = P =yly
Vplist (a x p) — P
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Constraint solving by example

Simpliﬁcation, continued

The initial constraint has now been eimpliﬁed down to

eE=a—ady —do—pP
def I in
daaqasp. let assocx : VP.list (a x P) — P in
p=P1xpP2
FP1Pe- < Vi Fb.(assocx X6 — P Al X 6)

The simplification work epent on assocx’s type scheme was well
worth the trouble, because we are now going to duplicate the
simplified type scheme.
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Constraint solving by example

Simpliﬁcation, continued

The sub-constraint
db.(assocx <& — Pi Al X 6)

is rewritten
36.(3p.(list (ax ) > p=6 — i) Aa; = 6)
3p.(list (a X ) — B = a; — B)
3p.(list (ax p) =a; AP = P;)

list (a x Bi) = a

Frangois Pottier A modern eye on ML type inference



Constraint solving by example

Simpliﬁcation, continued

The initial constraint has now been simplified down to

eE=a—ay —ads—p

def I in
daaqasp. let assocx : YP.list (a X P) — P in
p=P1xPp2
FP1pe. ( Vi list(a X B) = g
Now, the context defl inlet assocx : ... in[] can be dropped,

because the constraint that it applies to contains no
occurrences of assoc, X, l4, or Io.
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Constraint solving by example

Simpliﬁcation, continued

The constraint becomes

e=dad—dy —dp—P

B=psxpo
3p1po. < Vi list(a x P) = a )

daasasp.

that is,
eE=a—dy —do—p

daasazppiPo. | P =P1 X P2
Vi list(a x B) = g

This is a solved form...
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Constraint solving by example

Simpliﬁcation, the end

. and can be written, for better readability,
JapsPz. (e = a — list (a X P4) — list (a x P2) — P4 X Po2)

This constraint is equivalent to [e:e] under the context
def o in [].

In other words, the principal type scheme of e relative to o is

Yapips.a — list (a x P4) — list (a X p2) — P4 X P2
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Constraint solving by example

Rewriting strategies

Explaining constraint eolving in terms of a small-step rewrite
gystem makes its correctness and completeness proof easier—it
suffices to check that every step is justified by a constraint
equivalence law.

Different constraint solving strategies lead to different behaviors
in terms of complexity, error explanation, etc.
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Data structures

Data structures
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Data structures

Products and sums

New type constructors:

Ti=...|txt|T+T
New term constants:
() : Yaqas.aqy — as — aq X ds
w; : Yaqdo.aq X do — a;
in, : Vayac.ai— aq+az
case : Yayasd.aq+dp — (a4 — d) — (ap —a) = a

Constraint generation is unaffected.
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Data structures

Recursive types

Products and sums alone do not allow describing data strutures
of unbounded size, such as lists and trees.

Recursive types are required. Two standard approaches:
equi-recursive and iso-recursive types.
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Data structures

Equi-recursive types

New syntax for recursive types:

Tu=...|pac
Well-formedness conditions rule out bad guys such as pa.a,

whose infinite unfolding isn't well-defined.
We write T4 =, T2 if the infinite unfoldings of T4 and to coincide
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Data structures

Equi-recursive types, continued

The type system is modified by adding just one conversion rule:

rl—e:m T1 =y T2
lFe:oo

The constraint generation rules are unchanged, but constraints
are now interpreted in a universe of regular terms, requiring a
simple change to the solver: the “occur-check” is removed.

This approach is simple and powerful, but tends to accept some
pieces of code that are really broken, that is, do not work as
intended...

Frangois Pottier A modern eye on ML type inference



Data structures

lso-recursive types

The user is allowed to introduce new type constructors T via
(possibly recursive, or even mutually recursive) declarations:

Td=~t
Each such declaration adds two new term constants:

foldr : Var—Td4d
unfoldr : VYaTd—rt

Constraint generation and constraint solving are unaffected.

Frangois Pottier A modern eye on ML type inference



Data structures

lso-recursive types (example)

Combining structural products and sums with iso-recursive types,
one can declare
lista = unit + a x lista

Then, the empty list is written

foldiist. (inj4 ())
A list | of type lista is deconstructed by

case (unfoldigy ) (An....) (Aclet hd =y cinlet tl=mpocin ...)
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Data structures

Algebraic data types

In ML, structural products and sums are fused with
iso-recursive types, yielding so-called algebraic data types.

The idea is to avoid requiring both a (type) name and a (field
or tag) number, as in

foldiist, (inj, ())

Indeed, this is verbose and fragile. Instead, it would be desirable
to mention a single name, as in

Nil ()

Frangois Pottier A modern eye on ML type inference



Data structures

Declaring an algebraic data type

An algebraic data type constructor T is introduced via a record
type or variant type definition:

k k
Ta"zz&-:ti or Ta_’zﬂé,-:v,-
-
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Data structures

Effects of a record type declaration

The definition
k
Td= [—I g,’ C T
i=1
introduces the term constants

g,’ : VaTa—)HE, IE{/I,,k}
maker : VYar  —...—-u—Td

In concrete syntax, we write .4 for (£ e). When k > O, we write
{4 = e,-},.k:4 for (maker es ... &).
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Data structures

Effects of a variant type declaration

The definition

k
Tﬁzzg/:'ﬂf
=1

introduces the term constants

g9 VZw;—>Ta" iE{/],...,k}
caser : VYayTd— (t1—y)—...(t—oy)—v

In concrete syntax, we write case e [¢;: e, for
(caser e eq ... ey) when k> 0.
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Data structures

Algebraic data types (example)

One can now declare
list a = Nil : unit + Cons : a X list a
This gives rise to

Nil : Va.unit — lista
Cons : Va.aXlista— lista
casejgy : Yaylista — (unit —y) — (a X lista —y) -y
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Data structures

Algebraic data types (example, continued)

Then, the empty list is written
Nil ()
A list | of type lista is deconstructed by

case | [
Nil - An. ...
| Cons : Aclet hd = wycinlet tl=mocin ...

