
1

A modern eye on ML type inference

Old techniques and recent developments

François Pottier

September 2005

François Pottier A modern eye on ML type inference

2

Types

A type is a concise description of the behavior of a program
fragment.

Typechecking provides safety or security guarantees.

It also encourages modularity and abstraction.

These aspects are not the topic of these lectures.

François Pottier A modern eye on ML type inference

3

Type inference

Types can be extremely cumbersome when they have to be
explicitly and repeatedly provided.

This leads to type inference...

François Pottier A modern eye on ML type inference

4

Constraints

A program fragment is well-typed iff each of its own
sub-fragments is itself well-typed and if their types are
consistent with respect to one another.

Thus, a type inference problem is naturally expressed as a
constraint made up of predicates about types, conjunction, and
existential quantification.

François Pottier A modern eye on ML type inference

5

Type annotations and propagation

Constraint solving is intractable or undecidable for some
(interesting) type systems.

In that case, mandatory type annotations can help. Full type
inference is abandoned.

If desired, type annotations can be locally propagated in ad hoc
ways to reduce the number of required annotations.

François Pottier A modern eye on ML type inference

6

Overview

The lectures are organized as follows:

1. Type inference for ML (now)

2. Arbitrary-rank polymorphism (this afternoon)

3. Generalized algebraic data types (tomorrow morning)

François Pottier A modern eye on ML type inference

7

Part I

Type inference for ML

François Pottier A modern eye on ML type inference

8

The simply-typed λ-calculus

Hindley and Milner’s type system, with Algorithm J

Hindley and Milner’s type system, with constraints

Constraint solving by example

Data structures

Recursion

Optional type annotations

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 9

The simply-typed λ-calculus

Hindley and Milner’s type system, with Algorithm J

Hindley and Milner’s type system, with constraints

Constraint solving by example

Data structures

Recursion

Optional type annotations

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 10

Syntax

Expressions are given by

e ::= x | λx.e | e e

where x denotes a variable. Types are given by

τ ::= α | τ→ τ

where α denotes a type variable.

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 11

Specification

The simply-typed λ-calculus is specified using a set of rules
that allow deriving judgements:

Var

Γ ` x : Γ(x)

Abs
Γ; x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

App

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

The specification is syntax-directed.

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 12

Constraints

In order to reduce type inference to constraint solving, we
introduce a constraint language:

C ::= τ = τ | C ∧ C | ∃α.C

Constraints are interpreted by defining when a valuation φ
satisfies a constraint C.

A valuation is a (total) mapping of the type variables to ground
types. Ground types form a Herbrand universe, that is, they are
finite trees.

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 13

Constraint generation

Type inference is reduced to constraint solving by defining a
mapping of pre-judgements to constraints.

JΓ ` x : τK = Γ(x) = τ
JΓ ` λx.e : τK = ∃α1α2.(JΓ; x : α1 ` e : α2K ∧ α1 → α2 = τ)

JΓ ` e1 e2 : τK = ∃α.(JΓ ` e1 : α→ τK ∧ JΓ ` e2 : αK)

The freshness conditions are local, but left implicit for brevity.

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 14

Constraint generation, continued

(Γ, τ) is a typing of e iff Γ ` e : τ holds.

Theorem (Soundness and completeness)

φ is a solution of JΓ ` e : τK iff (φΓ, φτ) is a typing of e.

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 15

Principal typings

Corollary (Reduction)

Let (Γ, α) be composed of pairwise distinct type variables. Let the
domain of Γ coincide with the free variables of e.

Then, e is typable iff JΓ ` e : αK is satisfiable.

Furthermore, if φ is a principal solution of JΓ ` e : αK, then
(φΓ, φα) is a principal typing of e.

Corollary (Principal typings)

If e is typable, then e admits a principal typing.

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 16

A variation on constraints

How about letting the constraint solver, instead of the
constraint generator, deal with environment access and lookup?

Let’s enrich the syntax of constraints:

C ::= . . . | x = τ | def x : τ in C

The idea is to interpret constraints in such a way as to
validate the equivalence law

def x : τ in C ≡ [τ/x]C

The def form is an explicit substitution form.

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 17

Logical interpretation

As before, a valuation φ maps type variables α to ground types.

In addition, a valuation ψ maps variables x to ground types.

φ and ψ satisfy x = τ iff ψx = φτ holds.

φ and ψ satisfy def x : τ in C iff φ and ψ[x 7� φτ] satisfy C.

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 18

Constraint generation revisited

Constraint generation is now a mapping of an expression e and
a type τ to a constraint Je : τK.

Jx : τK = x = τ

Jλx.e : τK = ∃α1α2.
(

def x : α1 in Je : α2K
α1 → α2 = τ

)
Je1 e2 : τK = ∃α.(Je1 : α→ τK ∧ Je2 : αK)

Look ma, no environments!

François Pottier A modern eye on ML type inference

The simply-typed λ-calculus 19

Constraint generation revisited, continued

Theorem (Reduction)

e is typable iff Je : αK is satisfiable.

This statement is marginally simpler than its earlier analogue.

But the true point of introducing the def form becomes
apparent only in Hindley and Milner’s type system...

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 20

The simply-typed λ-calculus

Hindley and Milner’s type system, with Algorithm J

Hindley and Milner’s type system, with constraints

Constraint solving by example

Data structures

Recursion

Optional type annotations

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 21

Syntax

ML extends the λ-calculus with a new let form:

e ::= . . . | let x = e in e

A type scheme is a type where zero or more type variables are
universally quantified:

σ ::= ∀ᾱ.τ

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 22

Specification

Three new typing rules are introduced in addition to those of
the simply-typed λ-calculus:

Gen
Γ ` e : τ ᾱ # ftv(Γ)

Γ ` e : ∀ᾱ.τ

Inst
Γ ` e : ∀ᾱ.τ
Γ ` e : [~τ/~α]τ

Let
Γ ` e1 : σ Γ; x : σ ` e2 : τ

Γ ` let x = e1 in e2 : τ

Type schemes now occur in environments and judgements.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 23

Milner’s Algorithm J

This type inference algorithm expects a pre-judgement Γ ` e,
produces a type τ, and uses two global variables, V and φ.

V is an (infinite) fresh name supply:

fresh = do α ∈ V
do V ← V \ {α}
return α

φ is a substitution (of types for type variables), initially the
identity.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 24

Milner’s Algorithm J, continued

Here is the algorithm in monadic style:

J(Γ ` x) = let ∀α1 . . . αn.τ = Γ(x)
do α′1, . . . , α

′
n = fresh, . . . , fresh

return [α′i/αi]
n
i=1(τ) – take a fresh instance

J(Γ ` λx.e1) = do α = fresh
do τ1 = J(Γ; x : α ` e1)
return α→ τ1 – form an arrow type

. . .

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 25

Milner’s Algorithm J, continued

J(Γ ` e1 e2) = do τ1 = J(Γ ` e1)
do τ2 = J(Γ ` e2)
do α = fresh
do φ← mgu(φ(τ1) = φ(τ2 → α)) ◦ φ
return α – solve τ1 = τ2 → α

J(Γ ` let x = e1 in e2) = do τ1 = J(Γ ` e1)
let σ = ∀ ftv(φ(Γ)).φ(τ1) – generalize
return J(Γ; x : σ ` e2)

Generation and solving of equations are intermixed.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 26

Correctness of algorithm J

Theorem (Correctness)

If J(Γ ` e) terminates in state (φ, V) and returns τ, then
φ(Γ) ` e : φ(τ) is a judgement.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 27

Completeness of algorithm J

Theorem (Completeness)

Let Γ be an environment. Let (φ0, V0) be a state that satisfies
the algorithm’s invariant. Let θ0 and τ0 be such that
θ0φ0(Γ) ` e : τ0 is a judgement. Then, the execution of J(Γ ` e)
out of the initial state (φ0, V0) succeeds. Let (φ1, V1) be its
final state and τ1 be its result. Then, there exists a substitution
θ1 such that θ0φ0 and θ1φ1 coincide outside V0 and such that
τ0 equals θ1φ1(τ1).

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 28

Completeness of algorithm J (excerpt of proof)

[...] We have

θ1φ1(γ) = θ1ψφ
′
2(γ) = θ′′2φ

′
2(γ).

Since α is fresh for γ and φ′2, we can pursue with

θ′′2φ
′
2(γ) = θ′2φ

′
2(γ) = θ′1φ

′
1(γ) = θ0φ0(γ).

Thus, θ1φ1 and θ0φ0 coincide outside V0 [...]

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 29

Substitutions versus constraints

Reasoning in terms of substitutions means working with most
general unifiers, composition, and restriction.

Reasoning in terms of constraints means working with equations,
conjunction, and existential quantification.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 30

Relative typings (terminology)

A typing (Γ′, τ) is relative to Γ iff its first component Γ′ is an
instance of Γ.

