
Time credits and time receipts in Iris

Glen Mével, Jacques-Henri Jourdan, François Pottier

Inria
CNRS, LRI, Univ. Paris Sud, Université Paris-Saclay

April 8, 2019
Prague

Introduction Problem Time receipts in action Soundness Conclusion

This talk

recent works: time credits
aim: prove an upper bound on the running time of a program

this talk: time receipts
aim: assume an upper bound on the running time of a
program

These are dual notions.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 1 / 17

Introduction Problem Time receipts in action Soundness Conclusion

This talk

recent works: time credits
aim: prove an upper bound on the running time of a program

this talk: time receipts
aim: assume an upper bound on the running time of a
program

These are dual notions.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 1 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Example: a unique symbol generator

The function genSym returns fresh symbols:

let lastSym = ref 0

(* unsigned 64-bit integer *)

let genSym() =
lastSym ..= ! lastSym + 1;

(* may overflow! *)

! lastSym

Strictly speaking, this code is not correct.

We still want to prove that this code is “correct” in some sense.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 2 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Example: a unique symbol generator

The function genSym returns fresh symbols:

let lastSym = ref 0 (* unsigned 64-bit integer *)

let genSym() =
lastSym ..= ! lastSym + 1; (* may overflow! *)
! lastSym

Strictly speaking, this code is not correct.

We still want to prove that this code is “correct” in some sense.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 2 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Example: a unique symbol generator

The function genSym returns fresh symbols:

let lastSym = ref 0 (* unsigned 64-bit integer *)

let genSym() =
lastSym ..= ! lastSym + 1; (* may overflow! *)
! lastSym

Strictly speaking, this code is not correct.

We still want to prove that this code is “correct” in some sense.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 2 / 17

Introduction Problem Time receipts in action Soundness Conclusion

The Bounded Time Hypothesis [Clochard et al., 2015]

Counting from 0 to 264 takes centuries with a modern processor.

Therefore, this overflow won’t happen in a lifetime.

How to express this informal argument in separation logic?

In this talk:
We answer this question using time receipts.
We prove that Iris, extended with time receipts, is sound.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 3 / 17

Introduction Problem Time receipts in action Soundness Conclusion

The Bounded Time Hypothesis [Clochard et al., 2015]

Counting from 0 to 264 takes centuries with a modern processor.

Therefore, this overflow won’t happen in a lifetime.

How to express this informal argument in separation logic?

In this talk:
We answer this question using time receipts.
We prove that Iris, extended with time receipts, is sound.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 3 / 17

A closer look at the problem

Introduction Problem Time receipts in action Soundness Conclusion

Specification of genSym

A specification (in separation logic):

P ∅ ∗ ∀S .

 {P S}
genSym()

{λn. n /∈ S ∗ P(S ∪ {n})}

for some proposition P S which represents:

the ownership of the generator;
the fact that S is the set of all symbols returned so far.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 4 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Tentative proof of genSym

Invariant: P S , lastSym 7→ maxS

{}

let lastSym = ref 0

{lastSym 7→ 0}
{P ∅}

{P S}

let genSym() =

{lastSym 7→ maxS}

lastSym ..= ! lastSym + 1;

{lastSym 7→ bmaxS + 1c 264}
{ bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264}

! lastSym

{λn. n /∈ S ∗ lastSym 7→ n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 5 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Tentative proof of genSym

Invariant: P S , lastSym 7→ maxS

{}
let lastSym = ref 0

{lastSym 7→ 0}

{P ∅}

{P S}
let genSym() =

{lastSym 7→ maxS}

lastSym ..= ! lastSym + 1;

{lastSym 7→ bmaxS + 1c 264}
{ bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264}

! lastSym

{λn. n /∈ S ∗ lastSym 7→ n}

{λn. n /∈ S ∗ P(S ∪ {n})}
Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 5 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Tentative proof of genSym

Invariant: P S , lastSym 7→ maxS

{}
let lastSym = ref 0

{lastSym 7→ 0}

{P ∅}

{P S}
let genSym() =

{lastSym 7→ maxS}

lastSym ..= ! lastSym + 1;

{lastSym 7→ bmaxS + 1c 264}
{ bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264}

! lastSym

{λn. n /∈ S ∗ lastSym 7→ n}

{λn. n /∈ S ∗ P(S ∪ {n})}
Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 5 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Tentative proof of genSym

Invariant: P S , lastSym 7→ maxS

{}
let lastSym = ref 0
{lastSym 7→ 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264}
{ bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 5 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Tentative proof of genSym

Invariant: P S , lastSym 7→ maxS

{}
let lastSym = ref 0
{lastSym 7→ 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Wrong

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 5 / 17

Introduction Problem Time receipts in action Soundness Conclusion

An unpleasant workaround: patch the specification

We may add a precondition to exclude any chance of overflow:

P ∅ ∗ ∀S .