]
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Recursion

Recursion
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Recursion

fix

Recursion can be introduced via the term constant
fix: Vap.((a = p) = (@ —=P)) —a—P
This allows defining
letrec f = Ax.e4 in ex
as syntactic sugar for

let f = fix (Af.Ax.eq) inep
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Recursion

Monomorphic recursion

As a result of these definitions, the constraint
[letrec f = Ax.eq in es : T
is equivalent to
let f:Vapllet f:a— Pix:ainfeq:p]la— pinfez: 7]

The variable f is considered monomorphic while typechecking e4.
It receives a polymorphic type echeme only while typechecking eo.
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Recursion

Polymorphic recursion

Mycroft suggested extending Hindley and Milner's type eystem
with the rule

f:obAxeq 0 f:obes:tT

lNkFletrec f = Axeqines: T

where o is an arbitrary type scheme.
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Recursion

Polymorphic recursion, continued

Type inference in the presence of polymorphic recursion appears
to require guessing a type scheme, which first-order unification
cannot do.

In fact, the problem is inter-reducible with semi-unification, an
undecidable problem.
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Recursion

Polymorphic recursion, continued

Yet, type inference in the presence of polymorphic recursion is
easy if one is willing to rely on a mandatory type annotation.

Let’s modify the type system’s specification:

f:obAxeq 0 f:obes:tT

FEletrecf:0 = Axeq ines: T

so that o is no longuer guessed.
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Recursion

Polymorphic recursion, continued

Then, define
[letrec f: 0 = Ax.eq in ez : 7]

as
let f:oin ([Axes: o] Alez:t])

It is clear that f is assigned type scheme o inside and outside
of the recursive definition.

There remains to define the new notation [e: o]..
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Recursion

Universal quantiﬁcation

It should be intuitively clear that e admits the type scheme
VYa.a — a iff e has type a — a for every possible instance of a,
or, equivalently, for an abstract a.

To express this in the constraint language, one introduces
universal quantification:

Cu=...|VaC

Its interpretation is standard.
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Recursion

Universal qua ntification, continued

One can then define
[e : Va.r]

as syntactic sugar for
Va.[e: 7]

The need for universal quantification arises when polymorphism is
asserted by the programmer—as opposed to inferred by the
system.
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Optional type annotations

Optional type annotations
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Optional type annotations

Optional type annotations

Optional type annotations are useful as a means of documenting
programs.

Because ML has full type inference, optional type annotations do
not help accept more programs. Erasing all optional annotations
in a well-typed program yields another well-typed program,
possibly with a more general typel
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Optional type annotations

Speciﬁcation

Optional type annotations are introduced by the rule

NFe:T
FrE(e:t):t

Here, T must be a ground type, because we have not (yet)
introduced any means of binding type variables in expressions.
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Optional type annotations

Constraint generation

It is easy for constraint generation to take optional annotations
into account:
[(e:v): ] =[e:c]Anr="T

It is not difficult to check that this constraint entails

le: 7]

which means that the annotation makes the constraint more
specific.
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Optional type annotations

Introducing type variables

What about non-ground type annotations? These make perfect
eense, provided the programmer is allowed to bind type variables.

A type variable represents an unknown type. But does the
programmer mean that the program should be well-typed for
some or for all instances of this variable?
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Optional type annotations

Speciﬁcation

Two new expression forms allow binding type variables
existentially or universally:

F'Flt/dle:o lke:o a ¢ fov(ln)
F'kdae:o 'k VYae:Vao
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Optional type annotations

Constraint generation

Constraint generation for the first form is straightforward:
[Ha.e: 7] =3Fafe: 1]

The type annotations inside e can now contain free occurrences
of a. Thus, the constraint [e:t] itself can contain such
occurrences. They are given meaning by the existential quantifier.
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Optional type annotations

Constraint generation (example)

For instance, the expression
Axq.Axo.da.((xq 1 a), (xo @ a))
has principal type scheme

Yaa—a—axa

Indeed, the generated constraint contains the pattern
Ja.([x1 :a] Axe:a] A...)

which requires x4 and xo to share a common (unspecified) type

Frangois Pottier A modern eye on ML type inference



Optional type annotations

Constraint generation, continued

Constraint generation for the second form is somewhat more
subtle. A nalve definition fails:

[Va.e:t] = Va.[e: 7]

This requires T to be simultaneously equal to all of the types
that e assumes when a varies.
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Optional type annotations

Constraint generation, continued

One can instead define
[Va.e: 7] =Vady[e:y] Ada]e: 7]

This requires e to be well-typed for all instances of a and
requires T to be a valid type for e under some instance of a.

The trouble with this definition is that e is duplicated.. but this
can be avoided with a slight extension of the constraint
language (exercisel).
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Optional type annotations

Conclusion of Part |

Type inference for the core of ML and for many of its
extensions (not all of which were reviewed here) reduces to
first-order unification under a mixed prefix.