A typing of e is principal relative to Γ iff it is relative to Γ and
every typing of e relative to Γ is an instance of it.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with Algorithm J 31

Relative principal typings

Corollary (Relative principal typings)

The execution of J(Γ ` e) succeeds iff e admits a typing relative
to Γ.

Furthermore, if φ1 and τ1 are the algorithm’s results, then
(φ1(Γ), φ1(τ1)) is a typing of e and is principal relative to Γ.

This is also known as the principal types property.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 32

The simply-typed λ-calculus

Hindley and Milner’s type system, with Algorithm J

Hindley and Milner’s type system, with constraints

Constraint solving by example

Data structures

Recursion

Optional type annotations

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 33

Constraints

We must extend the syntax of constraints so that a variable x
can stand for a type scheme.

To avoid mingling constraint generation and constraint solving,
we must allow type schemes to incorporate constraints.

The syntax of constraints and of constrained type schemes is:

C ::= τ = τ | C ∧ C | ∃α.C | x � τ | def x : ς in C
ς ::= ∀ᾱ[C].τ

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 34

Constraints, continued

The idea is to interpret constraints in such a way as to
validate the equivalence laws

def x : ς in C ≡ [ς/x]C

(∀ᾱ[C].τ) � τ′ ≡ ∃ᾱ.(C ∧ τ = τ′)

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 35

Interpreting constraints

A type variable α still denotes a ground type.

A variable x now denotes a set of ground types.

φ and ψ satisfy x � τ iff ψx 3 φτ holds.

φ and ψ satisfy def x : ς in C iff φ and ψ[x 7� ψ
φ(ς)] satisfy C.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 36

Interpreting type schemes

The interpretation of ∀ᾱ[C].τ under φ and ψ is the set of all
φ′τ, where φ and φ′ coincide outside ᾱ and where φ′ and ψ
satisfy C.

For instance, the interpretation of ∀α[∃β.α = β → γ].α→ α under
φ and ψ is the set of all ground types of the form
(t→ φγ)→ (t→ φγ), where t ranges over ground types.

This is also the interpretation of ∀β.(β → γ)→ (β → γ). Every
constrained type scheme is equivalent to a standard type
scheme.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 37

Constraint generation, first attempt

Constraint generation is modified as follows:

Jx : τK = x � τ

Jlet x = e1 in e2 : τK = def x : ∀α[Je1 : αK].α in Je2 : τK

∀α[Je1 : αK].α can be thought of as a principal constrained type
scheme for e1.

This definition is correct under a call-by-name semantics.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 38

Constraint generation, correct attempt

Constraint generation is defined by

Jx : τK = x � τ

Jlet x = e1 in e2 : τK = let x : ∀α[Je1 : αK].α in Je2 : τK

where, by definition,

let x : ς in C ≡ def x : ς in (∃α.x � α ∧ C)

Jlet x = e1 in e2 : τK now implies ∃α.Je1 : αK, which guarantees
that e1 is well-typed. This definition is correct under a
call-by-value semantics.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 39

Constraint generation, continued

Theorem (Soundness and completeness)

Let Γ be an environment whose domain is fv(e). The expression e
is well-typed relative to Γ iff def Γ in ∃α.Je : αK is satisfiable.

François Pottier A modern eye on ML type inference

Hindley and Milner’s type system, with constraints 40

Taking constraints seriously

Note that

I constraint generation has linear complexity;

I constraint generation and constraint solving are separate.

This makes constraints suitable for use in an efficient and
modular implementation.

The constraint language will remain simple as the programming
language grows.

François Pottier A modern eye on ML type inference

Constraint solving by example 41

The simply-typed λ-calculus

Hindley and Milner’s type system, with Algorithm J

Hindley and Milner’s type system, with constraints

Constraint solving by example

Data structures

Recursion

Optional type annotations

François Pottier A modern eye on ML type inference

Constraint solving by example 42

An initial environment

Let Γ0 stand for assoc : ∀αβ.α→ list (α × β)→ β.

We take Γ0 to be the initial environment, so that the
constraints considered next are implicitly wrapped within the
context def Γ0 in [].

François Pottier A modern eye on ML type inference

Constraint solving by example 43

A code fragment

Let e stand for the expression

λx.λl1.λl2.
let assocx = assoc x in
(assocx l1, assocx l2)

One anticipates that assocx receives a polymorphic type scheme,
which is instantiated twice at different types...

François Pottier A modern eye on ML type inference

Constraint solving by example 44

The generated constraint

Let Γ stand for x : α; l1 : α1; l2 : α2. Then, the constraint Je : εK is
(with a few minor simplifications)

∃αα1α2β.



ε = α→ α1 → α2 → β
def Γ in

let assocx : ∀γ[∃δ.
(

assoc � δ → γ
x � δ

)
].γ in

∃β1β2.
(
β = β1 × β2
∀i ∃δ.(assocx � δ → βi ∧ li � δ)

)



François Pottier A modern eye on ML type inference

Constraint solving by example 45

Simplification

Constraint solving can be viewed as a rewriting process that
exploits equivalence laws. Because equivalence is, by construction,
a congruence, rewriting is permitted within an arbitrary context.

For instance, environment access is allowed by the law

let x : ς in C[x � τ] ≡ let x : ς in C[ς � τ]

where C is an arbitrary context.

François Pottier A modern eye on ML type inference

Constraint solving by example 46

Simplification, continued

Thus, within the context def Γ0; Γ in [],

assoc � δ → γ ∧ x � δ

can be rewritten

∃αβ.(α→ list (α × β)→ β = δ → γ) ∧ α = δ

François Pottier A modern eye on ML type inference

Constraint solving by example 47

Simplification, continued

∃δ.(∃αβ.(α→ list (α × β)→ β = δ → γ) ∧ α = δ)

simplifies down to

∃δ.(∃αβ.(α = δ ∧ list (α × β)→ β = γ) ∧ α = δ)
∃δ.(∃β.(list (δ × β)→ β = γ) ∧ α = δ)

∃β.(list (α × β)→ β = γ)

This is first-order unification.

François Pottier A modern eye on ML type inference

Constraint solving by example 48

Simplification, continued

The constrained type scheme

∀γ[∃δ.(assoc � δ → γ ∧ x � δ)].γ

is thus equivalent to

∀γ[∃β.(list (α × β)→ β = γ)].γ

which can also be written

∀γβ[list (α × β)→ β = γ].γ
∀β.list (α × β)→ β

François Pottier A modern eye on ML type inference

Constraint solving by example 49

Simplification, continued

The initial constraint has now been simplified down to

∃αα1α2β.


ε = α→ α1 → α2 → β
def Γ in

let assocx : ∀β.list (α × β)→ β in

∃β1β2.
(
β = β1 × β2
∀i ∃δ.(assocx � δ → βi ∧ li � δ)

)


The simplification work spent on assocx’s type scheme was well
worth the trouble, because we are now going to duplicate the
simplified type scheme.

François Pottier A modern eye on ML type inference

Constraint solving by example 50

Simplification, continued

The sub-constraint

∃δ.(assocx � δ → βi ∧ li � δ)

is rewritten

∃δ.(∃β.(list (α × β)→ β = δ → βi) ∧ αi = δ)
∃β.(list (α × β)→ β = αi → βi)
∃β.(list (α × β) = αi ∧ β = βi)

list (α × βi) = αi

François Pottier A modern eye on ML type inference

Constraint solving by example 51

Simplification, continued

The initial constraint has now been simplified down to

∃αα1α2β.


ε = α→ α1 → α2 → β
def Γ in

let assocx : ∀β.list (α × β)→ β in

∃β1β2.
(
β = β1 × β2
∀i list (α × βi) = αi

)


Now, the context def Γ in let assocx : . . . in [] can be dropped,
because the constraint that it applies to contains no
occurrences of assoc, x, l1, or l2.

François Pottier A modern eye on ML type inference

Constraint solving by example 52

Simplification, continued

The constraint becomes

∃αα1α2β.

 ε = α→ α1 → α2 → β

∃β1β2.
(
β = β1 × β2
∀i list (α × βi) = αi

) 
that is,

∃αα1α2ββ1β2.

 ε = α→ α1 → α2 → β
β = β1 × β2
∀i list (α × βi) = αi


This is a solved form...

François Pottier A modern eye on ML type inference

Constraint solving by example 53

Simplification, the end

... and can be written, for better readability,

∃αβ1β2. (ε = α→ list (α × β1)→ list (α × β2)→ β1 × β2)

This constraint is equivalent to Je : εK under the context
def Γ0 in [].

In other words, the principal type scheme of e relative to Γ0 is

∀αβ1β2.α→ list (α × β1)→ list (α × β2)→ β1 × β2

François Pottier A modern eye on ML type inference

Constraint solving by example 54

Rewriting strategies

Explaining constraint solving in terms of a small-step rewrite
system makes its correctness and completeness proof easier—it
suffices to check that every step is justified by a constraint
equivalence law.