 {P S ∗ |S | < 264 − 1}
genSym()

{λn. n /∈ S ∗ P(S ∪ {n})}

This pollutes user proofs with cumbersome proof obligations. . .
which may even be unprovable!

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 6 / 17

Time receipts in action

Introduction Problem Time receipts in action Soundness Conclusion

Time receipts in separation logic

To count execution steps, we introduce time receipts.

Each step produces one time receipt, and only one:

{True} x + y {λz . z = bx + yc 264 ∗ © 1}©

Time receipts sum up:

© 1 ∗ . . . ∗ © 1︸ ︷︷ ︸
n

≡ © n

But time receipts do not duplicate (separation logic):

© 1 6−∗ © 1 ∗ © 1

Therefore, © n is a witness that (at least) n steps have been taken.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 7 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts

Invariant: P S , lastSym 7→ maxS

{}
let lastSym = ref 0
{lastSym 7→ 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 8 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n}
{λn. n /∈ S ∗ P(S ∪ {n})}

We keep track of elapsed time.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 8 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0 ∗ © 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS ∗ ©maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n ∗ © n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 8 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0 ∗ © 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS ∗ ©maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n ∗ © n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Initialization
We obtain 0 time receipts for free.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 8 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0 ∗ © 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS ∗ ©maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n ∗ © n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Tick
Addition produces one time receipt.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 8 / 17

Introduction Problem Time receipts in action Soundness Conclusion

The Bounded Time Hypothesis with time receipts

Let N be an arbitrary integer.

We posit the Bounded Time Hypothesis:

©N ` False

In other words, we assume that no execution lasts for N steps.

The larger N, the weaker this assumption.

Consequence:

© n ` n < N

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 9 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts and the BTH

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0 ∗ © 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS ∗ ©maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n ∗ © n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 10 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts and the BTH

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0 ∗ © 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS ∗ ©maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n ∗ © n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Bounded Time
©(max S + 1) entails max S + 1 < N.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 10 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts and the BTH

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0 ∗ © 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS ∗ ©maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
{bmaxS + 1c 264 /∈ S ∗ lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n ∗ © n}
{λn. n /∈ S ∗ P(S ∪ {n})}

Bounded Time
We further require N ≤ 264.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 10 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts and the BTH

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0 ∗ © 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS ∗ ©maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
{maxS + 1 /∈ S ∗ lastSym 7→ maxS + 1 ∗ ©(maxS + 1)}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n ∗ © n}
{λn. n /∈ S ∗ P(S ∪ {n})}

No overflow
Then, max S + 1 < 264.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 10 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof of genSym using time receipts and the BTH

Invariant: P S , lastSym 7→ maxS ∗ ©(maxS)

{}
let lastSym = ref 0
{lastSym 7→ 0 ∗ © 0}
{P ∅}

{P S}
let genSym() =
{lastSym 7→ maxS ∗ ©maxS}
lastSym ..= ! lastSym + 1;
{lastSym 7→ bmaxS + 1c 264 ∗ ©(maxS + 1)}
{maxS + 1 /∈ S ∗ lastSym 7→ maxS + 1 ∗ ©(maxS + 1)}
! lastSym
{λn. n /∈ S ∗ lastSym 7→ n ∗ © n}
{λn. n /∈ S ∗ P(S ∪ {n})}

X

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 10 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Iris©, a program logic with time receipts

Time receipts satisfy the Bounded Time Hypothesis:

©N ` False

Each step produces one time receipt; for instance:

{True} x + y {λz . z = bx + yc 264 ∗ © 1}©

We can obtain zero time receipts unconditionally:

` © 0

Time receipts are additive:

©m ∗ © n ≡ ©(m + n)

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 11 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Iris©, a program logic with time receipts

Time receipts satisfy the Bounded Time Hypothesis:

©N ` False

Each step produces one time receipt; for instance:

{True} x + y {λz . z = bx + yc 264 ∗ © 1}©

We can obtain zero time receipts unconditionally:

` © 0

Time receipts are additive:

©m ∗ © n ≡ ©(m + n)

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 11 / 17

Soundness of Iris with time receipts

Introduction Problem Time receipts in action Soundness Conclusion

Soundness of Iris©

We want our program logic Iris© to satisfy this property:

Theorem (Soundness of Iris©)

If the following Iris© triple holds:

{True} e {_}©

then e cannot crash until N steps have been taken.