Some features (such as polymorphic recursion) require mandatory
type annotations.
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The problem

lso-universal types

Arbitrary-rank predicative polymorphism
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The problem
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The problem

A problematic term

Consider the function apply2, defined as
M2AxAy.(f %, y)

In Hindley and Milner's type system, f must receive a
monomorphic type. This leads to the type scheme

Yap.(a = P) —sa—a—pPxp

where x and y must have identical type.
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The problem

A problematic term, continued

But perhaps
Vap.(Vyy —y) ma—p—axp

was intended? Or perhaps
Yapo.(Nyy = 6) »a—Pp—>6x7d
was the desired type? Or perhaps
Yaps.(Vyy =y x6) = a—p— (axd)x(pxJ),

or perhape, or perhaps...
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The problem

System F

None of these types are instances of one another. System F,
where each of these types is valid, does not have the prinoipal

types property.
In fact, type inference for System F is undecidable...
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The problem

Rank-1 polymorphism

This explaine why Hindley and Milner's type system is restricted
to rank--1 polymorphism.

The need for higher-rank polymorphism is mitigated by features
such as ML’s module system and Haskell's type classes, but
these workarounds are not always convenient.
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lso-universal types

lso-universal types

A simple route for introducing arbitrary-rank polymorphism into
Hindley and Milner’s type eystem, without compromising type
inference, is to follow the up-to-explicit-isomorphism approach
that was used for recursive types.

Frangois Pottier A modern eye on ML type inference



lso-universal types

Speciﬁcation

This leads to “iso-universal” types that require an explicit
declaration:
Tad=Vpo

One would like each such declaration to add two new term

constants: _
foldr : Va.(Vpr)—>Td
unfoldr : VaTd— Vpo

But these arent valid type schemes...
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lso-universal types

Speciﬁcation, continued

Though foldr cannot be viewed as a constant, it can be
introduced as a new construct:

rFe:[T/d)(VRr)
Fr'kfoldre:TT

Constraint generation is as follows:

[foldr e:t'] = Fa.(Je: VBT AT =1
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lso-universal types

Speciﬁcation, continued

Though
unfoldr : Va.T 4 — VYp.T

doesn’t literally make sense,
unfoldr : Vap.Td —t

does, and achieves the desired effect.
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lso-universal types

Example

For instance, one can declare
ld =¥yy —vy
and modify apply2 as followe:
M. AxAylet £ = unfoldy, fin (f x,f y)

It is invoked by
apply2 (foldi (Ax.x))
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lso-universal types

Summary

Uses of foldr and unfoldr can be viewed as mandatory type
annotations and indicate where type abstraction and type
application should be performed.

“lso-universal” types are usually fused with algebraic data types,
g0 that type abstraction and application are performed at data
construction and deconstruction time.

The same technique can be applied to existential types.
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lso-universal types

Limitations

This mechanism allows encoding all System F programe.

However, it is somewhat verbose. Furthermore, the encoding is
non-modular. A single System F type can have many distinct
encodings, and one must explicitly convert between them.
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Arbitrary-rank predicative polymorphism

An idea

How about relying on mandatory type annotations, without going
through the detour of declaring iso-universal types?

For instance, for this version of apply2:
A Vyy = v AAN(F X, y)
it should not be difficult to infer the type
Vap.(Vyy —y) ma—p—axp

should it?
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Arbitrary-rank predicative polymorphism

An idea, continued

The idea is to allow arbitrary-rank polymorphic types when
mandated by an explicit type annotation.

One establishes the convention—known as predicativity—that
type variables stand for monotypes. In terms of type inference,
this means that polymorphic types are never inferred.

| am now about to present an approach that draws on ideas by
Laufer and Odersky, Peyton Jones and Shields, and Rémy.
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Arbitrary-rank predicative polymorphism

Syntax

T = d|torv
p u= alo—oo
o == VYap

T ranges over monotypes. o ranges over polytypes. p ranges over
the subset of polytypes that have no outermost quantifiers.
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Arbitrary-rank predicative polymorphism

Syntax, continued

da.c
x| Axele(e:0)|letx=(e:0)ine

i

e
Application and let nodes must now be annotated so that terms
can be typechecked (top-down) without guessing a polytype.

Type annotations can be made optional by interpreting the
absence of an annotation as the trivial annotation 3P.p, which
means “any monomorphic type”.
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Arbitrary-rank predicative polymorphism

Specification: typing rules

Mx:04kFe:oo

M x:T(x
() I’I—)\x.e:a4—>ag

Mk e [T/Blon — o4 Mk es: [T/Blos
[l ] (62 : 35.0’2) 104

[ éeq . VEI.[E/E]J4 Ix: VEI.[E/E]O’4 [ éo .02

MElet x = (64 :E|E.J4) ines: oo

FTke:o a ¢ ftv(r) Fke:o’ o' <o
lFe:Vao lFe:o
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Arbitrary-rank predicative polymorphism

Specification: type containment

A subset, identified by Laufer and Odersky, of the type
containment relation studied by Mitchell for System F.

o<o’
< o4 < oy oo < 05 a & ftv(o) [c/alo <p
a<a
- o4 — 0o < 04— 0% o <Va.co’ (Va.o)<p

Here, instantiation is predicative. Furthermore, Mitchell's axiom
Ya.o — o’ < (Va.o) — Va.o’

is not included.
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Arbitrary-rank predicative polymorphism

Comments

It is fairly clear that the type system is sound, since it can be
embedded within System F1.