Different constraint solving strategies lead to different behaviors
in terms of complexity, error explanation, etc.

François Pottier A modern eye on ML type inference

Data structures 55

The simply-typed λ-calculus

Hindley and Milner’s type system, with Algorithm J

Hindley and Milner’s type system, with constraints

Constraint solving by example

Data structures

Recursion

Optional type annotations

François Pottier A modern eye on ML type inference

Data structures 56

Products and sums

New type constructors:

τ ::= . . . | τ × τ | τ + τ

New term constants:

(·, ·) : ∀α1α2.α1 → α2 → α1 × α2
πi : ∀α1α2.α1 × α2 → αi
inji : ∀α1α2.αi → α1 + α2

case : ∀α1α2α.α1 + α2 → (α1 → α)→ (α2 → α)→ α

Constraint generation is unaffected.

François Pottier A modern eye on ML type inference

Data structures 57

Recursive types

Products and sums alone do not allow describing data strutures
of unbounded size, such as lists and trees.

Recursive types are required. Two standard approaches:
equi-recursive and iso-recursive types.

François Pottier A modern eye on ML type inference

Data structures 58

Equi-recursive types

New syntax for recursive types:

τ ::= . . . | µα.τ

Well-formedness conditions rule out bad guys such as µα.α,
whose infinite unfolding isn’t well-defined.

We write τ1 =µ τ2 if the infinite unfoldings of τ1 and τ2 coincide.

François Pottier A modern eye on ML type inference

Data structures 59

Equi-recursive types, continued

The type system is modified by adding just one conversion rule:

Γ ` e : τ1 τ1 =µ τ2

Γ ` e : τ2

The constraint generation rules are unchanged, but constraints
are now interpreted in a universe of regular terms, requiring a
simple change to the solver: the “occur-check” is removed.

This approach is simple and powerful, but tends to accept some
pieces of code that are really broken, that is, do not work as
intended...

François Pottier A modern eye on ML type inference

Data structures 60

Iso-recursive types

The user is allowed to introduce new type constructors T via
(possibly recursive, or even mutually recursive) declarations:

T ~α ≈ τ

Each such declaration adds two new term constants:

foldT : ∀ᾱ.τ→ T ~α
unfoldT : ∀ᾱ.T ~α→ τ

Constraint generation and constraint solving are unaffected.

François Pottier A modern eye on ML type inference

Data structures 61

Iso-recursive types (example)

Combining structural products and sums with iso-recursive types,
one can declare

list α ≈ unit + α × list α

Then, the empty list is written

foldlist (inj1 ())

A list l of type list α is deconstructed by

case (unfoldlist l) (λn. . . .) (λc.let hd = π1 c in let tl = π2 c in . . .)

François Pottier A modern eye on ML type inference

Data structures 62

Algebraic data types

In ML, structural products and sums are fused with
iso-recursive types, yielding so-called algebraic data types.

The idea is to avoid requiring both a (type) name and a (field
or tag) number, as in

foldlist (inj1 ())

Indeed, this is verbose and fragile. Instead, it would be desirable
to mention a single name, as in

Nil ()

François Pottier A modern eye on ML type inference

Data structures 63

Declaring an algebraic data type

An algebraic data type constructor T is introduced via a record
type or variant type definition:

T ~α ≈
k∑
i=1

`i : τi or T ~α ≈
k∏
i=1

`i : τi

François Pottier A modern eye on ML type inference

Data structures 64

Effects of a record type declaration

The definition

T ~α ≈
k∏
i=1

`i : τi

introduces the term constants

`i : ∀ᾱ.T ~α→ τi i ∈ {1, . . . , k}
makeT : ∀ᾱ.τ1 → . . .→ τk → T ~α

In concrete syntax, we write e.` for (` e). When k > 0, we write
{`i = ei}ki=1 for (makeT e1 . . . ek).

François Pottier A modern eye on ML type inference

Data structures 65

Effects of a variant type declaration

The definition

T ~α ≈
k∑
i=1

`i : τi

introduces the term constants

`i : ∀ᾱ.τi → T ~α i ∈ {1, . . . , k}
caseT : ∀ᾱγ.T ~α→ (τ1 → γ)→ . . . (τk → γ)→ γ

In concrete syntax, we write case e [`i : ei]ki=1 for
(caseT e e1 . . . en) when k > 0.

François Pottier A modern eye on ML type inference

Data structures 66

Algebraic data types (example)

One can now declare

list α ≈ Nil : unit + Cons : α × list α

This gives rise to

Nil : ∀α.unit→ list α
Cons : ∀α.α × list α→ list α

caselist : ∀αγ.list α→ (unit→ γ)→ (α × list α→ γ)→ γ

François Pottier A modern eye on ML type inference

Data structures 67

Algebraic data types (example, continued)

Then, the empty list is written

Nil ()

A list l of type list α is deconstructed by

case l [
Nil : λn. . . .
| Cons : λc.let hd = π1 c in let tl = π2 c in . . .

]

François Pottier A modern eye on ML type inference

Recursion 68

The simply-typed λ-calculus

Hindley and Milner’s type system, with Algorithm J

Hindley and Milner’s type system, with constraints

Constraint solving by example

Data structures

Recursion

Optional type annotations

François Pottier A modern eye on ML type inference

Recursion 69

fix

Recursion can be introduced via the term constant

fix : ∀αβ.((α→ β)→ (α→ β))→ α→ β

This allows defining

letrec f = λx.e1 in e2

as syntactic sugar for

let f = fix (λf.λx.e1) in e2

François Pottier A modern eye on ML type inference

Recursion 70

Monomorphic recursion

As a result of these definitions, the constraint

Jletrec f = λx.e1 in e2 : τK

is equivalent to

let f : ∀αβ[let f : α→ β; x : α in Je1 : βK].α→ β in Je2 : τK

The variable f is considered monomorphic while typechecking e1.
It receives a polymorphic type scheme only while typechecking e2.

François Pottier A modern eye on ML type inference

Recursion 71

Polymorphic recursion

Mycroft suggested extending Hindley and Milner’s type system
with the rule

Γ; f : σ ` λx.e1 : σ Γ; f : σ ` e2 : τ

Γ ` letrec f = λx.e1 in e2 : τ

where σ is an arbitrary type scheme.

François Pottier A modern eye on ML type inference

Recursion 72

Polymorphic recursion, continued

Type inference in the presence of polymorphic recursion appears
to require guessing a type scheme, which first-order unification
cannot do.

In fact, the problem is inter-reducible with semi-unification, an
undecidable problem.

François Pottier A modern eye on ML type inference

Recursion 73

Polymorphic recursion, continued

Yet, type inference in the presence of polymorphic recursion is
easy if one is willing to rely on a mandatory type annotation.

Let’s modify the type system’s specification:

Γ; f : σ ` λx.e1 : σ Γ; f : σ ` e2 : τ

Γ ` letrec f : σ = λx.e1 in e2 : τ

so that σ is no longuer guessed.

François Pottier A modern eye on ML type inference

Recursion 74

Polymorphic recursion, continued

Then, define
Jletrec f : σ = λx.e1 in e2 : τK

as
let f : σ in (Jλx.e1 : σK ∧ Je2 : τK)

It is clear that f is assigned type scheme σ inside and outside
of the recursive definition.

There remains to define the new notation Je : σK...

François Pottier A modern eye on ML type inference

Recursion 75

Universal quantification

It should be intuitively clear that e admits the type scheme
∀α.α→ α iff e has type α→ α for every possible instance of α,
or, equivalently, for an abstract α.

To express this in the constraint language, one introduces
universal quantification:

C ::= . . . | ∀α.C

Its interpretation is standard.

François Pottier A modern eye on ML type inference

Recursion 76

Universal quantification, continued

One can then define
Je : ∀ᾱ.τK

as syntactic sugar for
∀ᾱ.Je : τK

The need for universal quantification arises when polymorphism is
asserted by the programmer—as opposed to inferred by the
system.

François Pottier A modern eye on ML type inference

Optional type annotations 77

The simply-typed λ-calculus

Hindley and Milner’s type system, with Algorithm J

Hindley and Milner’s type system, with constraints

Constraint solving by example

Data structures

Recursion

Optional type annotations

François Pottier A modern eye on ML type inference

Optional type annotations 78

Optional type annotations

Optional type annotations are useful as a means of documenting
programs.

Because ML has full type inference, optional type annotations do
not help accept more programs. Erasing all optional annotations
in a well-typed program yields another well-typed program,
possibly with a more general type!

François Pottier A modern eye on ML type inference

Optional type annotations 79

Specification

Optional type annotations are introduced by the rule

Γ ` e : τ
Γ ` (e : τ) : τ

Here, τ must be a ground type, because we have not (yet)
introduced any means of binding type variables in expressions.