We say that “e is (N − 1)-safe”.

Crashing means trying to step while in a stuck configuration;
for example, dereferencing a non-pointer.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 12 / 17

Introduction Problem Time receipts in action Soundness Conclusion

Proof sketch of the soundness theorem

We use Iris as a model of Iris©.

{P} e {ϕ}© , {P} 〈〈e〉〉 {ϕ}

The transformation 〈〈·〉〉 inserts ticks (see next slides).

The proof then works as follows:

{True} 〈〈e〉〉 {_}wwww�Soundness theorem of Iris [Jung et al., 2015]

〈〈e〉〉 is safewwww�Simulation lemma

e is (N − 1)-safe

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 13 / 17

Introduction Problem Time receipts in action Soundness Conclusion

The program transformation

We keep track of the number of steps using a global counter c ,
initialized with 0.

The transformation inserts one tick instruction per operation.

〈〈e1 + e2〉〉 , tick (〈〈e1〉〉+ 〈〈e2〉〉)

tick increments c . On its Nth execution, it does not return.

let tick x =
! c ..= ! c + 1;
if ! c < N then x else loop ()

Idea: transform a program that runs for too long
into a program that never ends, hence is safe.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 14 / 17

Introduction Problem Time receipts in action Soundness Conclusion

The simulation lemma

This program transformation does satisfy the desired lemma:

Lemma (Simulation)

If 〈〈e〉〉 is safe (i.e. it cannot crash),
then e is (N − 1)-safe (i.e. it cannot crash until N steps have been taken).

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 15 / 17

Introduction Problem Time receipts in action Soundness Conclusion

The model of time receipts

The transformation maintains the invariant ! c < N.

© 1 is modeled as an exclusive portion of the value of the counter c
(Iris features used: authoritative monoidal resource, invariant).

In particular, © n ` ! c ≥ n. Hence, ©N ` False.

All other axioms of time receipts are realised as well.

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 16 / 17

Conclusion

Introduction Problem Time receipts in action Soundness Conclusion

Conclusion

Contributions (new):

Soundness Application

Time credits X
Reconstruction of Okasaki
and Danielsson’s thunks
(amortized analysis)

Time receipts
(exclusive / persistent)

X
Reconstruction of Clochard

et al.’s overflow-free integers

Time credits and
time receipts

X
Proof of Union-Find:

complexity,
absence of overflow in ranks

Defined within Iris, machine-checked with Coq

Open question: Can we prove useful facts about concurrent code?

Glen Mével, Jacques-Henri Jourdan, François Pottier Time credits and time receipts in Iris 17 / 17

Thank you for your time.

©17

What about concurrency?

Iris is a concurrent separation logic; thus, our program logics
already support concurrency: they measure the work (total number
of operations in all threads).

let tick x =
if (FAA c 1 < N − 1) then x else loop ()

What about measuring the span (running time of the longest-living
thread)?
A path to explore: a separate notion of time receipt for each thread,
with a rule to clone time receipts of the calling thread when forking.

Compiling code analysed with time receipts

For time receipt proofs to be valid, we need to forbid optimizations!
Otherwise, programs may compute faster than expected.
For example:

for i from 1 to N do
()

done;
(* This point is beyond the scope of Iris©:
* anything below may be unsafe,
* but it shouldn’t be reached in a lifetime. . . *)
crash ()

A compiler may optimize it to:

(* Too bad! *)
crash ()

A solution: insert actual tick operations and make them opaque.

Example application: Union-Find

We implement the Union-Find with ranks stored in machine words.
While proving the correctness of the algorithm, we also prove

its complexity (using time credits)
and the absence of overflows for ranks (using time receipts).