It is not so clear at first how to perform type inference, since
the system has two non-syntax-directed rules, but a
syntax-directed reformulation existe...
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Arbitrary-rank predicative polymorphism

Syntax-directed specification

Mx)<p Mx:oq4be:on Tke:o a ¢ fov(l)
FeEx:p [+ Axe:o04 — 0o te:Yao

[ e . [1?/5]0’2 — p/] [ éo . [6/5]0'2
[ [ (62 : HE.JZ) 2

Fheq:[2/Bloy  a#fv)  Tx:Va[Z/Blosben: po
FElet x = (eq: EIE.W) inez: p2
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Arbitrary-rank predicative polymorphism

Comments

The rules on the previous slide can be read as an algorithm by
viewing the type in the conclusion as an input—an expected type.

Then, one can check that only monotypes are guessed. Explicit
annotations are required at every node where a polytype would
otherwise have to be guessed.

When all type annotations are omitted (that is, Jp.p), the
specification coincides with that of Hindley and Milner's type
system. Thus, this is a conservative extension.
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Arbitrary-rank predicative polymorphism

Constraints

Let’s extend the syntax of constrainte to allow for polytypes.

c t=t|o<o|CAC|TaC|VaC|x=<c|defx:cinC
¢ u= Va[Clo

Type variables still denote monotypes, so the constraint solver is
essentially unchanged, except it now needs to reduce ordering
constraints o4 < 0p...
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Arbitrary-rank predicative polymorphism

Reducing ordering constraints

This reduction is due to Laufer and Odersky.
<t — =t

01— 02 < dg —dp
o4 —00<a — 3614612.
aq —dpo =d

aq — dp < 04— 02
a<l o1 —0p — 3014612.
a=dq —dp

o1 —0p< o) -0, — oy <oiNop <0
(Vao)<p — da(loc<p)

o <Vao' — VYa(o<0)
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Arbitrary-rank predicative polymorphism

Constraint generation

[x: el

[Ax.e : g
[[;‘X.@ L0 — 0'2]]
H€/| (62 . 35.0’2) : P’l]]

llet x = (¢4 : Fp.ov) in ez : po]

[e : Va.o]

x=<p

o D21l

aqs —do=a
let x: 04 in [e: o2
- eq: 00 —
Elﬁ( %e; : 0“2]] mﬂ >
let x : VB[[es : 04]].04 in
[e2 : p2l
Va.[e: o]
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Arbitrary-rank predicative polymorphism

Dealing with side effects

In the presence of the value restriction, the syntax-directed
typing rules and the constraint generation rules are slightly
different. Some details change, but the general ideas are the

same.
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Arbitrary-rank predicative polymorphism

Limitation

In the calculus that we just studied, one can write:

let apply2 =
(M2x.Ay.(f %, y)
:36.(Vyy —y) —= 6) in
apply2 (Az.z : Nyy —v)

and let the system infer that this expression has type
Yapa —Pp—axp

This is nice, but redundant: the type echeme for f is given twice.
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Arbitrary-rank predicative polymorphism

Introducing local propagation

The two annotations are so clearly related to one another that
only one annotation should suffice...

Peyton Jones and Shields suggested enhancing the system with
the ability of locally propagating polymorphic types so as to
reduce the amount of necessary annotations.

Local propagation—also known as elaboration or local
inference—can be viewed as a preprocessing step that turns a
program expressed in a surface language into a program
expressed in the redundant core calculus.
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Arbitrary-rank predicative polymorphism

The surface language

In the surface language, we allow function parameters to carry
a type annotation, and conversely, allow application and let
nodes to carry no annotation.

en=...|Mx:0eleelletx=c¢ine

Here, the absence of an annotation is not interpreted as the
trivial annotation dP.p. Indeed, local type inference might be able
to supply a nontrivial annotation.
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Arbitrary-rank predicative polymorphism

Shapee

Local inference is not concerned with monotypes at all, since
traditional type inference for the core calculus is perfectly
capable of finding out about them.

Local inference deals with shapes, which by definition are closed
polytypes extended with a special constant #.
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Arbitrary-rank predicative polymorphism

Shapee, continued

A type o is turned into a shape [o]| by replacing all of its free
variables with # and exploiting the equation # — # = #.

For instance,

[Vaq.(Vaz.(a4 — az2) — (Po — Po)) — (1 — P2)]
= Vay.(Naz.(a4 — a) = #) = #
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Arbitrary-rank predicative polymorphism

Shapee, continued

A type annotation is turned into a shape by setting
[Fp.0] =[]

Conversely, a shape S is turned into a type annotation by
replacing each occurrence of # with a distinct type variable and
by existentially quantifying these type variables up front.

For instance,

LV&M.(VQQ.(&M - 672) - #> - #J
= dP4PoNas.(Naz.(a4r — az) — Pq) — P2
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Arbitrary-rank predicative polymorphism

Shapee, continued

Last, instantiating the root quantifiers of a shape S with #
yields a new shape g

For instance,

(Yau.(Naz.az — a4 — aq) — #)b
= (Vﬂg.ﬂg — #) — #
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Arbitrary-rank predicative polymorphism

Design of a shape inference algorithm

We are now ready to design an algorithm that infers shapes
and uses them to produce an annotated program in the core
calculus.

The design is necessarily ad hoc, and aims for simplicity and
predictability.
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Arbitrary-rank predicative polymorphism

Bidirectionality

Following a long tradition, shape inference operates in one of
two modes: synthesis and checking.

Fre:S=¢e" synthesis, S is inferred
FFpe:S=¢€" checking, S is provided

The two judgements are defined in a mutually recursive way.

e is a surface language expression, while ¢’ is a core language
expression. [ maps variables to shapes.
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Arbitrary-rank predicative polymorphism

Speciﬁcation

Each construct in the surface language comes in two flavors:
annotated or unannotated, and can be examined in two modes:
synthesis or checking.