François Pottier A modern eye on ML type inference

Optional type annotations 80

Constraint generation

It is easy for constraint generation to take optional annotations
into account:

J(e : τ) : τ′K = Je : τK ∧ τ = τ′

It is not difficult to check that this constraint entails

Je : τ′K

which means that the annotation makes the constraint more
specific.

François Pottier A modern eye on ML type inference

Optional type annotations 81

Introducing type variables

What about non-ground type annotations? These make perfect
sense, provided the programmer is allowed to bind type variables.

A type variable represents an unknown type. But does the
programmer mean that the program should be well-typed for
some or for all instances of this variable?

François Pottier A modern eye on ML type inference

Optional type annotations 82

Specification

Two new expression forms allow binding type variables
existentially or universally:

Γ ` [τ/α]e : σ

Γ ` ∃α.e : σ
Γ ` e : σ α 6∈ ftv(Γ)

Γ ` ∀α.e : ∀α.σ

François Pottier A modern eye on ML type inference

Optional type annotations 83

Constraint generation

Constraint generation for the first form is straightforward:

J∃α.e : τK = ∃α.Je : τK

The type annotations inside e can now contain free occurrences
of α. Thus, the constraint Je : τK itself can contain such
occurrences. They are given meaning by the existential quantifier.

François Pottier A modern eye on ML type inference

Optional type annotations 84

Constraint generation (example)

For instance, the expression

λx1.λx2.∃α.((x1 : α), (x2 : α))

has principal type scheme

∀α.α→ α→ α × α

Indeed, the generated constraint contains the pattern

∃α.(Jx1 : αK ∧ Jx2 : αK ∧ . . .)

which requires x1 and x2 to share a common (unspecified) type.

François Pottier A modern eye on ML type inference

Optional type annotations 85

Constraint generation, continued

Constraint generation for the second form is somewhat more
subtle. A naı̈ve definition fails:

J∀ᾱ.e : τK = ∀ᾱ.Je : τK

This requires τ to be simultaneously equal to all of the types
that e assumes when ᾱ varies.

François Pottier A modern eye on ML type inference

Optional type annotations 86

Constraint generation, continued

One can instead define

J∀ᾱ.e : τK = ∀ᾱ.∃γ.Je : γK ∧ ∃ᾱ.Je : τK

This requires e to be well-typed for all instances of ᾱ and
requires τ to be a valid type for e under some instance of ᾱ.

The trouble with this definition is that e is duplicated... but this
can be avoided with a slight extension of the constraint
language (exercise!).

François Pottier A modern eye on ML type inference

Optional type annotations 87

Conclusion of Part I

Type inference for the core of ML and for many of its
extensions (not all of which were reviewed here) reduces to
first-order unification under a mixed prefix.

Some features (such as polymorphic recursion) require mandatory
type annotations.

François Pottier A modern eye on ML type inference

Optional type annotations 88

Selected References

François Pottier and Didier Rémy.
The Essence of ML Type Inference.
In Advanced Topics in Types and Programming Languages, MIT
Press, 2005.

François Pottier.
A modern eye on ML type inference: old techniques and
recent developments.
Lecture notes, APPSEM Summer School, 2005.

François Pottier A modern eye on ML type inference

http://cristal.inria.fr/~fpottier/publis/fpottier-appsem-2005.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-appsem-2005.pdf

89

Part II

Arbitrary-rank polymorphism

François Pottier A modern eye on ML type inference

90

The problem

Iso-universal types

Arbitrary-rank predicative polymorphism

François Pottier A modern eye on ML type inference

The problem 91

The problem

Iso-universal types

Arbitrary-rank predicative polymorphism

François Pottier A modern eye on ML type inference

The problem 92

A problematic term

Consider the function apply2, defined as

λf.λx.λy.(f x, f y)

In Hindley and Milner’s type system, f must receive a
monomorphic type. This leads to the type scheme

∀αβ.(α→ β)→ α→ α→ β × β

where x and y must have identical type.

François Pottier A modern eye on ML type inference

The problem 93

A problematic term, continued

But perhaps
∀αβ.(∀γ.γ → γ)→ α→ β → α × β

was intended? Or perhaps

∀αβδ.(∀γ.γ → δ)→ α→ β → δ × δ

was the desired type? Or perhaps

∀αβδ.(∀γ.γ → γ × δ)→ α→ β → (α × δ) × (β × δ),

or perhaps, or perhaps...

François Pottier A modern eye on ML type inference

The problem 94

System F

None of these types are instances of one another. System F ,
where each of these types is valid, does not have the principal
types property.

In fact, type inference for System F is undecidable...

François Pottier A modern eye on ML type inference

The problem 95

Rank-1 polymorphism

This explains why Hindley and Milner’s type system is restricted
to rank-1 polymorphism.

The need for higher-rank polymorphism is mitigated by features
such as ML’s module system and Haskell’s type classes, but
these workarounds are not always convenient.

François Pottier A modern eye on ML type inference

Iso-universal types 96

The problem

Iso-universal types

Arbitrary-rank predicative polymorphism

François Pottier A modern eye on ML type inference

Iso-universal types 97

Iso-universal types

A simple route for introducing arbitrary-rank polymorphism into
Hindley and Milner’s type system, without compromising type
inference, is to follow the up-to-explicit-isomorphism approach
that was used for recursive types.

François Pottier A modern eye on ML type inference

Iso-universal types 98

Specification

This leads to “iso-universal” types that require an explicit
declaration:

T ~α ≈ ∀β̄.τ

One would like each such declaration to add two new term
constants:

foldT : ∀ᾱ.(∀β̄.τ)→ T ~α
unfoldT : ∀ᾱ.T ~α→ ∀β̄.τ

But these aren’t valid type schemes...

François Pottier A modern eye on ML type inference

Iso-universal types 99

Specification, continued

Though foldT cannot be viewed as a constant, it can be
introduced as a new construct:

Γ ` e : [~τ/~α](∀β̄.τ)
Γ ` foldT e : T ~τ

Constraint generation is as follows:

JfoldT e : τ′K = ∃ᾱ.(Je : ∀β̄.τK ∧ T ~α = τ′)

François Pottier A modern eye on ML type inference

Iso-universal types 100

Specification, continued

Though
unfoldT : ∀ᾱ.T ~α→ ∀β̄.τ

doesn’t literally make sense,

unfoldT : ∀ᾱβ̄.T ~α→ τ

does, and achieves the desired effect.

François Pottier A modern eye on ML type inference

Iso-universal types 101

Example

For instance, one can declare

Id ≈ ∀γ.γ → γ

and modify apply2 as follows:

λf.λx.λy.let f = unfoldId f in (f x, f y)

It is invoked by
apply2 (foldId (λx.x))

François Pottier A modern eye on ML type inference

Iso-universal types 102

Summary

Uses of foldT and unfoldT can be viewed as mandatory type
annotations and indicate where type abstraction and type
application should be performed.

“Iso-universal” types are usually fused with algebraic data types,
so that type abstraction and application are performed at data
construction and deconstruction time.

The same technique can be applied to existential types.

François Pottier A modern eye on ML type inference

Iso-universal types 103

Limitations

This mechanism allows encoding all System F programs.

However, it is somewhat verbose. Furthermore, the encoding is
non-modular. A single System F type can have many distinct
encodings, and one must explicitly convert between them.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 104

The problem

Iso-universal types

Arbitrary-rank predicative polymorphism

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 105

An idea

How about relying on mandatory type annotations, without going
through the detour of declaring iso-universal types?

For instance, for this version of apply2:

λf : ∀γ.γ → γ.λx.λy.(f x, f y)

it should not be difficult to infer the type

∀αβ.(∀γ.γ → γ)→ α→ β → α × β

should it?

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 106

An idea, continued

The idea is to allow arbitrary-rank polymorphic types when
mandated by an explicit type annotation.

One establishes the convention—known as predicativity—that
type variables stand for monotypes. In terms of type inference,
this means that polymorphic types are never inferred.

I am now about to present an approach that draws on ideas by
Läufer and Odersky, Peyton Jones and Shields, and Rémy.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 107

Syntax

τ ::= α | τ→ τ
ρ ::= α | σ → σ
σ ::= ∀ᾱ.ρ

τ ranges over monotypes. σ ranges over polytypes. ρ ranges over
the subset of polytypes that have no outermost quantifiers.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 108

Syntax, continued

θ ::= ∃ᾱ.σ
e ::= x | λx.e | e (e : θ) | let x = (e : θ) in e

Application and let nodes must now be annotated so that terms
can be typechecked (top-down) without guessing a polytype.