Granted that x , y ∈ D and log2 log2 N < word_size− 1, we show
the Iris$© triple:

{isUFD R V ∗ $(44α(|D|) + 152)}
union x y

{λz . isUFD R ′ V ′ ∗ (z = R x ∨ z = R y)}
$©

Consequences:
the (amortized) complexity is the inverse Ackermann function;
if N = 264, then word_size ≥ 8 is enough to avoid overflows.

Example: a unique symbol generator (functional version)

Code:

let makeGenSym() =
let lastSym = ref 0 in (* unsigned 64-bit integer *)
fun ()→
lastSym ..= ! lastSym + 1; (* may overflow *)
! lastSym

Specification (in higher-order separation logic):

{True}
makeGenSym()

{λ genSym. ∃P.

P ∅ ∗ ∀S .

 {P S}
genSym()

{λn. n /∈ S ∗ P(S ∪ {n})}

}

Alternative specification of makeGenSym

Specification (in Iris):

{True}
makeGenSym()

{λ genSym. ∃γ.

∀n.

 {True}genSym()

{λm. OwnSymγ(m)}

}
The ownership of the generator is shared through an invariant.
OwnSymγ(m) asserts uniqueness of symbol m:

OwnSymγ(m1) ∗ OwnSymγ(m2) −∗ m1 6= m2

A program logic with time credits

Each step consumes one time credit; for instance:

{$1} x + y {λz . z = bx + yc 264}©

We can obtain zero time credits unconditionally:

` $0

Time credits are additive:

$m ∗ $n ≡ $(m + n)

A program logic with time credits — Adequacy

Our program logic Iris$ satisfies this property:

Theorem (Adequacy of Iris$)

If the following Iris© triple holds:

{$n} e {ϕ}$

then:
e cannot crash;
if e computes a value v , then ϕ v holds;
e computes for at most n steps.

Adequacy of Iris©

Our program logic Iris© satisfies this property:

Theorem (Adequacy of Iris©)

If the following Iris© triple holds:

{True} e {ϕ}©

then:
e cannot crash until N steps have been taken;
if e computes a value v in less than N steps, then ϕ v holds.

A program logic with duplicable time receipts
Duplicable time receipts satisfy the Bounded Time Hypothesis:

¥N ` False

Each step increments a duplicable time receipt; for instance:

{¥m} x + y {λz . z = bx + yc 264 ∗ ¥(m + 1)}©

We can obtain zero duplicable time receipts unconditionally:

` ¥ 0

Duplicable time receipts obey maximum:

¥m ∗ ¥ n ≡ ¥max(m, n)

Duplicable time receipts are duplicable:

¥m −∗ ¥m ∗ ¥m

Relation between time receipts and duplicable time receipts:

©m ` ©m ∗ ¥m

Overflow-free integers (summable)

IsClock(v , n) , 0 ≤ n < 264 ∗ v = n ∗ © n

non-duplicable
supports addition (consumes its operands):

{IsClock(v1, n1) ∗ IsClock(v2, n2)}
v1 + v2

{λw . IsClock(w , n1 + n2)}

no overflow!

Overflow-free integers (incrementable)

IsSnapClock(v , n) , 0 ≤ n < 264 ∗ v = n ∗ ¥ n

duplicable
supports incrementation (does not consume its operand):

{IsSnapClock(v , n)}
v + 1

{λw . IsSnapClock(w , n + 1)}

no overflow!

Hoare logic primer

prgm is a program (source code).
Pre and Post are logical formulas.

{Pre} prgm {Post}

Soundness:
“If Pre holds, then prgm won’t crash.”

(Partial) correctness:
“If Pre holds, then after prgm is run, Post will hold.”

Total correctness:
“If Pre holds, then prgm terminates and, after prgm is
run, Post will hold.”

Separation logic primer

P is a resource.
x 7→ v is an exclusive resource, its ownership cannot be shared.

Standard logic: P ⇒ P ∧ P

Separation logic: P 6−∗ P ∗ P (resources are not duplicable)

P ∗ Q are disjoint resources.
x 7→ v ∗ x 7→ v ′ is absurd.

Affine sep. logic: P ∗ Q −∗ P (resources can be thrown away)

Iris primer

Iris is:
an affine separation logic,
higher-order,
full-featured (impredicative invariants, monoidal resources. . .),
very extensible,

formalized in Coq.

	Introduction
	Problem
	Time receipts in action
	Soundness
	Conclusion
	Appendix