That’s a lot of rules.. let’s look at just a few.
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Arbitrary-rank predicative polymorphism

Speciﬁcation, continued

Unannotated abstraction, synthesis mode:

r,x:#l—Te:S:>e/
My Axe: #— S = Axe’

The shape of the argument is unknown. No annotation is
produced.
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Arbitrary-rank predicative polymorphism

Speciﬁcation, continued

Annotated abstraction, synthesis mode:

MLx:[olkre:S=¢
M Alx: Fpo)e: [o] — S
= Ixlet x = (x: Fp.o) ine

The shape of the argument is found in the existing annotation.
An annotation is produced so as to allow x to have nontrivial
shape in the core calculus.
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Arbitrary-rank predicative polymorphism

Speciﬁcation, continued

Unannotated let definition, either mode:

r]—]‘&}:s/]:}@f] r,X:S4[—I€2182:>6/2
FEplet x=eqinea: Sp = let x = (€7 : [S1]) ines

[ stands for one of T and |.

The synthesized shape Sq is used when examining the right-hand
side. No generalization is performed, since shapes do not contain
type variables.

An annotation is produced so as to allow x to have nontrivial
shape in the core calculus.
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Arbitrary-rank predicative polymorphism

Speciﬁcation, continued

Unannotated application, synthesis mode:

Fhe:S=¢, =% —-8 The:S=é
FThrerex:Si=¢é) (65 [S2))

The function’s shape is synthesized and ite domain shape is
used to examine the argument in checking mode.

An annotation is produced so as to allow the argument to have
nontrivial shape in the core calculus.
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Arbitrary-rank predicative polymorphism

Exanuﬂe

In the surface language, one can write:

let apply2 =
Af : Vyy — y) AxAy.(f x,f y) in
apply2 (Az.z)

The system finds that apply2 has shape
(Vyy —v)— #
This in turn allows determining that Az.z should have shape
(Vry = v)

A core calculus term with two annotations is produced—the one
we saw before.
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Arbitrary-rank predicative polymorphism

Are we happy?

In the surface language, one can define and use functions with
arbitrary-rank polymorphic types, modulo a reasonable amount of
explicit type annotations, and without giving up Hindley-Milner
type inference.

S0? ..
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Arbitrary-rank predicative polymorphism

Predicativity

This is a predicative type system. For instance, if id has type
VYa.a — a

then it cannot be implicitly coerced to type

(Yry —v) = (Vv —v)
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Arbitrary-rank predicative polymorphism

Predicativity, continued

Indeed,
(Ya.a — a) < (Vyy —y) = (Yyry —y)

simplifies down to

Jda.(a—a < (Vyy —vy) = (Yyy =)

(Vyy —vy)<a
Fa. ( a< (Yyy —y) >

Ela.< Ely.y—>y:a)
Yya=y—y

false
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Arbitrary-rank predicative polymorphism

Re-introducing impredicativity

In practice, impredicativity is essential.

The easiest way of re-introducing it is via an explicit
impredicative instantiation construct. This is heavy, though.

One can resort to more local inference to guess where
impredicative instantiation is required...

. or, more ambitiously, forget about local inference and build
some measure of impredicative instantiation into the constraint
language.
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Arbitrary-rank predicative polymorphism
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Generalized algebraic data types
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Introducing generalized algebraic data types

Typechecking: MLGI

Simple type inference: MLOX

Shape inference
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Introducing generalized algebraic data types

Introducing generalized algebraic data types
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Introducing generalized algebraic data types

Algebraic data types (reminder)

The data constructors associated with an ordinary algebraic
data type constructor T receive type schemes of the form:

KaVary x...xt,—Ta
For instance,

Leaf :: Ya.tree(a)

Node :: Va.tree(a) x a x tree(a) — tree(a)

Matching a value of type tree(a) against the pattern Node(l,v,r)
binds I, v, and r to values of types tree(a), a, and tree(a).
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Introducing generalized algebraic data types

lso-existential types

In Laufer and Odersky’s extension of Hindley and Milner's type
system with iso-existential types, the data constructors receive
type schemes of the form:

K:Vapoy x...xt, —Ta

For instance,
Key :: VB.p X (P — int) — key

Matching a value of type key against the pattern Key(v,f) binds
v and f to values of type p and P — int, for an unknown p.
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Introducing generalized algebraic data types

Generalized algebraic data types

Let us now go further and remove the restriction that the
parameters to T should be distinct type variables:

K::Vﬁ.w X...XT7,—>TT

Instead, they can be arbitrary types, with ftv(T) C P.

Matching a value of type T a against the pattern K(x4,...,xp)
binds x; to a value of type t;, for some unknown types P that
satisfy the constraint T = a.
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Introducing generalized algebraic data types

Generalized algebraic data types, continued

With generalized algebraic data types, pattern matching
introduces new type equations that can be exploited to establish
well-typednese.

In other words, the success of a dynamic test can yield extra
static type information.

Generalized algebraic data types are very much like the inductive
types found in theorem provers, but have only recently received
interest in the programming languages community.
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Introducing generalized algebraic data types

Applicatione

Applications of generalized algebraic data types include:

Generic programming (Xi, Cheney and Hinze)

Typed meta-programming (Pfenning and Lee, Xi, Sheard)

>
>

> Tagless automata (Pottier and Régis-Gianas)

> Type-preserving defunctionalization (Pottier and Gauthier)
>

and more...
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Introducing generalized algebraic data types

Example

Here is typed abstract syntax for a simple object language.