Type annotations can be made optional by interpreting the
absence of an annotation as the trivial annotation ∃β.β, which
means “any monomorphic type”.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 109

Specification: typing rules

Γ ` x : Γ(x)
Γ, x : σ1 ` e : σ2

Γ ` λx.e : σ1 → σ2

Γ ` e1 : [~τ/~β]σ2 → σ1 Γ ` e2 : [~τ/~β]σ2

Γ ` e1 (e2 : ∃β̄.σ2) : σ1

Γ ` e1 : ∀ᾱ.[~τ/~β]σ1 Γ, x : ∀ᾱ.[~τ/~β]σ1 ` e2 : σ2

Γ ` let x = (e1 : ∃β̄.σ1) in e2 : σ2

Γ ` e : σ α /∈ ftv(Γ)

Γ ` e : ∀α.σ
Γ ` e : σ′ σ′ ≤ σ

Γ ` e : σ

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 110

Specification: type containment

A subset, identified by Läufer and Odersky, of the type
containment relation studied by Mitchell for System Fη.

α ≤ α
σ′1 ≤ σ1 σ2 ≤ σ′2
σ1 → σ2 ≤ σ′1 → σ′2

σ ≤ σ′
α /∈ ftv(σ)

σ ≤ ∀α.σ′
[τ/α]σ ≤ ρ
(∀α.σ) ≤ ρ

Here, instantiation is predicative. Furthermore, Mitchell’s axiom

∀α.σ → σ′ ≤ (∀α.σ)→ ∀α.σ′

is not included.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 111

Comments

It is fairly clear that the type system is sound, since it can be
embedded within System Fη.

It is not so clear at first how to perform type inference, since
the system has two non-syntax-directed rules, but a
syntax-directed reformulation exists...

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 112

Syntax-directed specification

Γ(x) ≤ ρ
Γ ` x : ρ

Γ, x : σ1 ` e : σ2
Γ ` λx.e : σ1 → σ2

Γ ` e : σ α /∈ ftv(Γ)

Γ ` e : ∀α.σ

Γ ` e1 : [~τ/~β]σ2 → ρ1 Γ ` e2 : [~τ/~β]σ2

Γ ` e1 (e2 : ∃β̄.σ2) : ρ1

Γ ` e1 : [~τ/~β]σ1 ᾱ # ftv(Γ) Γ, x : ∀ᾱ.[~τ/~β]σ1 ` e2 : ρ2

Γ ` let x = (e1 : ∃β̄.σ1) in e2 : ρ2

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 113

Comments

The rules on the previous slide can be read as an algorithm by
viewing the type in the conclusion as an input—an expected type.

Then, one can check that only monotypes are guessed. Explicit
annotations are required at every node where a polytype would
otherwise have to be guessed.

When all type annotations are omitted (that is, ∃β.β), the
specification coincides with that of Hindley and Milner’s type
system. Thus, this is a conservative extension.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 114

Constraints

Let’s extend the syntax of constraints to allow for polytypes.

C ::= τ = τ | σ ≤ σ | C ∧ C | ∃α.C | ∀α.C | x � σ | def x : ς in C
ς ::= ∀ᾱ[C].σ

Type variables still denote monotypes, so the constraint solver is
essentially unchanged, except it now needs to reduce ordering
constraints σ1 ≤ σ2...

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 115

Reducing ordering constraints

This reduction is due to Läufer and Odersky.

τ ≤ τ′ → τ = τ′

σ1 → σ2 ≤ α → ∃α1α2.
(
σ1 → σ2 ≤ α1 → α2
α1 → α2 = α

)
α ≤ σ1 → σ2 → ∃α1α2.

(
α1 → α2 ≤ σ1 → σ2
α = α1 → α2

)
σ1 → σ2 ≤ σ′1 → σ′2 → σ′1 ≤ σ1 ∧ σ2 ≤ σ′2

(∀α.σ) ≤ ρ → ∃α.(σ ≤ ρ)

σ ≤ ∀α.σ′ → ∀α.(σ ≤ σ′)

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 116

Constraint generation

Jx : ρK = x � ρ

Jλx.e : αK = ∃α1α2.
(

Jλx.e : α1 → α2K
α1 → α2 = α

)
Jλx.e : σ1 → σ2K = let x : σ1 in Je : σ2K

Je1 (e2 : ∃β̄.σ2) : ρ1K = ∃β̄.
(

Je1 : σ2 → ρ1K
Je2 : σ2K

)
Jlet x = (e1 : ∃β̄.σ1) in e2 : ρ2K = let x : ∀β̄[Je1 : σ1K].σ1 in

Je2 : ρ2K

Je : ∀α.σK = ∀α.Je : σK

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 117

Dealing with side effects

In the presence of the value restriction, the syntax-directed
typing rules and the constraint generation rules are slightly
different. Some details change, but the general ideas are the
same.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 118

Limitation

In the calculus that we just studied, one can write:

let apply2 =
(λf.λx.λy.(f x, f y)
: ∃δ.(∀γ.γ → γ)→ δ) in

apply2 (λz.z : ∀γ.γ → γ)

and let the system infer that this expression has type

∀αβ.α→ β → α × β

This is nice, but redundant: the type scheme for f is given twice.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 119

Introducing local propagation

The two annotations are so clearly related to one another that
only one annotation should suffice...

Peyton Jones and Shields suggested enhancing the system with
the ability of locally propagating polymorphic types so as to
reduce the amount of necessary annotations.

Local propagation—also known as elaboration or local
inference—can be viewed as a preprocessing step that turns a
program expressed in a surface language into a program
expressed in the redundant core calculus.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 120

The surface language

In the surface language, we allow function parameters to carry
a type annotation, and conversely, allow application and let
nodes to carry no annotation.

e ::= . . . | λx : θ.e | e e | let x = e in e

Here, the absence of an annotation is not interpreted as the
trivial annotation ∃β.β. Indeed, local type inference might be able
to supply a nontrivial annotation.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 121

Shapes

Local inference is not concerned with monotypes at all, since
traditional type inference for the core calculus is perfectly
capable of finding out about them.

Local inference deals with shapes, which by definition are closed
polytypes extended with a special constant #.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 122

Shapes, continued

A type σ is turned into a shape dσe by replacing all of its free
variables with # and exploiting the equation #→ # = #.

For instance,

d∀α1.(∀α2.(α1 → α2)→ (β0 → β0))→ (β1 → β2)e
= ∀α1.(∀α2.(α1 → α2)→ #)→ #

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 123

Shapes, continued

A type annotation is turned into a shape by setting

d∃β̄.σe = dσe

Conversely, a shape S is turned into a type annotation by
replacing each occurrence of # with a distinct type variable and
by existentially quantifying these type variables up front.

For instance,

b∀α1.(∀α2.(α1 → α2)→ #)→ #c
= ∃β1β2.∀α1.(∀α2.(α1 → α2)→ β1)→ β2

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 124

Shapes, continued

Last, instantiating the root quantifiers of a shape S with #
yields a new shape S[.

For instance,

(∀α1.(∀α2.α2 → α1 → α1)→ #)[

= (∀α2.α2 → #)→ #

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 125

Design of a shape inference algorithm

We are now ready to design an algorithm that infers shapes
and uses them to produce an annotated program in the core
calculus.

The design is necessarily ad hoc, and aims for simplicity and
predictability.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 126

Bidirectionality

Following a long tradition, shape inference operates in one of
two modes: synthesis and checking.

Γ `↑ e : S ⇒ e′ synthesis, S is inferred
Γ `↓ e : S ⇒ e′ checking, S is provided

The two judgements are defined in a mutually recursive way.

e is a surface language expression, while e′ is a core language
expression. Γ maps variables to shapes.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 127

Specification

Each construct in the surface language comes in two flavors:
annotated or unannotated, and can be examined in two modes:
synthesis or checking.

That’s a lot of rules... let’s look at just a few.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 128

Specification, continued

Unannotated abstraction, synthesis mode:

Γ, x : # `↑ e : S ⇒ e′

Γ `↑ λx.e : #→ S ⇒ λx.e′

The shape of the argument is unknown. No annotation is
produced.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 129

Specification, continued

Annotated abstraction, synthesis mode:

Γ, x : dσe `↑ e : S ⇒ e′

Γ `↑ λ(x : ∃β̄.σ).e : dσe → S
⇒ λx.let x = (x : ∃β̄.σ) in e′

The shape of the argument is found in the existing annotation.
An annotation is produced so as to allow x to have nontrivial
shape in the core calculus.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 130

Specification, continued

Unannotated let definition, either mode:

Γ `↑ e1 : S1 ⇒ e′1 Γ, x : S1 `l e2 : S2 ⇒ e′2
Γ `l let x = e1 in e2 : S2 ⇒ let x = (e′1 : bS1c) in e′2

l stands for one of ↑ and ↓.

The synthesized shape S1 is used when examining the right-hand
side. No generalization is performed, since shapes do not contain
type variables.

An annotation is produced so as to allow x to have nontrivial
shape in the core calculus.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 131

Specification, continued

Unannotated application, synthesis mode:

Γ `↑ e1 : S ⇒ e′1 S[= S2 → S1 Γ `↓ e2 : S2 ⇒ e′2
Γ `↑ e1 e2 : S1 ⇒ e′1 (e′2 : bS2c)

The function’s shape is synthesized and its domain shape is
used to examine the argument in checking mode.