Lit :: int — term int
Inc :: term int — term int
IsZ :: term int — term bool
If :: Ya.term bool — term a — term a — term a
Pair :: Yap.term a — term p — term (a X p)
Fst :: Yap.term (a x p) — term a
ond :: VYap.term (a x p) — term p

This is not an ordinary algebraic data type..
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Introducing generalized algebraic data types

Example, continued

This definition allows writing an evaluator that does not perform
any tagging or untagging of object-level values:

u(eval : Ya.term a — a).2t.
caset of
| Liti— (xa=int )i
Inct— (% a=int %) eval t +
IsZ t — (x a = bool %) eval t = O
Ifbte—if eval b then eval t else eval e
Pair a b — (x daqdz.a = a4 X ap %) (eval a,eval b)
Fst t — fst (eval t)
Snd t — snd (eval t)

l
|
|
l
|
I
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Introducing generalized algebraic data types

From type inference to constraint solving

In the presence of generalized algebraic data types, reducing
type inference to constraint solving remains reasonably
straightforward (Simonet and Pottier, Stuckey and Sulzmann).

For eval, the constraint could look like this...
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Introducing generalized algebraic data types

Examp]e, continued

let eval : Ya.term a — a in

Ya.
let t:term ain
/ t < term p \
p=int =

leti:intini<a

dAp. | Vaqao.p = aq X ao =
let a:term a4;b : term ap in
Jys.(eval K4 — PrNa=xyq)
FPaPo. | Fya(eval Ly2 = P2 Ab < y2)
\ P1xpP2=a
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Introducing generalized algebraic data types

Examp]e, continued

let eval : Ya.term a — a in

Va.
(a:int:> \
leti:intini<a

Yaqag.a = dq X dp =
let a:term a4;b : term as in
Fya.(eval Lyr = PrANa=yq)
AP4Po. | Fye.(eval Jyz2 — Pa Ab < y2)
\ p1xpa=a
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Introducing generalized algebraic data types

Examp]e, continued

Ya.
a=int=>int=a

Yaqids.a = aq X do =

aq = P4
FpaPo. | a2 = P2
Prxpo=a
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Introducing generalized algebraic data types

Examp]e, continued

Va.
true

Yaqdo.ad = adq X do = dq X do = d

The constraint eventually eimpliﬁee down to true, so eval is
well-typed.
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Introducing generalized algebraic data types

Huh?

It looks as if there is no problem!?
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Introducing generalized algebraic data types

implicatione of implication

Adding implication to the constraint language yields the
first-order theory of equality of trees, whose satisfiability problem
is decidable, but intractable.

For eval, solving was easy because enough explicit information
was available.

This is not just a matter of computing power. These
constraints do nhot have nice solved forms...
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Introducing generalized algebraic data types

implicatione of implication, continued

What types does this function admit?

Eq:Vaeqaa

cast =
Yap.Aw :eqa P).A(x: a).
case w of
Eq— (xa=px)x
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Introducing generalized algebraic data types

implicatione of implication, continued

Both of these are correct:

Vap.eqap —a—a
VYapeqaPp—a—p

but none is principall The principal constrained type scheme
produced by constraint solving would be

Vapyla =p=>a=yleqaPp—a—y

which indeed subsumes the previous two.
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Introducing generalized algebraic data types

implicatione of implication, continued

The constraint
a=Pp=a=y

cannot be further simplified; it is a solved form.

Introducing implication means that constraints no longer have
most general unifiers. |In other words, the system no longer has
principal types in the standard sense.
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Introducing generalized algebraic data types

A solution

| am now about to present a solution where principal types are
recovered by means of mandatory type annotations and where a
local shape inference layer is added so as to allow omitting
some of these annotations.

This is joint work with Yann Régis-Gianas and draws inspiration
on work by Peyton Jones, Washburn, and Weirich.
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Typechecking: MLGI

Typechecking: MLGI
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Typechecking: MLGI

MLCI

Let’s first define the programs that we deem sound and would
like to accept, without thinking about type inference.

This is MLGI—ML with generalized algebraic data types in
implicit style.
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Typechecking: MLGI

Data constructor declarations

Every data constructor K is assigned a closed type scheme by
a declaration of the form

K:Vapt) x...xt, > Tat

a are ordinary parameters, while T are generalized parameters.
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Typechecking: MLGI

Types

Types tu=a|lt—t|TTT
Type schemes o u=Va.r
Simple type annotations & :u=djr
Polymorphic type annotations ¢ := dy.c

Each type annotation binds its own flexible type variables y. It
can also have free type variables, which are interpreted as rigid...
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Typechecking: MLGI

Expreeeione

Expressions eu=x|Ax:0).e|ee|letx = eine|pu(x:¢)e]|
Ke...e|caseeof ¢ |Vae| (e:0)
Clauses ¢ :=p.e
Patterns p u= KP &%

This is Core ML with polymorphic recursion, (generalized)
algebraic data types, and type annotations.

Type variables are bound rigidly (universally) only. This
(nonessential) restriction simplifies the presentation.
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Typechecking: MLGI

Speciﬁcation

MLGI’s typing judgments take the form
ElTke:o

where E is a system of type equations.

Most of the rules are standard, modulo introduction of E...
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Typechecking: MLGI

Speciﬁcation, continued

E is exploited via implicit type conversions:

E,l’l—e:w E||—'54:'52
E,rl—et'l;g

The symbol I stands for constraint entailment.
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Typechecking: MLGI

Speciﬁcation, continued

These are standard rules:

K<Lty X...xX7, > T1T4 T2 E.,Tte:tq4
Vi E,lT ket Vi E,fFe T4 >0
E;THKeq...en:TT4T2 E,l' Fcaseeofcqy...c,:To

The interesting stuff happens in the rules that deal with
individual clauses...