An annotation is produced so as to allow the argument to have
nontrivial shape in the core calculus.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 132

Example

In the surface language, one can write:

let apply2 =
λ(f : ∀γ.γ → γ).λx.λy.(f x, f y) in

apply2 (λz.z)

The system finds that apply2 has shape

(∀γ.γ → γ)→ #

This in turn allows determining that λz.z should have shape

(∀γ.γ → γ)

A core calculus term with two annotations is produced—the one
we saw before.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 133

Are we happy?

In the surface language, one can define and use functions with
arbitrary-rank polymorphic types, modulo a reasonable amount of
explicit type annotations, and without giving up Hindley-Milner
type inference.

So? ...

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 134

Predicativity

This is a predicative type system. For instance, if id has type

∀α.α→ α

then it cannot be implicitly coerced to type

(∀γ.γ → γ)→ (∀γ.γ → γ)

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 135

Predicativity, continued

Indeed,
(∀α.α→ α) ≤ (∀γ.γ → γ)→ (∀γ.γ → γ)

simplifies down to

∃α.(α→ α ≤ (∀γ.γ → γ)→ (∀γ.γ → γ))

∃α.
(

(∀γ.γ → γ) ≤ α
α ≤ (∀γ.γ → γ)

)
∃α.

(
∃γ.γ → γ = α
∀γ.α = γ → γ

)
false

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 136

Re-introducing impredicativity

In practice, impredicativity is essential.

The easiest way of re-introducing it is via an explicit
impredicative instantiation construct. This is heavy, though.

One can resort to more local inference to guess where
impredicative instantiation is required...

... or, more ambitiously, forget about local inference and build
some measure of impredicative instantiation into the constraint
language.

François Pottier A modern eye on ML type inference

Arbitrary-rank predicative polymorphism 137

Selected References I

Martin Odersky and Konstantin Läufer.
Putting Type Annotations To Work.
POPL, 1996.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich,
and Mark Shields.
Practical type inference for arbitrary-rank types.
Manuscript, 2005.

Didier Rémy.
Simple, partial type inference for System F based on type
containment.
ICFP, 2005.

François Pottier A modern eye on ML type inference

http://lamp.epfl.ch/~odersky/papers/popl96.ps.gz
http://research.microsoft.com/Users/simonpj/papers/higher-rank/putting.ps.gz
http://pauillac.inria.fr/~remy/work/fml/fml-icfp.pdf
http://pauillac.inria.fr/~remy/work/fml/fml-icfp.pdf

Arbitrary-rank predicative polymorphism 138

Selected References II

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton
Jones.
Boxy types: type inference for higher-rank types and
impredicativity.
Manuscript, 2005.

Didier Le Botlan and Didier Rémy.
MLF: Raising ML to the power of System F .
ICFP, 2003.

François Pottier A modern eye on ML type inference

http://research.microsoft.com/Users/simonpj/papers/boxy/boxy.ps.gz
http://research.microsoft.com/Users/simonpj/papers/boxy/boxy.ps.gz
http://cristal.inria.fr/~remy/work/mlf/icfp.pdf

139

Part III

Generalized algebraic data types

François Pottier A modern eye on ML type inference

140

Introducing generalized algebraic data types

Typechecking: MLGI

Simple type inference: MLGX

Shape inference

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 141

Introducing generalized algebraic data types

Typechecking: MLGI

Simple type inference: MLGX

Shape inference

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 142

Algebraic data types (reminder)

The data constructors associated with an ordinary algebraic
data type constructor T receive type schemes of the form:

K :: ∀ᾱ.τ1 × . . . × τn → T ᾱ

For instance,

Leaf :: ∀α.tree(α)
Node :: ∀α.tree(α) × α × tree(α)→ tree(α)

Matching a value of type tree(α) against the pattern Node(l, v, r)
binds l, v, and r to values of types tree(α), α, and tree(α).

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 143

Iso-existential types

In Läufer and Odersky’s extension of Hindley and Milner’s type
system with iso-existential types, the data constructors receive
type schemes of the form:

K :: ∀ᾱβ̄.τ1 × . . . × τn → T ᾱ

For instance,
Key :: ∀β.β × (β → int)→ key

Matching a value of type key against the pattern Key (v, f) binds
v and f to values of type β and β → int, for an unknown β.

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 144

Generalized algebraic data types

Let us now go further and remove the restriction that the
parameters to T should be distinct type variables:

K :: ∀β̄.τ1 × . . . × τn → T τ̄

Instead, they can be arbitrary types, with ftv(τ̄) ⊆ β̄.

Matching a value of type T ᾱ against the pattern K (x1, . . . , xn)
binds xi to a value of type τi, for some unknown types β̄ that
satisfy the constraint τ̄ = ᾱ.

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 145

Generalized algebraic data types, continued

With generalized algebraic data types, pattern matching
introduces new type equations that can be exploited to establish
well-typedness.

In other words, the success of a dynamic test can yield extra
static type information.

Generalized algebraic data types are very much like the inductive
types found in theorem provers, but have only recently received
interest in the programming languages community.

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 146

Applications

Applications of generalized algebraic data types include:

I Generic programming (Xi, Cheney and Hinze)

I Typed meta-programming (Pfenning and Lee, Xi, Sheard)

I Tagless automata (Pottier and Régis-Gianas)

I Type-preserving defunctionalization (Pottier and Gauthier)

I and more...

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 147

Example

Here is typed abstract syntax for a simple object language.

Lit :: int→ term int
Inc :: term int→ term int
IsZ :: term int→ term bool
If :: ∀α.term bool→ term α→ term α→ term α

Pair :: ∀αβ.term α→ term β → term (α × β)
Fst :: ∀αβ.term (α × β)→ term α
Snd :: ∀αβ.term (α × β)→ term β

This is not an ordinary algebraic data type...

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 148

Example, continued

This definition allows writing an evaluator that does not perform
any tagging or untagging of object-level values:

µ(eval : ∀α.term α→ α).λt.
case t of
| Lit i→ (∗ α = int ∗) i
| Inc t→ (∗ α = int ∗) eval t + 1
| IsZ t→ (∗ α = bool ∗) eval t = 0
| If b t e→ if eval b then eval t else eval e
| Pair a b→ (∗ ∃α1α2.α = α1 × α2 ∗) (eval a, eval b)
| Fst t→ fst (eval t)
| Snd t→ snd (eval t)

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 149

From type inference to constraint solving

In the presence of generalized algebraic data types, reducing
type inference to constraint solving remains reasonably
straightforward (Simonet and Pottier, Stuckey and Sulzmann).

For eval, the constraint could look like this...

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 150

Example, continued

let eval : ∀α.term α→ α in
∀α.
let t : term α in

∃β.



t � term β
β = int⇒

let i : int in i � α
. . .
∀α1α2.β = α1 × α2 ⇒

let a : term α1; b : term α2 in

∃β1β2.

 ∃γ1.(eval � γ1 → β1 ∧ a � γ1)
∃γ2.(eval � γ2 → β2 ∧ b � γ2)
β1 × β2 = α




François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 151

Example, continued

let eval : ∀α.term α→ α in
∀α.

α = int⇒
let i : int in i � α

. . .
∀α1α2.α = α1 × α2 ⇒

let a : term α1; b : term α2 in

∃β1β2.

 ∃γ1.(eval � γ1 → β1 ∧ a � γ1)
∃γ2.(eval � γ2 → β2 ∧ b � γ2)
β1 × β2 = α





François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 152

Example, continued

∀α.

α = int⇒ int = α
. . .
∀α1α2.α = α1 × α2 ⇒

∃β1β2.

 α1 = β1
α2 = β2
β1 × β2 = α





François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 153

Example, continued

∀α. true
. . .
∀α1α2.α = α1 × α2 ⇒ α1 × α2 = α


The constraint eventually simplifies down to true, so eval is
well-typed.

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 154

Huh?

It looks as if there is no problem!?

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 155

Implications of implication

Adding implication to the constraint language yields the
first-order theory of equality of trees, whose satisfiability problem
is decidable, but intractable.

For eval, solving was easy because enough explicit information
was available.

This is not just a matter of computing power. These
constraints do not have nice solved forms...

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 156

Implications of implication, continued

What types does this function admit?

Eq :: ∀α.eq α α

cast =
∀αβ.λ(w : eq α β).λ(x : α).
case w of
Eq→ (∗ α = β ∗) x

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 157

Implications of implication, continued

Both of these are correct:

∀αβ.eq α β → α→ α
∀αβ.eq α β → α→ β

but none is principal! The principal constrained type scheme
produced by constraint solving would be

∀αβγ[α = β ⇒ α = γ].eq α β → α→ γ

which indeed subsumes the previous two.

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 158

Implications of implication, continued

The constraint
α = β ⇒ α = γ

cannot be further simplified; it is a solved form.