Frangois Pottier A modern eye on ML type inference



Typechecking: MLGI

Speciﬁcation, continued

p:TTTo b (BELT)  EAE T ket
P # ftv(E,T,10)

E,rl—P.etT'l‘:/]'ﬁg—)'Eg

Inside each clause, new (abstract) type variables, new type
equations, and new environment entries appear.

They are found by confronting the type T T4To of the scrutinee
with the pattern p..
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Typechecking: MLGI

Speciﬁcation, continued

Simple, but subtle.

KLSVRPT4X...XTp =TT P#..

KEX/| ..,Xn:Tﬁ4 'Eg - (E,"lig :l:/,(X/| :Eq;.,.;xn:'Dn))

Confronting the generalized type parameters (T versus Tz) gives
rise to new equations.

Instantiating the ordinary type parameters (G versus T4) allows
determining t4,...,Tp, as in ordinary ML.
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Typechecking: MLGI

Results and non-results

Theorem (Soundness for MLGI)
Well-typed MLCI programs do not go wrong.

As explained earlier, MLGI does not have principal types.
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Simple type inference: MLGX

Simple type inference: MLOX

Frangois Pottier A modern eye on ML type inference



Simple type inference: MLGX

MLGX

Let’s require sufficiently many type annotations to ensure that
E is known at all times and is rigid. Let's also make all type
conversions explicit.

This is MLGX—ML with generalized algebraic data types in
explicit style.
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Simple type inference: MLGX

Speciﬁcation

E;TE(e:0): 14
Vi E,; T+ (P/ZQ).@,‘:'E/] — T2
E.,l'Fcase(e:0)of pr.eq...pnen: T2

We require a type annotation at case constructs and pass it
down to the rule that examines individual clauses...
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Simple type inference: MLGX

Speciﬁcation, continued

The rule that checks clauses now exploits the type annotation:

p:TT L (BE,T)  EAE T Fe:t
p#... 3
ETE(p:3pT xT0)e:Thyx — 1o

The generalized type parameters taken from the annotation are
used to determine E’. No guessing is involved. The weaker the
annotation, the weaker E’.

(x stands for a type that is discarded.)

(See analogous rule in MLGI.)
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Simple type inference: MLGX

Speciﬁcation, continued

E is now exploited only through an explicit coercion form:

E.;T ety K< (T4 > T2) ElF«
E.TE(e:k): T2

The syntax of coercions is
kK »=dp.(t > 1)
E validates the coercion 9y.(t4 > T2) iff
ElFVyT, =12

holds.

Frangois Pottier A modern eye on ML type inference



Simple type inference: MLGX

Soundness and completeneee

Theorem (Soundness for MLGX)
If E,TEe:o holds in MLGX, then it holds in MLGI as well.

Theorem (Completeness with assistance for MLGX)

If E,TEe:o holds in MLGI, then there exists an annotated
version € of e such that E,T e’ : 0 holds in MLGX.
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Simple type inference: MLGX

Type inference for MLGX

Type inference for MLCX decomposes into two conceptually
separate tasks:

» compute E at all program points and check that every
explicit coercion is valid;

» forget about E and follow the standard reduction to
constraint solving. A coercion dy.(v4 > To) behaves just like
a constant of type Vy.r4 — to. No implication constraints
are involved, so we recover principal types.

Details are omitted.

Frangois Pottier A modern eye on ML type inference



Simple type inference: MLGX

Programming in MLGX

In MLGX, eval is written:

u(eval : Ya.term a — a).Ya.lt.
case (t : term a) of

| Liti— (i:(int > a))
| Inct — (eval t +1: (int > a))
| IsZ t — (eval t = O : (bool > a))
| If bte—if eval b then eval t else eval e
| Pair P4 P2 ab — ((eval a,eval b) : (P4 X P2 > a))
| Fst Bo t — fot (eval t)
| nd B4 t — snd (eval t)

This is nice, but redundant...
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Simple type inference: MLGX

MLGX is modest

In short, MLGX marries type inference for Hindley and Milner’s
type system with typechecking for generalized algebraic data
Types.

In order to reduce the annotation burden, we again turn to local
shape inference...
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Shape inference

Shape inference
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Shape inference

Shapee

Shapes are defined by
s u=Vy.T

The flexible type variables y are bound within t.
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Shape inference

Shapee, continued

Flexible type variables are interpreted as standing for unknown
or polymorphic types.

That is, the shape y.y —y adequately describes the integer
successor function as well as the polymorphic identity function.
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Shape inference

Shepee, continued

Shapee can have free type variables; these are interpreted as
rigid.
For instance, the shape

y.axy

describes a pair whose first component has type a, where the
rigid type variable a was introduced by the programmer, and
whose second component has unknown type.
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Shape inference

Basic operations

1 = vy

(71.21) = (f2v2) = Vafet1 — T2
D(L) = 1

Dyt — %) = 7

(L) = 1

Cly.* — t2) =y

L is the uninformative shape.

Out of two shapes, one forms an arrow shape. Conversely, out
of an arrow shape, one projects domain and codomain.

Frangois Pottier A modern eye on ML type inference



Shape inference

Ordering shapes

Shapes are equipped with a standard instantiation ordering.

For instance,
(v1.a X y1) X (y2.a X (a = y2))
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Shape inference

Ordering shapes, continued

When two shapes have an upper bound, they have a least upper
bound, computed via first-order unification.

For instance,
(yvy =y) U (int = L)=int —=int

(Recall that int — L stands for y.int —vy.)