Introducing implication means that constraints no longer have
most general unifiers. In other words, the system no longer has
principal types in the standard sense.

François Pottier A modern eye on ML type inference

Introducing generalized algebraic data types 159

A solution

I am now about to present a solution where principal types are
recovered by means of mandatory type annotations and where a
local shape inference layer is added so as to allow omitting
some of these annotations.

This is joint work with Yann Régis-Gianas and draws inspiration
on work by Peyton Jones, Washburn, and Weirich.

François Pottier A modern eye on ML type inference

Typechecking: MLGI 160

Introducing generalized algebraic data types

Typechecking: MLGI

Simple type inference: MLGX

Shape inference

François Pottier A modern eye on ML type inference

Typechecking: MLGI 161

MLGI

Let’s first define the programs that we deem sound and would
like to accept, without thinking about type inference.

This is MLGI—ML with generalized algebraic data types in
implicit style.

François Pottier A modern eye on ML type inference

Typechecking: MLGI 162

Data constructor declarations

Every data constructor K is assigned a closed type scheme by
a declaration of the form

K :: ∀ᾱβ̄.τ1 × . . . × τn → T ᾱ τ̄

ᾱ are ordinary parameters, while τ̄ are generalized parameters.

François Pottier A modern eye on ML type inference

Typechecking: MLGI 163

Types

Types τ ::= α | τ→ τ | T τ̄ τ̄
Type schemes σ ::= ∀ᾱ.τ

Simple type annotations θ ::= ∃γ̄.τ
Polymorphic type annotations ς ::= ∃γ̄.σ

Each type annotation binds its own flexible type variables γ̄. It
can also have free type variables, which are interpreted as rigid...

François Pottier A modern eye on ML type inference

Typechecking: MLGI 164

Expressions

Expressions e ::= x | λ(x : θ).e | e e | let x = e in e | µ(x : ς).e |
K e . . . e | case e of c̄ | ∀ᾱ.e | (e : θ)

Clauses c ::= p.e
Patterns p ::= K β̄ x̄

This is Core ML with polymorphic recursion, (generalized)
algebraic data types, and type annotations.

Type variables are bound rigidly (universally) only. This
(nonessential) restriction simplifies the presentation.

François Pottier A modern eye on ML type inference

Typechecking: MLGI 165

Specification

MLGI’s typing judgments take the form

E, Γ ` e : σ

where E is a system of type equations.

Most of the rules are standard, modulo introduction of E...

François Pottier A modern eye on ML type inference

Typechecking: MLGI 166

Specification, continued

E is exploited via implicit type conversions:

E, Γ ` e : τ1 E
 τ1 = τ2

E, Γ ` e : τ2

The symbol
 stands for constraint entailment.

François Pottier A modern eye on ML type inference

Typechecking: MLGI 167

Specification, continued

These are standard rules:

K � τ1 × . . . × τn → T τ̄1 τ̄2
∀i E, Γ ` ei : τi

E, Γ ` K e1 . . . en : T τ̄1 τ̄2

E, Γ ` e : τ1
∀i E, Γ ` ci : τ1 → τ2

E, Γ ` case e of c1 . . . cn : τ2

The interesting stuff happens in the rules that deal with
individual clauses...

François Pottier A modern eye on ML type inference

Typechecking: MLGI 168

Specification, continued

p : T τ̄1 τ̄2 ` (β̄, E′, Γ′) E ∧ E′, ΓΓ′ ` e : τ2
β̄ # ftv(E, Γ, τ2)

E, Γ ` p.e : T τ̄1 τ̄2 → τ2

Inside each clause, new (abstract) type variables, new type
equations, and new environment entries appear.

They are found by confronting the type T τ̄1 τ̄2 of the scrutinee
with the pattern p...

François Pottier A modern eye on ML type inference

Typechecking: MLGI 169

Specification, continued

Simple, but subtle.

K � ∀β̄.τ1 × . . . × τn → T τ̄1 τ̄ β̄ # . . .

K β̄ x1 . . . xn : T τ̄1 τ̄2 ` (β̄, τ̄2 = τ̄, (x1 : τ1; . . . ; xn : τn))

Confronting the generalized type parameters (τ̄ versus τ̄2) gives
rise to new equations.

Instantiating the ordinary type parameters (ᾱ versus τ̄1) allows
determining τ1, . . . , τn, as in ordinary ML.

François Pottier A modern eye on ML type inference

Typechecking: MLGI 170

Results and non-results

Theorem (Soundness for MLGI)

Well-typed MLGI programs do not go wrong.

As explained earlier, MLGI does not have principal types.

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 171

Introducing generalized algebraic data types

Typechecking: MLGI

Simple type inference: MLGX

Shape inference

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 172

MLGX

Let’s require sufficiently many type annotations to ensure that
E is known at all times and is rigid. Let’s also make all type
conversions explicit.

This is MLGX—ML with generalized algebraic data types in
explicit style.

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 173

Specification

E, Γ ` (e : θ) : τ1
∀i E, Γ ` (pi : θ).ei : τ1 → τ2

E, Γ ` case (e : θ) of p1.e1 . . . pn.en : τ2

We require a type annotation at case constructs and pass it
down to the rule that examines individual clauses...

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 174

Specification, continued

The rule that checks clauses now exploits the type annotation:

p : T τ̄1 τ̄
′
2 ` (β̄, E′, Γ′) E ∧ E′, ΓΓ′ ` e : τ2

β̄ # . . . γ̄ # . . .

E, Γ ` (p : ∃γ̄.T ? τ̄′2).e : T τ̄1 ?→ τ2

The generalized type parameters taken from the annotation are
used to determine E′. No guessing is involved. The weaker the
annotation, the weaker E′.

(? stands for a type that is discarded.)

(See analogous rule in MLGI.)

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 175

Specification, continued

E is now exploited only through an explicit coercion form:

E, Γ ` e : τ1 κ � (τ1 . τ2) E
 κ

E, Γ ` (e : κ) : τ2

The syntax of coercions is

κ ::= ∃γ̄.(τ . τ)

E validates the coercion ∃γ̄.(τ1 . τ2) iff

E
 ∀γ̄.τ1 = τ2

holds.

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 176

Soundness and completeness

Theorem (Soundness for MLGX)

If E, Γ ` e : σ holds in MLGX, then it holds in MLGI as well.

Theorem (Completeness with assistance for MLGX)

If E, Γ ` e : σ holds in MLGI, then there exists an annotated
version e′ of e such that E, Γ ` e′ : σ holds in MLGX.

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 177

Type inference for MLGX

Type inference for MLGX decomposes into two conceptually
separate tasks:

I compute E at all program points and check that every
explicit coercion is valid;

I forget about E and follow the standard reduction to
constraint solving. A coercion ∃γ̄.(τ1 . τ2) behaves just like
a constant of type ∀γ̄.τ1 → τ2. No implication constraints
are involved, so we recover principal types.

Details are omitted.

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 178

Programming in MLGX

In MLGX, eval is written:

µ(eval : ∀α.term α→ α).∀α.λt.
case (t : term α) of
| Lit i→ (i : (int . α))
| Inc t→ (eval t + 1 : (int . α))
| IsZ t→ (eval t = 0 : (bool . α))
| If b t e→ if eval b then eval t else eval e
| Pair β1 β2 a b→ ((eval a, eval b) : (β1 × β2 . α))
| Fst β2 t→ fst (eval t)
| Snd β1 t→ snd (eval t)

This is nice, but redundant...

François Pottier A modern eye on ML type inference

Simple type inference: MLGX 179

MLGX is modest

In short, MLGX marries type inference for Hindley and Milner’s
type system with typechecking for generalized algebraic data
types.

In order to reduce the annotation burden, we again turn to local
shape inference...

François Pottier A modern eye on ML type inference

Shape inference 180

Introducing generalized algebraic data types

Typechecking: MLGI

Simple type inference: MLGX

Shape inference

François Pottier A modern eye on ML type inference

Shape inference 181

Shapes

Shapes are defined by
s ::= γ̄.τ

The flexible type variables γ̄ are bound within τ.

François Pottier A modern eye on ML type inference

Shape inference 182

Shapes, continued

Flexible type variables are interpreted as standing for unknown
or polymorphic types.

That is, the shape γ.γ → γ adequately describes the integer
successor function as well as the polymorphic identity function.

François Pottier A modern eye on ML type inference

Shape inference 183

Shapes, continued

Shapes can have free type variables; these are interpreted as
rigid.

For instance, the shape
γ.α × γ

describes a pair whose first component has type α, where the
rigid type variable α was introduced by the programmer, and
whose second component has unknown type.

François Pottier A modern eye on ML type inference

Shape inference 184

Basic operations

⊥ = γ.γ
(γ̄1.τ1)→ (γ̄2.τ2) = γ̄1γ̄2.τ1 → τ2
D(⊥) = ⊥
D(γ̄.τ1 → ?) = γ̄.τ1
C(⊥) = ⊥
C(γ̄.?→ τ2) = γ̄.τ2

⊥ is the uninformative shape.