This use of unification is local.
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Shape inference

Normalizing shapes

If an expression is found to have both shape a and shape
y.p1 —y, then shape inference should fail, because these do not
have an upper bound...

unless some equation in E proves that these shapes really
are compatible. For instance,

a=ps— P2

is such an equation.
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Shape inference

Normalizing shapes, continued

If we take E into account, then the shapes a and P4 — Po
become logically interchangeable.

But the latter is more informative...

. 80 we choose to always normalize the former into the latter.
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Shape inference

Normalizing shapes, continued

Normalization is performed, roughly epeaking, by viewing E as a
rewrite system, and preferring structured types to type
variables.

An arbitrary choice is made when an equation involves two type
variables. Ouch! This is bad—but normalization is desirable.

We write s|g for the normalized version of s with respect to E.
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Shape inference

Pruning shapes

Recall this problematic code snippet:

cast =
Yap.Aw :eqa P).A(x: a).
case w of
Eq— (xa=px)x

Shape inference will probably infer that x has shape a, which is
correct, up to the equation a = p.

Can it rightfully infer that the case construct also has type a?
No, because the equation a =P is no longer available. The
correct shape could be P, and the two are incompatible.
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Shape inference

Pruning shapes, continued

To ensure that we only infer correct shapes, we prune unreliable
information when exiting a case construct.

Thus, we infer L instead of making an arbitrary decision.
This allows us to later prove a soundness theorem.

One could also choose to ignore this issue...
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Shape inference

Algorithm W

Here is a shape inference algorithm inspired by Peyton Jones et
al’s. “wobbly types” paper.

It is bidirectional:

E.-TH el s~ €& synthesis, s is inferred
E.TFels~ ¢ checking, s is provided

I maps variables to shapes.

An invariant is that s is normalized with respect to E.
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Shape inference

Algorithm W, continued

The transformed term €& is identical to e, except

> all existing type annotations are normalized,
> new type annotations are inserted around case scrutinees,

> type coercions are inserted at uses of variables and around
some case clauses.
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Shape inference

Algorithm W, continued

Variable, synthesis mode:

(x:8) €T
ETF x15le ~ (x 1z o)

The inferred shape is the normalized version of the shape in T.

This normalization step is reflected in the transformed
expression by inserting an explicit coercion...
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Shape inference

Algorithm W, continued

By definition,
(e ley.r)

is sugar for
(e:T7.(c > vle))

Inserting a coercion amounts to explicitly telling MLGX about the
equations that we are exploiting.
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Shape inference

Algorithm W, continued

An instance of the rule is

(x:a)€T
a=int,I'F xTint ~ (x:(a > int))

That is, if x is known to have shape a and if the equation
a =int is locally available, then we infer that x has shape int
and insert the corresponding coercion.
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Shape inference

Algorithm W, continued

Application, synthesis mode:
ETH e Ts~ &
E;TE ex | D(s) ~ e

E;TH esexTCs) ~ &) e

Simple stuff. Arbitrary choices of modes in the premises.
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Shape inference

Algorithm W, continued

Explicit type annotation, synthesis mode:

ETkelllg ~¢
ETE (e:0)T0]g ~ (¢/:6]F)

The mode changes from synthesis to checking.

The type annotation is normalized in the transformed expression.
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Shape inference

Algorithm W, continued

Clause, checking mode:

p:TTiTo k- (BE,T) ENE T[T )V el slens ~ €
p#... 7z

ETE (p:7T%4T2)e L 6~ p(e Tere o)

The environment is extended with new bindings of variables to
shapes.

The expected shape s is normalized with respect to the new
theory EANE’.

This normalization step is reflected by inserting a reverse
coercion...
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Shape inference

Programming in MLGX

This is how the surface version of eval is transformed into:

u*(eval : Va.term a — a).)t.
case (t : term a) of

| Liti— (i:(int > a))
| Inct — (eval t +1: (int > a))
| 1sZ t — (eval t = O : (bool > a))
|Ifbte—if eval b then eval t else eval e
| Pair B4 Po ab — ((eval a,eval b) : (B4 X Po > a))
| Fst po t — fst (eval t)
| Snd B4 t — end (eval t)
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Shape inference

Soundness

Theorem (Soundness for Algorithm W)
Let E,TFe:o hold in MLGI. Let EIFT7 <X T hold. Then,

1. If E,T' - eTs~ € holds in W, then EIF s <o holds and
E,T'ké :0 holds in MLGI.

2. ... (analogous statement for checking mode)

The inferred shape s is a sound approximation of the true
shape o, and the changes made to the program do not in
principle break it.

Still, there is no guarantee that the transformed program is
well-typed in MLGXI
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Shape inference

Are we happy?

MLCX seems simple but robust.

There is no doubt that Algorithm W can be improved (and that
is done in the paper), but any shape inference algorithm is
bound to be ad hoc.
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Shape inference
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Part IV

Conclusion
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Constraint-based type inference

Constraint-based type inference is a versatile tool that can deal
with many language features while relying on a single constraint
solver.

The solver’s definition can be complex, but its behavior remains
predictable because it is correct and complete with respect to
the logical interpretation of constrainte.
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Mandatory type annotations

Some constraint languages have intractable or undecidable
satisfiability problems.

Instead of relying on an incomplete constraint solver, it is wise
to modify the constraint generation process o as to take
advantage of user-provided hinte—typically, mandatory type
annotations.
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Local type inference

If the necessary hints are so numerous that they become a
burden, a local type inference algorithm can be used to
automatically produce some of them.

Although its design is usually ad hoc, it should remain
predictable if it is sufficiently simple.
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Thank you.
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