Out of two shapes, one forms an arrow shape. Conversely, out
of an arrow shape, one projects domain and codomain.

François Pottier A modern eye on ML type inference

Shape inference 185

Ordering shapes

Shapes are equipped with a standard instantiation ordering.

For instance,
(γ1.α × γ1) � (γ2.α × (α→ γ2))

François Pottier A modern eye on ML type inference

Shape inference 186

Ordering shapes, continued

When two shapes have an upper bound, they have a least upper
bound, computed via first-order unification.

For instance,

(γ.γ → γ) t (int→ ⊥) = int→ int

(Recall that int→ ⊥ stands for γ.int→ γ.)

This use of unification is local.

François Pottier A modern eye on ML type inference

Shape inference 187

Normalizing shapes

If an expression is found to have both shape α and shape
γ.β1 → γ, then shape inference should fail, because these do not
have an upper bound...

... unless some equation in E proves that these shapes really
are compatible. For instance,

α = β1 → β2

is such an equation.

François Pottier A modern eye on ML type inference

Shape inference 188

Normalizing shapes, continued

If we take E into account, then the shapes α and β1 → β2
become logically interchangeable.

But the latter is more informative...

... so we choose to always normalize the former into the latter.

François Pottier A modern eye on ML type inference

Shape inference 189

Normalizing shapes, continued

Normalization is performed, roughly speaking, by viewing E as a
rewrite system, and preferring structured types to type
variables.

An arbitrary choice is made when an equation involves two type
variables. Ouch! This is bad—but normalization is desirable.

We write s�E for the normalized version of s with respect to E.

François Pottier A modern eye on ML type inference

Shape inference 190

Pruning shapes

Recall this problematic code snippet:

cast =
∀αβ.λ(w : eq α β).λ(x : α).
case w of
Eq→ (∗ α = β ∗) x

Shape inference will probably infer that x has shape α, which is
correct, up to the equation α = β.

Can it rightfully infer that the case construct also has type α?
No, because the equation α = β is no longer available. The
correct shape could be β, and the two are incompatible.

François Pottier A modern eye on ML type inference

Shape inference 191

Pruning shapes, continued

To ensure that we only infer correct shapes, we prune unreliable
information when exiting a case construct.

Thus, we infer ⊥ instead of making an arbitrary decision.

This allows us to later prove a soundness theorem.

One could also choose to ignore this issue...

François Pottier A modern eye on ML type inference

Shape inference 192

Algorithm W

Here is a shape inference algorithm inspired by Peyton Jones et
al.’s. “wobbly types” paper.

It is bidirectional:

E, Γ ` e ↑ s e′ synthesis, s is inferred
E, Γ ` e ↓ s e′ checking, s is provided

Γ maps variables to shapes.

An invariant is that s is normalized with respect to E.

François Pottier A modern eye on ML type inference

Shape inference 193

Algorithm W, continued

The transformed term e′ is identical to e, except

I all existing type annotations are normalized,

I new type annotations are inserted around case scrutinees,

I type coercions are inserted at uses of variables and around
some case clauses.

François Pottier A modern eye on ML type inference

Shape inference 194

Algorithm W, continued

Variable, synthesis mode:

(x : s) ∈ Γ

E, Γ ` x ↑ s�E (x ↓E s)

The inferred shape is the normalized version of the shape in Γ.

This normalization step is reflected in the transformed
expression by inserting an explicit coercion...

François Pottier A modern eye on ML type inference

Shape inference 195

Algorithm W, continued

By definition,
(e ↓E γ̄.τ)

is sugar for
(e : ∃γ̄.(τ . τ�E))

Inserting a coercion amounts to explicitly telling MLGX about the
equations that we are exploiting.

François Pottier A modern eye on ML type inference

Shape inference 196

Algorithm W, continued

An instance of the rule is

(x : α) ∈ Γ

α = int, Γ ` x ↑ int (x : (α . int))

That is, if x is known to have shape α and if the equation
α = int is locally available, then we infer that x has shape int
and insert the corresponding coercion.

François Pottier A modern eye on ML type inference

Shape inference 197

Algorithm W, continued

Application, synthesis mode:

E, Γ ` e1 ↑ s e′1
E, Γ ` e2 ↓ D(s) e′2

E, Γ ` e1 e2 ↑ C(s) e′1 e
′
2

Simple stuff. Arbitrary choices of modes in the premises.

François Pottier A modern eye on ML type inference

Shape inference 198

Algorithm W, continued

Explicit type annotation, synthesis mode:

E, Γ ` e ↓ θ �E e′

E, Γ ` (e : θ) ↑ θ �E (e′ : θ �E)

The mode changes from synthesis to checking.

The type annotation is normalized in the transformed expression.

François Pottier A modern eye on ML type inference

Shape inference 199

Algorithm W, continued

Clause, checking mode:

p : T τ̄1 τ̄2 ` (β̄, E′, Γ′) E ∧ E′, Γ(γ̄.Γ′) ` e ↓ s�E∧E′ e′

β̄ # . . . γ̄ # . . .

E, Γ ` (p : γ̄.T τ̄1 τ̄2).e ↓ s p.(e′ ↑E∧E′ s)

The environment is extended with new bindings of variables to
shapes.

The expected shape s is normalized with respect to the new
theory E ∧ E′.

This normalization step is reflected by inserting a reverse
coercion...

François Pottier A modern eye on ML type inference

Shape inference 200

Programming in MLGX

This is how the surface version of eval is transformed into:

µ?(eval : ∀α.term α→ α).λt.
case (t : term α) of
| Lit i→ (i : (int . α))
| Inc t→ (eval t + 1 : (int . α))
| IsZ t→ (eval t = 0 : (bool . α))
| If b t e→ if eval b then eval t else eval e
| Pair β1 β2 a b→ ((eval a, eval b) : (β1 × β2 . α))
| Fst β2 t→ fst (eval t)
| Snd β1 t→ snd (eval t)

François Pottier A modern eye on ML type inference

Shape inference 201

Soundness

Theorem (Soundness for Algorithm W)

Let E, Γ ` e : σ hold in MLGI. Let E
 Γ′ � Γ hold. Then,

1. If E, Γ′ ` e ↑ s e′ holds in W , then E
 s � σ holds and
E, Γ ` e′ : σ holds in MLGI.

2. . . . (analogous statement for checking mode)

The inferred shape s is a sound approximation of the true
shape σ , and the changes made to the program do not in
principle break it.

Still, there is no guarantee that the transformed program is
well-typed in MLGX!

François Pottier A modern eye on ML type inference

Shape inference 202

Are we happy?

MLGX seems simple but robust.

There is no doubt that Algorithm W can be improved (and that
is done in the paper), but any shape inference algorithm is
bound to be ad hoc.

François Pottier A modern eye on ML type inference

Shape inference 203

Selected References

Simon Peyton Jones, Geoffrey Washburn, and Stephanie
Weirich.
Wobbly types: type inference for generalised algebraic data
types.
Manuscript, 2004.

François Pottier and Yann Régis-Gianas.
Stratified type inference for generalized algebraic data types.
Manuscript, 2005.

François Pottier A modern eye on ML type inference

http://research.microsoft.com/Users/simonpj/papers/gadt/
http://research.microsoft.com/Users/simonpj/papers/gadt/
http://cristal.inria.fr/~fpottier/publis/pottier-regis-gianas-05.pdf

204

Part IV

Conclusion

François Pottier A modern eye on ML type inference

205

Constraint-based type inference

Constraint-based type inference is a versatile tool that can deal
with many language features while relying on a single constraint
solver.

The solver’s definition can be complex, but its behavior remains
predictable because it is correct and complete with respect to
the logical interpretation of constraints.

François Pottier A modern eye on ML type inference

206

Mandatory type annotations

Some constraint languages have intractable or undecidable
satisfiability problems.

Instead of relying on an incomplete constraint solver, it is wise
to modify the constraint generation process so as to take
advantage of user-provided hints—typically, mandatory type
annotations.

François Pottier A modern eye on ML type inference

207

Local type inference

If the necessary hints are so numerous that they become a
burden, a local type inference algorithm can be used to
automatically produce some of them.

Although its design is usually ad hoc, it should remain
predictable if it is sufficiently simple.

François Pottier A modern eye on ML type inference

208

Thank you.

François Pottier A modern eye on ML type inference

	The simply-typed lambda-calculus
	Hindley and Milner's type system, with Algorithm J
	Hindley and Milner's type system, with constraints
	Constraint solving by example
	Data structures
	Recursion
	Optional type annotations
	The problem
	Iso-universal types
	Arbitrary-rank predicative polymorphism
	Introducing generalized algebraic data types
	Typechecking: MLGI
	Simple type inference: MLGX
	Shape inference

